utils.py 84.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2023-2024 SGLang Team
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
14
"""Common utilities."""
15

16
17
from __future__ import annotations

18
import builtins
19
import ctypes
20
import dataclasses
21
import functools
22
import importlib
23
import io
24
import ipaddress
25
import itertools
26
import json
27
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
28
import os
29
import pickle
JieXin Liang's avatar
JieXin Liang committed
30
import platform
Lianmin Zheng's avatar
Lianmin Zheng committed
31
import random
Lianmin Zheng's avatar
Lianmin Zheng committed
32
import re
33
import resource
34
35
import shutil
import signal
Lianmin Zheng's avatar
Lianmin Zheng committed
36
import socket
37
import subprocess
38
import sys
Lianmin Zheng's avatar
Lianmin Zheng committed
39
import tempfile
40
import threading
Lianmin Zheng's avatar
Lianmin Zheng committed
41
import time
42
import traceback
43
import warnings
44
from collections import OrderedDict, defaultdict
45
from contextlib import contextmanager
46
from enum import Enum
47
from functools import lru_cache
48
from importlib.metadata import PackageNotFoundError, version
49
from importlib.util import find_spec
Lianmin Zheng's avatar
Lianmin Zheng committed
50
from io import BytesIO
51
from json import JSONDecodeError
52
from multiprocessing.reduction import ForkingPickler
53
from pathlib import Path
54
55
56
57
58
59
60
61
62
63
64
65
66
from typing import (
    Any,
    Callable,
    Dict,
    Generic,
    List,
    Optional,
    Protocol,
    Set,
    Tuple,
    TypeVar,
    Union,
)
Lianmin Zheng's avatar
Lianmin Zheng committed
67
68

import numpy as np
69
import psutil
70
import pybase64
Lianmin Zheng's avatar
Lianmin Zheng committed
71
72
import requests
import torch
73
import torch.distributed
74
import torch.distributed as dist
75
import triton
76
import zmq
77
from fastapi.responses import ORJSONResponse
78
from packaging import version as pkg_version
Mick's avatar
Mick committed
79
from PIL import Image
Lianmin Zheng's avatar
Lianmin Zheng committed
80
from starlette.routing import Mount
81
from torch import nn
82
from torch.func import functional_call
83
from torch.library import Library
84
from torch.profiler import ProfilerActivity, profile, record_function
85
from torch.utils._contextlib import _DecoratorContextManager
86
from triton.runtime.cache import FileCacheManager
87

88
89
logger = logging.getLogger(__name__)

Liangsheng Yin's avatar
Liangsheng Yin committed
90
91
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
92

93
94
HIP_FP8_E4M3_FNUZ_MAX = 224.0

95

96
# https://pytorch.org/docs/stable/notes/hip.html#checking-for-hip
97
98
99
100
def is_hip() -> bool:
    return torch.version.hip is not None


101
102
103
104
105
106
107
108
109
110
111
if is_hip():
    FP8_E4M3_MAX = HIP_FP8_E4M3_FNUZ_MAX
else:
    FP8_E4M3_MAX = torch.finfo(torch.float8_e4m3fn).max

FP8_E4M3_MIN = -FP8_E4M3_MAX

builtins.FP8_E4M3_MAX = FP8_E4M3_MAX
builtins.FP8_E4M3_MIN = FP8_E4M3_MIN


112
def is_cuda():
113
    return torch.cuda.is_available() and torch.version.cuda
114
115
116
117
118
119
120
121
122
123
124
125
126
127


def is_cuda_alike():
    return is_cuda() or is_hip()


def is_hpu() -> bool:
    return hasattr(torch, "hpu") and torch.hpu.is_available()


def is_xpu() -> bool:
    return hasattr(torch, "xpu") and torch.xpu.is_available()


128
129
130
131
def is_npu() -> bool:
    return hasattr(torch, "npu") and torch.npu.is_available()


132
def is_host_cpu_x86() -> bool:
JieXin Liang's avatar
JieXin Liang committed
133
134
135
136
137
138
139
140
    machine = platform.machine().lower()
    return (
        machine in ("x86_64", "amd64", "i386", "i686")
        and hasattr(torch, "cpu")
        and torch.cpu.is_available()
    )


141
142
143
144
def is_cpu() -> bool:
    return os.getenv("SGLANG_USE_CPU_ENGINE", "0") == "1" and is_host_cpu_x86()


145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def get_cuda_version():
    if torch.version.cuda:
        return tuple(map(int, torch.version.cuda.split(".")))
    return (0, 0)


def _check(cc_major):
    if not is_cuda():
        return False
    return torch.cuda.get_device_capability()[0] == cc_major and tuple(
        map(int, torch.version.cuda.split(".")[:2])
    ) >= (12, 3)


is_ampere_with_cuda_12_3 = lambda: _check(8)
is_hopper_with_cuda_12_3 = lambda: _check(9)


def is_blackwell():
    if not is_cuda():
        return False
    return torch.cuda.get_device_capability()[0] == 10


_warned_bool_env_var_keys = set()


def get_bool_env_var(name: str, default: str = "false") -> bool:
    value = os.getenv(name, default)
    value = value.lower()

    truthy_values = ("true", "1")
    falsy_values = ("false", "0")

    if (value not in truthy_values) and (value not in falsy_values):
        if value not in _warned_bool_env_var_keys:
            logger.warning(
                f"get_bool_env_var({name}) see non-understandable value={value} and treat as false"
            )
        _warned_bool_env_var_keys.add(value)

    return value in truthy_values


def get_int_env_var(name: str, default: int = 0) -> int:
    value = os.getenv(name)
    if value is None or not value.strip():
        return default
    try:
        return int(value)
    except ValueError:
        return default


def support_triton(backend: str) -> bool:
    return backend not in ["torch_native", "intel_amx"]


try:
    import sgl_kernel

    is_intel_amx_backend_available = hasattr(
        torch.ops.sgl_kernel, "convert_weight_packed"
    )
except:
    is_intel_amx_backend_available = False


def cpu_has_amx_support():
    return torch._C._cpu._is_amx_tile_supported() and is_intel_amx_backend_available


def use_intel_amx_backend(layer):
    return getattr(layer, "use_intel_amx_backend", False)


221
222
223
224
225
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
226
    if not get_bool_env_var("SGLANG_IS_FLASHINFER_AVAILABLE", default="true"):
227
        return False
228
    return importlib.util.find_spec("flashinfer") is not None and is_cuda()
229
230


231
_ENABLE_TORCH_INFERENCE_MODE = get_bool_env_var(
232
    "SGLANG_ENABLE_TORCH_INFERENCE_MODE", "false"
233
)
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287


class DynamicGradMode(_DecoratorContextManager):
    """
    A combination of torch.no_grad and torch.inference_mode,
    with their behavior controlled by an environment variable. Just refer to them.
    """

    @staticmethod
    def set_inference_mode(mode: bool):
        if isinstance(mode, bool):
            global _ENABLE_TORCH_INFERENCE_MODE

            _ENABLE_TORCH_INFERENCE_MODE = mode
        else:
            logger.warning("mode is not a boolean object")

    def __init__(self, mode=True):
        if not torch._jit_internal.is_scripting():
            super().__init__()
        if _ENABLE_TORCH_INFERENCE_MODE:
            self.mode = mode
        else:
            self.prev = False

    def __new__(cls, mode_or_orig_func=True if _ENABLE_TORCH_INFERENCE_MODE else None):
        if mode_or_orig_func is None or isinstance(mode_or_orig_func, bool):
            return super().__new__(cls)
        return cls()(mode_or_orig_func)

    def __enter__(self) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context = torch._C._InferenceMode(self.mode)
            self._inference_mode_context.__enter__()
        else:
            self.prev = torch.is_grad_enabled()
            torch.set_grad_enabled(False)

    def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any) -> None:
        if _ENABLE_TORCH_INFERENCE_MODE:
            self._inference_mode_context.__exit__(exc_type, exc_value, traceback)
        else:
            torch.set_grad_enabled(self.prev)

    def clone(self) -> "DynamicGradMode":
        r"""
        Create a copy of this class
        """
        if _ENABLE_TORCH_INFERENCE_MODE:
            return self.__class__(self.mode)
        else:
            return self.__class__()


Liangsheng Yin's avatar
Liangsheng Yin committed
288
289
290
291
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
292

Liangsheng Yin's avatar
Liangsheng Yin committed
293
294
295
296
297
298
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
299

Liangsheng Yin's avatar
Liangsheng Yin committed
300
301
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
302

Liangsheng Yin's avatar
Liangsheng Yin committed
303
304
305
306
307
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
308

Liangsheng Yin's avatar
Liangsheng Yin committed
309
310
311
312
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
313
314


Liangsheng Yin's avatar
Liangsheng Yin committed
315
316
317
318
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
319
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
320
321
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
322
    time_infos[name].acc_time -= time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
323
324


Liangsheng Yin's avatar
Liangsheng Yin committed
325
326
327
328
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
329
    torch.cuda.synchronize()
330
    time_infos[name].acc_time += time.perf_counter()
Liangsheng Yin's avatar
Liangsheng Yin committed
331
332
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
333
334
335
336
337
338
339


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
340
                start_time = time.perf_counter()
Lianmin Zheng's avatar
Lianmin Zheng committed
341
342
343
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
344
                cost_time = (time.perf_counter() - start_time) * 1000
Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
347
348
349
350
351
352
353
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


354
355
356
def get_available_gpu_memory(
    device, gpu_id, distributed=False, empty_cache=True, cpu_group=None
):
Lianmin Zheng's avatar
Lianmin Zheng committed
357
358
359
360
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
361
    if device == "cuda":
362
        num_gpus = torch.cuda.device_count()
Zhang, Liangang's avatar
Zhang, Liangang committed
363
364
365
366
367
368
369
370
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

371
372
        if empty_cache:
            torch.cuda.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
373
374
375
376
377
378
379
380
381
382
383
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
384
385
386

        if empty_cache:
            torch.xpu.empty_cache()
Zhang, Liangang's avatar
Zhang, Liangang committed
387
388
389
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
390

391
392
393
394
395
396
397
398
399
400
401
402
    elif device == "hpu":
        num_gpus = torch.hpu.device_count()
        assert gpu_id < num_gpus

        if torch.hpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.hpu.current_device()}, ",
                "which may cause useless memory allocation for torch HPU context.",
            )

        free_gpu_memory, total_gpu_memory = torch.hpu.mem_get_info()

403
404
405
    elif device == "cpu":
        # TODO: rename the variables in the current function to be not GPU specific
        free_gpu_memory = psutil.virtual_memory().available
406
407
408
409
410
411
412
413
414
415
    elif device == "npu":
        num_gpus = torch.npu.device_count()
        assert gpu_id < num_gpus

        if torch.npu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.npu.current_device()}, ",
                "which may cause useless memory allocation for torch NPU context.",
            )
        free_gpu_memory, total_gpu_memory = torch.npu.mem_get_info()
416

Lianmin Zheng's avatar
Lianmin Zheng committed
417
    if distributed:
418
419
420
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32)
        torch.distributed.all_reduce(
            tensor, op=torch.distributed.ReduceOp.MIN, group=cpu_group
Lianmin Zheng's avatar
Lianmin Zheng committed
421
422
423
424
425
426
        )
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
def is_pin_memory_available() -> bool:
    return torch.cuda.is_available()


_CPU_OFFLOAD_BYTES = 0
_CPU_OFFLOAD_MAX_BYTES = 0


def set_cpu_offload_max_bytes(max_bytes: int) -> None:
    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    _CPU_OFFLOAD_BYTES = 0
    _CPU_OFFLOAD_MAX_BYTES = max_bytes


def maybe_offload_to_cpu(module: torch.nn.Module) -> torch.nn.Module:
    device = next(module.parameters()).device

    if device == torch.device("cpu"):
        return module

    global _CPU_OFFLOAD_MAX_BYTES, _CPU_OFFLOAD_BYTES
    if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
        return module

    pin_memory = is_pin_memory_available()
    # offload parameters to CPU
    # use pin_memory if possible, which helps cudagraph capture speed
    offloaded_parameters = False
    for p in module.parameters():
        if _CPU_OFFLOAD_BYTES >= _CPU_OFFLOAD_MAX_BYTES:
            # we use per-parameter offloading
            # one module might have some parameters offloaded and some not
            break

        # `torch.empty_like` does not support `pin_memory` argument
        cpu_data = torch.empty_strided(
            size=p.data.size(),
            stride=p.data.stride(),
            dtype=p.data.dtype,
            layout=p.data.layout,
            device="cpu",
            pin_memory=pin_memory,
        )
        cpu_data.copy_(p.data)
        p.data = cpu_data
        _CPU_OFFLOAD_BYTES += p.data.numel() * p.data.element_size()
        offloaded_parameters = True

    if offloaded_parameters:
        original_forward = module.forward

        def forward(*args, **kwargs):
            module.forward = original_forward
            device_state = {
                # here we blindly call `to(device)`
                # if the parameter is already on the device, it will be a no-op
                k: v.to(device, non_blocking=True)
                for k, v in module.state_dict().items()
            }
            output = functional_call(module, device_state, args=args, kwargs=kwargs)
            module.forward = forward
            return output

        module.forward = forward

    return module


class LayerFn(Protocol):

    def __call__(self, layer_id: int, prefix: str) -> torch.nn.Module: ...


def make_layers(
    num_hidden_layers: int,
    layer_fn: LayerFn,
503
504
    pp_rank: Optional[int] = None,
    pp_size: Optional[int] = None,
505
    prefix: str = "",
506
    return_tuple: bool = False,
507
508
) -> Tuple[int, int, torch.nn.ModuleList]:
    """Make a list of layers with the given layer function"""
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    # circula imports
    from sglang.srt.distributed import get_pp_indices
    from sglang.srt.layers.utils import PPMissingLayer

    assert not pp_size or num_hidden_layers >= pp_size
    start_layer, end_layer = (
        get_pp_indices(
            num_hidden_layers,
            pp_rank,
            pp_size,
        )
        if pp_rank is not None and pp_size is not None
        else (0, num_hidden_layers)
    )
523
    modules = torch.nn.ModuleList(
524
525
        [PPMissingLayer(return_tuple=return_tuple) for _ in range(start_layer)]
        + [
526
            maybe_offload_to_cpu(layer_fn(idx=idx, prefix=add_prefix(idx, prefix)))
527
528
529
530
531
            for idx in range(start_layer, end_layer)
        ]
        + [
            PPMissingLayer(return_tuple=return_tuple)
            for _ in range(end_layer, num_hidden_layers)
532
533
        ]
    )
534
535
536
    if pp_rank is None or pp_size is None:
        return modules
    return modules, start_layer, end_layer
537
538


Lianmin Zheng's avatar
Lianmin Zheng committed
539
def set_random_seed(seed: int) -> None:
540
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
541
    random.seed(seed)
542
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
543
544
545
546
547
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
def find_process_using_port(port: int) -> Optional[psutil.Process]:
    for conn in psutil.net_connections(kind="inet"):
        if conn.laddr.port == port:
            try:
                return psutil.Process(conn.pid)
            except psutil.NoSuchProcess:
                # It could happen by race condition (the proc dies when psutil.Process is called).
                pass

    return None


def wait_port_available(
    port: int, port_name: str, timeout_s: int = 30, raise_exception: bool = True
) -> bool:
    for i in range(timeout_s):
        if is_port_available(port):
            return True

        if i > 10 and i % 5 == 0:
            process = find_process_using_port(port)
            if process is None:
                logger.warning(
                    f"The port {port} is in use, but we could not find the process that uses it."
                )

            pid = process.pid
            error_message = f"{port_name} is used by a process already. {process.name()=}' {process.cmdline()=} {process.status()=} {pid=}"
            logger.info(
                f"port {port} is in use. Waiting for {i} seconds for {port_name} to be available. {error_message}"
            )
        time.sleep(0.1)

    if raise_exception:
        raise ValueError(
            f"{port_name} at {port} is not available in {timeout_s} seconds. {error_message}"
        )
    return False


588
def is_port_available(port):
589
    """Return whether a port is available."""
590
591
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
592
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
593
            s.bind(("", port))
594
            s.listen(1)
595
596
597
            return True
        except socket.error:
            return False
TianYu GUO's avatar
TianYu GUO committed
598
599
        except OverflowError:
            return False
600
601


602
603
604
605
606
607
608
609
610
611
612
613
614
def get_free_port():
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


Yuanhan Zhang's avatar
Yuanhan Zhang committed
615
616
617
618
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
619
    video_bytes = pybase64.b64decode(video_base64, validate=True)
Yuanhan Zhang's avatar
Yuanhan Zhang committed
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
692
693


Mick's avatar
Mick committed
694
695
696
697
698
699
700
701
702
703
704
def load_audio(audio_file: str, sr: int = 16000, mono: bool = True) -> np.ndarray:
    # Use soundfile here, since librosa use it under the hood,
    # and librosa will not support audio loading in the future
    import soundfile as sf
    from scipy.signal import resample

    # Load audio data
    if isinstance(audio_file, bytes):
        audio, original_sr = sf.read(BytesIO(audio_file))
    elif audio_file.startswith("data:"):
        audio_file = audio_file.split(",")[1]
705
706
707
        audio, original_sr = sf.read(
            BytesIO(pybase64.b64decode(audio_file, validate=True))
        )
Mick's avatar
Mick committed
708
709
710
711
712
713
    elif audio_file.startswith("http://") or audio_file.startswith("https://"):
        timeout = int(os.getenv("REQUEST_TIMEOUT", "5"))
        response = requests.get(audio_file, stream=True, timeout=timeout)
        audio_file = BytesIO(response.content)
        response.close()
        audio, original_sr = sf.read(audio_file)
Mick's avatar
Mick committed
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
    elif isinstance(audio_file, str):
        audio, original_sr = sf.read(audio_file)
    else:
        raise ValueError(f"Invalid audio format: {audio_file}")

    # Resample audio if the original sample rate is different from the desired sample rate
    if original_sr != sr:
        num_samples = int(len(audio) * float(sr) / original_sr)
        audio = resample(audio, num_samples)

    # Convert to mono if requested and audio is stereo
    if mono and len(audio.shape) > 1:
        audio = np.mean(audio, axis=1)

    return audio

Lianmin Zheng's avatar
Lianmin Zheng committed
730

Mick's avatar
Mick committed
731
def encode_video(video_path, frame_count_limit=None):
Lianmin Zheng's avatar
Lianmin Zheng committed
732
733
734
    # Lazy import because decord is not available on some arm platforms.
    from decord import VideoReader, cpu

Mick's avatar
Mick committed
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
    if not os.path.exists(video_path):
        logger.error(f"Video {video_path} does not exist")
        return []

    if frame_count_limit == 0:
        return []

    def uniform_sample(l, n):
        gap = len(l) / n
        idxs = [int(i * gap + gap / 2) for i in range(n)]
        return [l[i] for i in idxs]

    vr = VideoReader(video_path, ctx=cpu(0))
    sample_fps = round(vr.get_avg_fps() / 1)  # FPS
    frame_indices = [i for i in range(0, len(vr), sample_fps)]
    if frame_count_limit is not None and len(frame_indices) > frame_count_limit:
        frame_indices = uniform_sample(frame_indices, frame_count_limit)

    frames = vr.get_batch(frame_indices).asnumpy()
    frames = [Image.fromarray(v.astype("uint8")) for v in frames]
    return frames


758
def load_image(
759
    image_file: Union[Image.Image, str, bytes],
760
) -> tuple[Image.Image, tuple[int, int]]:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
761
    image = image_size = None
762
763
764
765
    if isinstance(image_file, Image.Image):
        image = image_file
        image_size = (image.width, image.height)
    elif isinstance(image_file, bytes):
766
767
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
768
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
769
770
771
        response = requests.get(image_file, stream=True, timeout=timeout).raw
        image = Image.open(response)
        response.close()
Lianmin Zheng's avatar
Lianmin Zheng committed
772
773
774
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
775
        image_file = image_file.split(",")[1]
776
        image = Image.open(BytesIO(pybase64.b64decode(image_file, validate=True)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
777
778
779
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
780
    elif isinstance(image_file, str):
781
        image = Image.open(BytesIO(pybase64.b64decode(image_file, validate=True)))
782
783
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
784

Yuanhan Zhang's avatar
Yuanhan Zhang committed
785
    return image, image_size
786
787


788
def suppress_other_loggers():
789
790
791
792
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

Yineng Zhang's avatar
Yineng Zhang committed
793
794
795
796
    try:
        from vllm.logger import logger as vllm_default_logger
    except ImportError:
        return
797
798

    vllm_default_logger.setLevel(logging.WARN)
799
800
801
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
802
803
804
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
805
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
806
807


808
def assert_pkg_version(pkg: str, min_version: str, message: str):
809
810
811
812
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
813
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
814
                f"is less than the minimum required version {min_version}. " + message
815
816
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
817
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
818
819
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
820
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
821
822


823
824
def kill_process_tree(parent_pid, include_parent: bool = True, skip_pid: int = None):
    """Kill the process and all its child processes."""
825
826
827
828
    # Remove sigchld handler to avoid spammy logs.
    if threading.current_thread() is threading.main_thread():
        signal.signal(signal.SIGCHLD, signal.SIG_DFL)

829
830
831
    if parent_pid is None:
        parent_pid = os.getpid()
        include_parent = False
Lianmin Zheng's avatar
Lianmin Zheng committed
832

833
    try:
834
        itself = psutil.Process(parent_pid)
835
836
837
    except psutil.NoSuchProcess:
        return

Lianmin Zheng's avatar
Lianmin Zheng committed
838
    children = itself.children(recursive=True)
839
    for child in children:
840
841
        if child.pid == skip_pid:
            continue
842
843
844
845
846
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

847
    if include_parent:
848
        try:
Lianmin Zheng's avatar
Lianmin Zheng committed
849
850
851
852
            if parent_pid == os.getpid():
                itself.kill()
                sys.exit(0)

853
            itself.kill()
854

855
856
857
858
859
            # Sometime processes cannot be killed with SIGKILL (e.g, PID=1 launched by kubernetes),
            # so we send an additional signal to kill them.
            itself.send_signal(signal.SIGQUIT)
        except psutil.NoSuchProcess:
            pass
860
861


862
def monkey_patch_p2p_access_check():
863
    """
864
    Monkey patch the slow p2p access check.
865
866
867
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

868
    import sglang.srt.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
869

870
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
871

Lianmin Zheng's avatar
Lianmin Zheng committed
872
    # Suppress the warnings from this delete function when using sglang.bench_one_batch
873
874
875
    from sglang.srt.distributed.device_communicators.custom_all_reduce import (
        CustomAllreduce,
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
876
877
878

    setattr(CustomAllreduce, "__del__", lambda *args, **kwargs: None)

879

880
def monkey_patch_vllm_gguf_config():
Yineng Zhang's avatar
Yineng Zhang committed
881
882
883
884
885
886
887
888
    try:
        from vllm.model_executor.layers.quantization.gguf import (
            GGUFConfig,
            GGUFEmbeddingMethod,
            GGUFLinearMethod,
        )
    except ImportError:
        return
889

Yineng Zhang's avatar
Yineng Zhang committed
890
    from sglang.srt.layers.linear import LinearBase
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
    from sglang.srt.layers.vocab_parallel_embedding import VocabParallelEmbedding

    def get_quant_method_with_embedding_replaced(
        self, layer: torch.nn.Module, prefix: str
    ) -> Optional["QuantizeMethodBase"]:
        if isinstance(layer, LinearBase):
            return GGUFLinearMethod(self)
        elif isinstance(layer, VocabParallelEmbedding):
            # patch to own VocabParallelEmbedding
            return GGUFEmbeddingMethod(self)
        return None

    setattr(GGUFConfig, "get_quant_method", get_quant_method_with_embedding_replaced)


906
907
908
909
910
911
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
912
        logger.debug("Setting Triton cache manager to: %s", manager)
913
914
915
916
917
918
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):
919
        from sglang.srt.distributed.parallel_state import get_tp_group
920
921
922

        self.key = key
        self.lock_path = None
923
924
925
926
927
928
929
930
931
932
933
934
935

        try:
            module_path = "triton.runtime.cache"
            cache_module = importlib.import_module(module_path)

            default_cache_dir = getattr(cache_module, "default_cache_dir", None)
            default_dump_dir = getattr(cache_module, "default_dump_dir", None)
            default_override_dir = getattr(cache_module, "default_override_dir", None)
        except (ModuleNotFoundError, AttributeError) as e:
            default_cache_dir = None
            default_dump_dir = None
            default_override_dir = None

936
        if dump:
937
938
939
940
941
            self.cache_dir = (
                default_dump_dir()
                if default_dump_dir is not None
                else os.path.join(Path.home(), ".triton", "dump")
            )
942
943
944
945
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
946
947
948
949
950
            self.cache_dir = (
                default_override_dir()
                if default_override_dir is not None
                else os.path.join(Path.home(), ".triton", "override")
            )
951
952
953
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
954
955
956
957
            self.cache_dir = os.getenv("TRITON_CACHE_DIR", "").strip() or (
                default_cache_dir()
                if default_cache_dir is not None
                else os.path.join(Path.home(), ".triton", "cache")
958
959
            )
            if self.cache_dir:
960
961
962
963
                try:
                    self.cache_dir = f"{self.cache_dir}_{get_tp_group().local_rank}"
                except:
                    self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
964
965
966
967
968
969
970
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


971
def set_ulimit(target_soft_limit=65535):
972
    # number of open files
973
974
975
976
977
978
979
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
980
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
981

982
983
984
985
986
987
988
989
990
991
992
993
    # stack size
    resource_type = resource.RLIMIT_STACK
    current_soft, current_hard = resource.getrlimit(resource_type)
    target_soft_limit_stack_size = 1024 * target_soft_limit
    if current_soft < target_soft_limit_stack_size:
        try:
            resource.setrlimit(
                resource_type, (target_soft_limit_stack_size, current_hard)
            )
        except ValueError as e:
            logger.warning(f"Fail to set RLIMIT_STACK: {e}")

994

995
def add_api_key_middleware(app, api_key: str):
996
997
998
999
1000
1001
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
1002
1003
        if request.url.path.startswith("/metrics"):
            return await call_next(request)
1004
        if request.headers.get("Authorization") != "Bearer " + api_key:
1005
            return ORJSONResponse(content={"error": "Unauthorized"}, status_code=401)
1006
        return await call_next(request)
1007
1008


1009
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
1010
    if get_bool_env_var("SGLANG_USE_MODELSCOPE"):
1011
1012
1013
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

1014
1015
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
1016
1017
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
1018
    return model_path, tokenizer_path
1019
1020
1021


def configure_logger(server_args, prefix: str = ""):
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
    if SGLANG_LOGGING_CONFIG_PATH := os.getenv("SGLANG_LOGGING_CONFIG_PATH"):
        if not os.path.exists(SGLANG_LOGGING_CONFIG_PATH):
            raise Exception(
                "Setting SGLANG_LOGGING_CONFIG_PATH from env with "
                f"{SGLANG_LOGGING_CONFIG_PATH} but it does not exist!"
            )
        with open(SGLANG_LOGGING_CONFIG_PATH, encoding="utf-8") as file:
            custom_config = json.loads(file.read())
        logging.config.dictConfig(custom_config)
        return
1032
    format = f"[%(asctime)s{prefix}] %(message)s"
Lianmin Zheng's avatar
Lianmin Zheng committed
1033
    # format = f"[%(asctime)s.%(msecs)03d{prefix}] %(message)s"
1034
1035
1036
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
1037
        datefmt="%Y-%m-%d %H:%M:%S",
1038
1039
        force=True,
    )
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
1071
1072
1073


def broadcast_pyobj(
1074
1075
1076
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
1077
    src: int = 0,
1078
    force_cpu_device: bool = True,
1079
):
1080
1081
1082
1083
    """Broadcast inputs from src rank to all other ranks with torch.dist backend.
    The `rank` here refer to the source rank on global process group (regardless
    of dist_group argument).
    """
1084
1085
1086
    device = torch.device(
        "cuda" if torch.cuda.is_available() and not force_cpu_device else "cpu"
    )
1087

1088
    if rank == src:
1089
        if len(data) == 0:
1090
            tensor_size = torch.tensor([0], dtype=torch.long, device=device)
1091
            dist.broadcast(tensor_size, src=src, group=dist_group)
1092
1093
1094
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
1095

1096
1097
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
1098
1099
            ).to(device)
            tensor_size = torch.tensor([size], dtype=torch.long, device=device)
1100

1101
1102
            dist.broadcast(tensor_size, src=src, group=dist_group)
            dist.broadcast(tensor_data, src=src, group=dist_group)
1103
1104
        return data
    else:
1105
        tensor_size = torch.tensor([0], dtype=torch.long, device=device)
1106
        dist.broadcast(tensor_size, src=src, group=dist_group)
1107
1108
1109
1110
1111
        size = tensor_size.item()

        if size == 0:
            return []

1112
        tensor_data = torch.empty(size, dtype=torch.uint8, device=device)
1113
        dist.broadcast(tensor_data, src=src, group=dist_group)
1114

1115
        serialized_data = bytes(tensor_data.cpu().numpy())
1116
1117
        data = pickle.loads(serialized_data)
        return data
1118
1119


1120
1121
1122
1123
1124
1125
1126
def point_to_point_pyobj(
    data: List[Any],
    rank: int,
    group: Optional[torch.distributed.ProcessGroup] = None,
    src: int = 0,
    dst: int = 1,
):
1127
    """Send data from src to dst in group using DeviceToDevice communication."""
1128
1129
1130

    if rank == src:
        if len(data) == 0:
1131
1132
1133
            tensor_size = torch.tensor(
                [0], dtype=torch.long, device=torch.cuda.current_device()
            )
1134
1135
1136
1137
1138
1139
            dist.send(tensor_size, dst=dst, group=group)
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
1140
1141
1142
1143
1144
            ).cuda(
                device=torch.cuda.current_device()
            )  # Move to GPU
            tensor_size = torch.tensor(
                [size], dtype=torch.long, device=torch.cuda.current_device()
1145
1146
1147
1148
1149
1150
1151
            )

            dist.send(tensor_size, dst=dst, group=group)
            dist.send(tensor_data, dst=dst, group=group)
        return data

    elif rank == dst:
1152
1153
1154
        tensor_size = torch.tensor(
            [0], dtype=torch.long, device=torch.cuda.current_device()
        )
1155
1156
1157
1158
1159
1160
        dist.recv(tensor_size, src=src, group=group)
        size = tensor_size.item()

        if size == 0:
            return []

1161
1162
1163
        tensor_data = torch.empty(
            size, dtype=torch.uint8, device=torch.cuda.current_device()
        )
1164
1165
        dist.recv(tensor_data, src=src, group=group)

1166
1167
1168
        serialized_data = bytes(
            tensor_data.cpu().numpy()
        )  # Move back to host for deserialization
1169
1170
1171
1172
1173
1174
1175
        data = pickle.loads(serialized_data)
        return data

    # Other ranks in pp_group do nothing
    return []


1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
1205
1206


Lianmin Zheng's avatar
Lianmin Zheng committed
1207
1208
1209
def get_zmq_socket(
    context: zmq.Context, socket_type: zmq.SocketType, endpoint: str, bind: bool
):
1210
1211
1212
1213
1214
1215
1216
1217
    mem = psutil.virtual_memory()
    total_mem = mem.total / 1024**3
    available_mem = mem.available / 1024**3
    if total_mem > 32 and available_mem > 16:
        buf_size = int(0.5 * 1024**3)
    else:
        buf_size = -1

1218
    socket = context.socket(socket_type)
1219
1220
    if endpoint.find("[") != -1:
        socket.setsockopt(zmq.IPV6, 1)
1221
1222

    def set_send_opt():
1223
        socket.setsockopt(zmq.SNDHWM, 0)
1224
        socket.setsockopt(zmq.SNDBUF, buf_size)
1225
1226

    def set_recv_opt():
1227
        socket.setsockopt(zmq.RCVHWM, 0)
1228
        socket.setsockopt(zmq.RCVBUF, buf_size)
1229
1230
1231
1232
1233
1234
1235
1236

    if socket_type == zmq.PUSH:
        set_send_opt()
    elif socket_type == zmq.PULL:
        set_recv_opt()
    elif socket_type == zmq.DEALER:
        set_send_opt()
        set_recv_opt()
1237
1238
1239
    else:
        raise ValueError(f"Unsupported socket type: {socket_type}")

Lianmin Zheng's avatar
Lianmin Zheng committed
1240
1241
1242
1243
1244
    if bind:
        socket.bind(endpoint)
    else:
        socket.connect(endpoint)

1245
    return socket
1246
1247
1248


def dump_to_file(dirpath, name, value):
1249
    from sglang.srt.distributed import get_tensor_model_parallel_rank
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286

    if get_tensor_model_parallel_rank() != 0:
        return

    os.makedirs(dirpath, exist_ok=True)
    if value.dtype is torch.bfloat16:
        value = value.float()
    value = value.cpu().numpy()
    output_filename = os.path.join(dirpath, f"pytorch_dump_{name}.npy")
    logger.info(f"Dump a tensor to {output_filename}. Shape = {value.shape}")
    np.save(output_filename, value)


def is_triton_3():
    return triton.__version__.startswith("3.")


def maybe_torch_compile(*args, **kwargs):
    """
    torch.compile does not work for triton 2.2.0, which is needed in xlm1's jax.
    Therefore, we disable it here.
    """

    def decorator(func):
        if is_triton_3():
            return torch.compile(*args, **kwargs)(func)
        return func

    return decorator


def delete_directory(dirpath):
    try:
        # This will remove the directory and all its contents
        shutil.rmtree(dirpath)
    except OSError as e:
        print(f"Warning: {dirpath} : {e.strerror}")
Lianmin Zheng's avatar
Lianmin Zheng committed
1287
1288
1289
1290
1291
1292
1293
1294
1295


# Temporary directory for prometheus multiprocess mode
# Cleaned up automatically when this object is garbage collected
prometheus_multiproc_dir: tempfile.TemporaryDirectory


def set_prometheus_multiproc_dir():
    # Set prometheus multiprocess directory
1296
    # sglang uses prometheus multiprocess mode
Lianmin Zheng's avatar
Lianmin Zheng committed
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
    # we need to set this before importing prometheus_client
    # https://prometheus.github.io/client_python/multiprocess/
    global prometheus_multiproc_dir

    if "PROMETHEUS_MULTIPROC_DIR" in os.environ:
        logger.debug("User set PROMETHEUS_MULTIPROC_DIR detected.")
        prometheus_multiproc_dir = tempfile.TemporaryDirectory(
            dir=os.environ["PROMETHEUS_MULTIPROC_DIR"]
        )
    else:
        prometheus_multiproc_dir = tempfile.TemporaryDirectory()
        os.environ["PROMETHEUS_MULTIPROC_DIR"] = prometheus_multiproc_dir.name
    logger.debug(f"PROMETHEUS_MULTIPROC_DIR: {os.environ['PROMETHEUS_MULTIPROC_DIR']}")


def add_prometheus_middleware(app):
1313
    # We need to import prometheus_client after setting the env variable `PROMETHEUS_MULTIPROC_DIR`
Lianmin Zheng's avatar
Lianmin Zheng committed
1314
1315
1316
1317
1318
1319
1320
1321
1322
    from prometheus_client import CollectorRegistry, make_asgi_app, multiprocess

    registry = CollectorRegistry()
    multiprocess.MultiProcessCollector(registry)
    metrics_route = Mount("/metrics", make_asgi_app(registry=registry))

    # Workaround for 307 Redirect for /metrics
    metrics_route.path_regex = re.compile("^/metrics(?P<path>.*)$")
    app.routes.append(metrics_route)
1323
1324


1325
1326
1327
1328
1329
1330
1331
1332
1333
def bind_port(port):
    """Bind to a specific port, assuming it's available."""
    sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
    sock.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)  # Allows address reuse
    sock.bind(("", port))
    sock.listen(1)
    return sock


HAI's avatar
HAI committed
1334
1335
1336
1337
def get_amdgpu_memory_capacity():
    try:
        # Run rocm-smi and capture the output
        result = subprocess.run(
1338
            [
HAI's avatar
HAI committed
1339
                "rocminfo | grep 'gfx' -A 100 | grep 'Pool 1' -A 5 | grep 'Size:' | awk '{print $2}'"
1340
            ],
HAI's avatar
HAI committed
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )
        if result.returncode != 0:
            raise RuntimeError(f"rocm-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
1351
            float(mem.split("(")[0].strip()) / 1024
HAI's avatar
HAI committed
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
            for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "rocm-smi not found. Ensure AMD ROCm drivers are installed and accessible."
        )


1367
1368
1369
1370
1371
1372
1373
def get_device_sm():
    if torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability()
        return major * 10 + minor
    return 0


HAI's avatar
HAI committed
1374
def get_nvgpu_memory_capacity():
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
    try:
        # Run nvidia-smi and capture the output
        result = subprocess.run(
            ["nvidia-smi", "--query-gpu=memory.total", "--format=csv,noheader,nounits"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"nvidia-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values
        memory_values = [
            float(mem)
            for mem in result.stdout.strip().split("\n")
            if re.match(r"^\d+(\.\d+)?$", mem.strip())
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "nvidia-smi not found. Ensure NVIDIA drivers are installed and accessible."
        )
1404
1405


1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
def get_hpu_memory_capacity():
    try:
        # Run hl-smi and capture the output
        result = subprocess.run(
            ["hl-smi --query | grep 'Total'"],
            stdout=subprocess.PIPE,
            stderr=subprocess.PIPE,
            shell=True,
            text=True,
        )

        if result.returncode != 0:
            raise RuntimeError(f"hl-smi error: {result.stderr.strip()}")

        # Parse the output to extract memory values in MiB
        memory_values = [
            float(mem.split(" ")[-2]) for mem in result.stdout.strip().split("\n")
        ]

        if not memory_values:
            raise ValueError("No GPU memory values found.")

        # Return the minimum memory value
        return min(memory_values)

    except FileNotFoundError:
        raise RuntimeError(
            "hl-smi not found. Ensure Habana drivers are installed and accessible."
        )


1437
1438
1439
1440
1441
1442
1443
1444
1445
def get_npu_memory_capacity():
    try:
        import torch_npu

        return torch.npu.mem_get_info()[1] // 1024 // 1024  # unit: MB
    except ImportError as e:
        raise ImportError("torch_npu is required when run on npu device.")


Lianmin Zheng's avatar
Lianmin Zheng committed
1446
def get_device_memory_capacity(device: str = None):
1447
1448
1449
1450
1451
1452
    if is_cuda():
        gpu_mem = get_nvgpu_memory_capacity()
    elif is_hip():
        gpu_mem = get_amdgpu_memory_capacity()
    elif device == "hpu":
        gpu_mem = get_hpu_memory_capacity()
1453
1454
    elif device == "npu":
        gpu_mem = get_npu_memory_capacity()
1455
1456
1457
1458
1459
1460
1461
    else:
        # GPU memory is not known yet or no GPU is available.
        gpu_mem = None

    return gpu_mem


1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
# Copy from pytorch and OpenRLHF to allow creating multiple main groups.
# https://github.com/pytorch/pytorch/blob/main/torch/distributed/distributed_c10d.py
# https://github.com/OpenRLHF/OpenRLHF/blob/main/openrlhf/utils/distributed_util.py
def init_custom_process_group(
    backend=None,
    init_method=None,
    timeout=None,
    world_size=-1,
    rank=-1,
    store=None,
    group_name=None,
    pg_options=None,
):
    from torch.distributed.distributed_c10d import (
        Backend,
        PrefixStore,
        _new_process_group_helper,
        _world,
        default_pg_timeout,
        rendezvous,
    )

    assert (store is None) or (
        init_method is None
    ), "Cannot specify both init_method and store."

    if store is not None:
        assert world_size > 0, "world_size must be positive if using store"
        assert rank >= 0, "rank must be non-negative if using store"
    elif init_method is None:
        init_method = "env://"

    if backend:
        backend = Backend(backend)
    else:
        backend = Backend("undefined")

    if timeout is None:
        timeout = default_pg_timeout

    # backward compatible API
    if store is None:
        rendezvous_iterator = rendezvous(init_method, rank, world_size, timeout=timeout)
        store, rank, world_size = next(rendezvous_iterator)
        store.set_timeout(timeout)

        # Use a PrefixStore to avoid accidental overrides of keys used by
        # different systems (e.g. RPC) in case the store is multi-tenant.
        store = PrefixStore(group_name, store)

    # NOTE: The pg_options parameter was renamed into backend_options in PyTorch 2.6.0
    # https://github.com/pytorch/pytorch/commit/a0c7029a75628cd5fa8df83c0de0ea98ee7fd844
    # We need to determine the appropriate parameter name based on PyTorch version
    pg_options_param_name = (
        "backend_options" if str(torch.__version__) >= "2.6" else "pg_options"
    )
    pg, _ = _new_process_group_helper(
        world_size,
        rank,
        [],
        backend,
        store,
        group_name=group_name,
        **{pg_options_param_name: pg_options},
        timeout=timeout,
    )

    _world.pg_group_ranks[pg] = {i: i for i in range(world_size)}

    return pg


1534
1535
def crash_on_warnings():
    # Crash on warning if we are running CI tests
1536
    return get_bool_env_var("SGLANG_IS_IN_CI")
1537
1538


1539
1540
1541
1542
1543
def print_warning_once(msg: str) -> None:
    # Set the stacklevel to 2 to print the caller's line info
    logger.warning(msg, stacklevel=2)


1544
1545
1546
1547
1548
@functools.lru_cache(None)
def print_info_once(msg: str) -> None:
    logger.info(msg)


1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
def get_device_name(device_id: int = 0) -> str:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_name(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        return torch.xpu.get_device_name(device_id)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return torch.hpu.get_device_name(device_id)

1559
1560
1561
    if hasattr(torch, "npu") and torch.npu.is_available():
        return torch.npu.get_device_name(device_id)

1562

1563
1564
1565
1566
1567
1568
1569
@lru_cache(maxsize=1)
def is_habana_available() -> bool:
    return find_spec("habana_frameworks") is not None


@lru_cache(maxsize=8)
def get_device(device_id: Optional[int] = None) -> str:
1570
1571
1572
1573
1574
1575
1576
1577
1578
    if is_cpu():
        if cpu_has_amx_support():
            logger.info("Intel AMX is detected, using CPU with Intel AMX support.")
        else:
            logger.warning(
                "CPU device enabled, using torch native backend, low performance expected."
            )
        return "cpu"

1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        if device_id is None:
            return "cuda"
        return "cuda:{}".format(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        if device_id == None:
            return "xpu"
        return "xpu:{}".format(device_id)

1589
1590
1591
1592
1593
    if hasattr(torch, "npu") and torch.npu.is_available():
        if device_id == None:
            return "npu"
        return "npu:{}".format(device_id)

1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                if device_id == None:
                    return "hpu"
                return "hpu:{}".format(device_id)
        except ImportError as e:
            raise ImportError(
                "Habana frameworks detected, but failed to import 'habana_frameworks.torch.hpu'."
            )

    raise RuntimeError("No accelerator (CUDA, XPU, HPU) is available.")


@lru_cache(maxsize=1)
def get_device_count() -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        try:
            return torch.cuda.device_count()
        except RuntimeError:
            return 0

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        try:
            return torch.xpu.device_count()
        except RuntimeError:
            return 0

    if is_habana_available():
        try:
            import habana_frameworks.torch.hpu

            if torch.hpu.is_available():
                return torch.hpu.device_count()
        except (ImportError, RuntimeError):
            return 0

    return 0  # No accelerators available


1636
1637
1638
1639
1640
1641
1642
def get_device_core_count(device_id: int = 0) -> int:
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        return torch.cuda.get_device_properties(device_id).multi_processor_count

    return 0


1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
def get_device_capability(device_id: int = 0) -> Tuple[int, int]:
    major, minor = None, None
    if hasattr(torch, "cuda") and torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability(device_id)

    if hasattr(torch, "xpu") and torch.xpu.is_available():
        major, minor, *_ = torch.xpu.get_device_capability(device_id)["version"].split(
            "."
        )
        major, minor = int(major), int(minor)

    if hasattr(torch, "hpu") and torch.hpu.is_available():
        try:
1656
1657
1658
1659
            # TODO(HandH1998): `get_device_capability` is not supported by `torch.hpu` for now.
            # Update this once the support is available.
            # major, minor = torch.hpu.get_device_capability(device_id)
            major, minor = None, None
1660
1661
1662
1663
1664
1665
1666
1667
        except Exception as e:
            raise RuntimeError(
                f"An error occurred while getting device capability of hpu: {e}."
            ) from e

    return major, minor


1668
1669
1670
1671
1672
1673
1674
1675
1676
def get_npu_compiler_config():
    config = {
        "frozen_parameter": True,
        "tiling_schedule_optimize": True,
        "topology_sorting_strategy": "StableRDFS",
    }
    return config


1677
1678
1679
1680
def get_compiler_backend() -> str:
    if hasattr(torch, "hpu") and torch.hpu.is_available():
        return "hpu_backend"

1681
    if hasattr(torch, "npu") and torch.npu.is_available():
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
        try:
            import torchair
            import torchair.ge_concrete_graph.ge_converter.experimental.patch_for_hcom_allreduce
            from torchair.configs.compiler_config import CompilerConfig
        except ImportError as e:
            raise ImportError(
                "NPU detected, but torchair package is not installed. "
                "Please install torchair for torch.compile support on NPU."
            )
        compiler_config = CompilerConfig()
        predefined_config = get_npu_compiler_config()
        for k, v in predefined_config.items():
            setattr(compiler_config.experimental_config, k, v)
1695

1696
        npu_backend = torchair.get_npu_backend(compiler_config=compiler_config)
1697
1698
        return npu_backend

1699
1700
1701
    return "inductor"


1702
1703
1704
sglang_lib = Library("sglang", "FRAGMENT")  # noqa


1705
1706
1707
1708
1709
1710
# Some backends use pytorch version < 2.4.0 which doesn't
# support `torch.library.custom_op`.
def supports_custom_op() -> bool:
    return hasattr(torch.library, "custom_op")


1711
1712
1713
1714
1715
1716
1717
def direct_register_custom_op(
    op_name: str,
    op_func: Callable,
    mutates_args: List[str],
    fake_impl: Optional[Callable] = None,
    target_lib: Optional[Library] = None,
):
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
    """
    `torch.library.custom_op` can have significant overhead because it
    needs to consider complicated dispatching logic. This function
    directly registers a custom op and dispatches it to the CUDA backend.
    See https://gist.github.com/youkaichao/ecbea9ec9fc79a45d2adce1784d7a9a5
    for more details.

    By default, the custom op is registered to the vLLM library. If you
    want to register it to a different library, you can pass the library
    object to the `target_lib` argument.

    IMPORTANT: the lifetime of the operator is tied to the lifetime of the
    library object. If you want to bind the operator to a different library,
    make sure the library object is alive when the operator is used.
    """
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
    import torch.library

    if hasattr(torch.library, "infer_schema"):
        schema_str = torch.library.infer_schema(op_func, mutates_args=mutates_args)
    else:
        # for pytorch 2.4
        import torch._custom_op.impl

        schema_str = torch._custom_op.impl.infer_schema(op_func, mutates_args)

    my_lib = target_lib or sglang_lib
    my_lib.define(op_name + schema_str)
    my_lib.impl(op_name, op_func, "CUDA")
    if fake_impl is not None:
        my_lib._register_fake(op_name, fake_impl)
1748
1749


1750
def set_gpu_proc_affinity(
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
    tp_size: int,
    nnodes: int,
    gpu_id: int,
):
    # current process
    pid = os.getpid()
    p = psutil.Process(pid)

    tp_size_per_node = tp_size // nnodes

    # total physical cores
    total_pcores = psutil.cpu_count(logical=False)
    # physical cores per TP (N.B. more Cores than GPUs on node)
    num_cores_bind = total_pcores // tp_size_per_node

    # able to handle multiple DP per node
    start_cpu_id = (gpu_id * num_cores_bind) % total_pcores
    end_cpu_id = start_cpu_id + num_cores_bind

    if psutil.cpu_count() != psutil.cpu_count(logical=False):
        # HT on
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1772
1773
1774
        lower_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]
        upper_cpu_ids = [id + total_pcores for id in range(start_cpu_id, end_cpu_id)]
        bind_cpu_ids = list(itertools.chain(lower_cpu_ids, upper_cpu_ids))
1775
1776
1777
1778
1779
1780
1781
    else:
        # HT off
        bind_cpu_ids = [id for id in range(start_cpu_id, end_cpu_id)]

    # set cpu_affinity to current process
    p.cpu_affinity(bind_cpu_ids)
    logger.info(f"Process {pid} gpu_id {gpu_id} is running on CPUs: {p.cpu_affinity()}")
1782
1783


1784
1785
1786
1787
1788
@lru_cache(maxsize=2)
def disable_request_logging() -> bool:
    return get_bool_env_var("SGLANG_DISABLE_REQUEST_LOGGING")


1789
1790
1791
1792
1793
def dataclass_to_string_truncated(
    data, max_length=2048, skip_names: Optional[Set[str]] = None
):
    if skip_names is None:
        skip_names = set()
1794
1795
1796
    if isinstance(data, str):
        if len(data) > max_length:
            half_length = max_length // 2
1797
            return f"{repr(data[:half_length])} ... {repr(data[-half_length:])}"
1798
        else:
1799
            return f"{repr(data)}"
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
    elif isinstance(data, (list, tuple)):
        if len(data) > max_length:
            half_length = max_length // 2
            return str(data[:half_length]) + " ... " + str(data[-half_length:])
        else:
            return str(data)
    elif isinstance(data, dict):
        return (
            "{"
            + ", ".join(
1810
                f"'{k}': {dataclass_to_string_truncated(v, max_length)}"
1811
                for k, v in data.items()
1812
                if k not in skip_names
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
            )
            + "}"
        )
    elif dataclasses.is_dataclass(data):
        fields = dataclasses.fields(data)
        return (
            f"{data.__class__.__name__}("
            + ", ".join(
                f"{f.name}={dataclass_to_string_truncated(getattr(data, f.name), max_length)}"
                for f in fields
1823
                if f.name not in skip_names
1824
1825
1826
            )
            + ")"
        )
1827
    else:
1828
        return str(data)
Tanjiro's avatar
Tanjiro committed
1829
1830


1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
def permute_weight(x: torch.Tensor) -> torch.Tensor:
    b_ = x.shape[0]
    n_ = x.shape[1]
    k_ = x.shape[2]

    x_ = x
    if x.dtype == torch.bfloat16 or x.dtype == torch.float16:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 32), 4, 8)
    elif x.dtype == torch.float8_e4m3fnuz or x.dtype == torch.int8:
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 64), 4, 16)
    else:
1842
1843
        # return x_
        x_ = x_.view(int(b_), int(n_ / 16), 16, int(k_ / 8), 2, 4)
1844
1845
1846
1847
1848
1849
1850

    x_ = x_.permute(0, 1, 3, 4, 2, 5)
    x_ = x_.contiguous()
    x_ = x_.view(*x.shape)
    return x_


1851
1852
class MultiprocessingSerializer:
    @staticmethod
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
    def serialize(obj, output_str: bool = False):
        """
        Serialize a Python object using ForkingPickler.

        Args:
            obj: The object to serialize.
            output_str (bool): If True, return a base64-encoded string instead of raw bytes.

        Returns:
            bytes or str: The serialized object.
        """
1864
1865
1866
        buf = io.BytesIO()
        ForkingPickler(buf).dump(obj)
        buf.seek(0)
1867
1868
1869
1870
        output = buf.read()

        if output_str:
            # Convert bytes to base64-encoded string
1871
            output = pybase64.b64encode(output).decode("utf-8")
1872
1873

        return output
1874
1875
1876

    @staticmethod
    def deserialize(data):
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
        """
        Deserialize a previously serialized object.

        Args:
            data (bytes or str): The serialized data, optionally base64-encoded.

        Returns:
            The deserialized Python object.
        """
        if isinstance(data, str):
            # Decode base64 string to bytes
1888
            data = pybase64.b64decode(data, validate=True)
1889

1890
        return ForkingPickler.loads(data)
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901


def debug_timing(func):
    # todo: replace with a more organized instrumentation
    def wrapper(*args, **kwargs):
        if logger.isEnabledFor(logging.DEBUG):
            tic = torch.cuda.Event(enable_timing=True)
            toc = torch.cuda.Event(enable_timing=True)
            tic.record()
            result = func(*args, **kwargs)
            toc.record()
1902
            toc.synchronize()  # Wait for the function to complete without synchronizing all ops on the GPU
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
            elapsed = tic.elapsed_time(toc)
            indices = kwargs.get("indices", args[1] if len(args) > 1 else None)
            num_tokens = len(indices) if indices is not None else 0
            throughput = num_tokens / elapsed * 1000 if elapsed > 0 else 0
            logger.debug(
                f"Transfer time: {elapsed} ms, throughput: {throughput} tokens/s"
            )
            return result
        else:
            return func(*args, **kwargs)

    return wrapper
bjmsong's avatar
bjmsong committed
1915
1916
1917
1918
1919
1920


def nullable_str(val: str):
    if not val or val == "None":
        return None
    return val
1921
1922


1923
1924
1925
1926
1927
1928
1929
1930
1931
def pyspy_dump_schedulers():
    """py-spy dump on all scheduler in a local node."""
    try:
        pid = psutil.Process().pid
        # Command to run py-spy with the PID
        cmd = f"py-spy dump --pid {pid}"
        result = subprocess.run(
            cmd, shell=True, capture_output=True, text=True, check=True
        )
1932
        logger.error(f"Pyspy dump for PID {pid}:\n{result.stdout}")
1933
    except subprocess.CalledProcessError as e:
1934
        logger.error(f"Pyspy failed to dump PID {pid}. Error: {e.stderr}")
1935
1936
1937
1938
1939
1940
1941
1942
1943


def kill_itself_when_parent_died():
    if sys.platform == "linux":
        # sigkill this process when parent worker manager dies
        PR_SET_PDEATHSIG = 1
        libc = ctypes.CDLL("libc.so.6")
        libc.prctl(PR_SET_PDEATHSIG, signal.SIGKILL)
    else:
Wang Ran (汪然)'s avatar
Wang Ran (汪然) committed
1944
        logger.warning("kill_itself_when_parent_died is only supported in linux.")
1945
1946


1947
def set_uvicorn_logging_configs():
1948
1949
    from uvicorn.config import LOGGING_CONFIG

1950
1951
1952
1953
1954
1955
1956
1957
    LOGGING_CONFIG["formatters"]["default"][
        "fmt"
    ] = "[%(asctime)s] %(levelprefix)s %(message)s"
    LOGGING_CONFIG["formatters"]["default"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
    LOGGING_CONFIG["formatters"]["access"][
        "fmt"
    ] = '[%(asctime)s] %(levelprefix)s %(client_addr)s - "%(request_line)s" %(status_code)s'
    LOGGING_CONFIG["formatters"]["access"]["datefmt"] = "%Y-%m-%d %H:%M:%S"
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997


def get_ip() -> str:
    # SGLANG_HOST_IP env can be ignore
    host_ip = os.getenv("SGLANG_HOST_IP", "") or os.getenv("HOST_IP", "")
    if host_ip:
        return host_ip

    # IP is not set, try to get it from the network interface

    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

    warnings.warn(
        "Failed to get the IP address, using 0.0.0.0 by default."
        "The value can be set by the environment variable"
        " SGLANG_HOST_IP or HOST_IP.",
        stacklevel=2,
    )
    return "0.0.0.0"


def get_open_port() -> int:
    port = os.getenv("SGLANG_PORT")
    if port is not None:
1998
        port = int(port)
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
        while True:
            try:
                with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
                    s.bind(("", port))
                    return port
            except OSError:
                port += 1  # Increment port number if already in use
                logger.info("Port %d is already in use, trying port %d", port - 1, port)
    # try ipv4
    try:
        with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]
    except OSError:
        # try ipv6
        with socket.socket(socket.AF_INET6, socket.SOCK_STREAM) as s:
            s.bind(("", 0))
            return s.getsockname()[1]


def is_valid_ipv6_address(address: str) -> bool:
    try:
        ipaddress.IPv6Address(address)
        return True
    except ValueError:
        return False
2025
2026


Vincent's avatar
Vincent committed
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
def configure_ipv6(dist_init_addr):
    addr = dist_init_addr
    end = addr.find("]")
    if end == -1:
        raise ValueError("invalid IPv6 address format: missing ']'")

    host = addr[: end + 1]

    # this only validates the address without brackets: we still need the below checks.
    # if it's invalid, immediately raise an error so we know it's not formatting issues.
    if not is_valid_ipv6_address(host[1:end]):
        raise ValueError(f"invalid IPv6 address: {host}")

    port_str = None
    if len(addr) > end + 1:
        if addr[end + 1] == ":":
            port_str = addr[end + 2 :]
        else:
            raise ValueError("received IPv6 address format: expected ':' after ']'")

    if not port_str:
        raise ValueError(
            "a port must be specified in IPv6 address (format: [ipv6]:port)"
        )

    try:
        port = int(port_str)
    except ValueError:
        raise ValueError(f"invalid port in IPv6 address: '{port_str}'")
    return port, host


2059
def rank0_log(msg: str):
2060
2061
2062
    from sglang.srt.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() == 0:
2063
        logger.info(msg)
2064
2065


2066
def launch_dummy_health_check_server(host, port):
2067
2068
    import asyncio

2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
    import uvicorn
    from fastapi import FastAPI, Response

    app = FastAPI()

    @app.get("/health")
    async def health():
        """Check the health of the http server."""
        return Response(status_code=200)

    @app.get("/health_generate")
    async def health_generate():
        """Check the health of the http server."""
        return Response(status_code=200)

2084
    config = uvicorn.Config(
2085
2086
2087
2088
        app,
        host=host,
        port=port,
        timeout_keep_alive=5,
2089
2090
2091
        loop="auto",
        log_config=None,
        log_level="warning",
2092
    )
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
    server = uvicorn.Server(config=config)

    try:
        loop = asyncio.get_running_loop()
        logger.info(
            f"Dummy health check server scheduled on existing loop at {host}:{port}"
        )
        loop.create_task(server.serve())

    except RuntimeError:
        logger.info(f"Starting dummy health check server at {host}:{port}")
        server.run()
2105
2106


2107
2108
2109
2110
def create_checksum(directory: str):
    raise NotImplementedError()


2111
2112
2113
2114
2115
def set_cuda_arch():
    if is_flashinfer_available():
        capability = torch.cuda.get_device_capability()
        arch = f"{capability[0]}.{capability[1]}"
        os.environ["TORCH_CUDA_ARCH_LIST"] = f"{arch}{'+PTX' if arch == '9.0' else ''}"
2116
2117


Lianmin Zheng's avatar
Lianmin Zheng committed
2118
2119
2120
2121
2122
2123
2124
def next_power_of_2(n: int):
    return 1 << (n - 1).bit_length() if n > 0 else 1


setattr(triton, "next_power_of_2", next_power_of_2)


2125
2126
2127
2128
2129
class EmptyContextManager:
    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
2130
2131
2132
        pass


2133
2134
2135
2136
def empty_context(*args, **kwargs):
    return EmptyContextManager()


2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
def add_prefix(name: str, prefix: str) -> str:
    """Add a weight path prefix to a module name.

    Args:
        name: base module name.
        prefix: weight prefix str to added to the front of `name` concatenated with `.`.

    Returns:
        The string `prefix.name` if prefix is non-empty, otherwise just `name`.
    """
    return name if not prefix else f"{prefix}.{name}"
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173


def is_remote_url(url: Union[str, Path]) -> bool:
    """
    Check if the URL is a remote URL of the format:
    <connector_type>://<host>:<port>/<model_name>
    """
    if isinstance(url, Path):
        return False

    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    return m is not None


def parse_connector_type(url: str) -> str:
    """
    Parse the connector type from the URL of the format:
    <connector_type>://<path>
    """
    pattern = r"(.+)://(.*)"
    m = re.match(pattern, url)
    if m is None:
        return ""

    return m.group(1)
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202


def retry(
    fn,
    max_retry: int,
    initial_delay: float = 2.0,
    max_delay: float = 60.0,
    should_retry: Callable[[Any], bool] = lambda e: True,
):
    for try_index in itertools.count():
        try:
            return fn()
        except Exception as e:
            if try_index >= max_retry:
                raise Exception(f"retry() exceed maximum number of retries.")

            if not should_retry(e):
                raise Exception(f"retry() observe errors that should not be retried.")

            delay = min(initial_delay * (2**try_index), max_delay) * (
                0.75 + 0.25 * random.random()
            )

            logger.warning(
                f"retry() failed once ({try_index}th try, maximum {max_retry} retries). Will delay {delay:.2f}s and retry. Error: {e}"
            )
            traceback.print_exc()

            time.sleep(delay)
Mick's avatar
Mick committed
2203
2204
2205
2206
2207
2208
2209
2210
2211


def flatten_nested_list(nested_list):
    if isinstance(nested_list, list):
        return [
            item for sublist in nested_list for item in flatten_nested_list(sublist)
        ]
    else:
        return [nested_list]
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224


class DeepEPMode(Enum):
    normal = "normal"
    low_latency = "low_latency"
    auto = "auto"

    def enable_normal(self):
        return self in [DeepEPMode.normal, DeepEPMode.auto]

    def enable_low_latency(self):
        return self in [DeepEPMode.low_latency, DeepEPMode.auto]

2225
    def resolve(self, is_extend_in_batch: bool):
2226
2227
2228
        if self != DeepEPMode.auto:
            return self

2229
        if is_extend_in_batch:
2230
            return DeepEPMode.normal
2231
2232
        else:
            return DeepEPMode.low_latency
2233
2234


2235
2236
2237
2238
2239
2240
2241
2242
def is_non_idle_and_non_empty(forward_mode, hidden_states):
    return (
        (forward_mode is not None)
        and not forward_mode.is_idle()
        and hidden_states.shape[0] > 0
    )


2243
2244
2245
2246
2247
2248
2249
def fast_topk(values, topk, dim):
    if topk == 1:
        # Use max along the specified dimension to get both value and index
        return torch.max(values, dim=dim, keepdim=True)
    else:
        # Use topk for efficiency with larger k values
        return torch.topk(values, topk, dim=dim)
2250
2251


2252
2253
2254
2255
2256
2257
def bind_or_assign(target, source):
    if target is not None:
        target.copy_(source)
        return target
    else:
        return source
2258
2259


2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
def get_local_ip_auto() -> str:
    interface = os.environ.get("SGLANG_LOCAL_IP_NIC", None)
    return (
        get_local_ip_by_nic(interface)
        if interface is not None
        else get_local_ip_by_remote()
    )


def get_local_ip_by_nic(interface: str) -> str:
    try:
        import netifaces
    except ImportError as e:
        raise ImportError(
            "Environment variable SGLANG_LOCAL_IP_NIC requires package netifaces, please install it through 'pip install netifaces'"
        ) from e

    try:
        addresses = netifaces.ifaddresses(interface)
        if netifaces.AF_INET in addresses:
            for addr_info in addresses[netifaces.AF_INET]:
                ip = addr_info.get("addr")
                if ip and ip != "127.0.0.1" and ip != "0.0.0.0":
                    return ip
        if netifaces.AF_INET6 in addresses:
            for addr_info in addresses[netifaces.AF_INET6]:
                ip = addr_info.get("addr")
                if ip and not ip.startswith("fe80::") and ip != "::1":
                    return ip.split("%")[0]
    except (ValueError, OSError) as e:
        raise ValueError(
            "Can not get local ip from NIC. Please verify whether SGLANG_LOCAL_IP_NIC is set correctly."
        )

    # Fallback
    return get_local_ip_by_remote()


2298
2299
2300
2301
2302
2303
2304
2305
2306
def get_local_ip_by_remote() -> str:
    # try ipv4
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    try:
        s.connect(("8.8.8.8", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
        pass

2307
2308
2309
2310
2311
2312
2313
2314
    try:
        hostname = socket.gethostname()
        ip = socket.gethostbyname(hostname)
        if ip and ip != "127.0.0.1" and ip != "0.0.0.0":
            return ip
    except Exception:
        pass

2315
2316
2317
2318
2319
2320
2321
2322
    # try ipv6
    try:
        s = socket.socket(socket.AF_INET6, socket.SOCK_DGRAM)
        # Google's public DNS server, see
        # https://developers.google.com/speed/public-dns/docs/using#addresses
        s.connect(("2001:4860:4860::8888", 80))  # Doesn't need to be reachable
        return s.getsockname()[0]
    except Exception:
Lianmin Zheng's avatar
Lianmin Zheng committed
2323
        raise ValueError("Can not get local ip")
2324
2325
2326
2327
2328
2329


def is_page_size_one(server_args):
    return server_args.page_size == 1


2330
2331
# TODO(hebiao064): Accelerate FA3 Spec Decode with topk > 1.
# TODO(hebiao064): Improve the acc rate for FA3 Spec Decode with topk == 1 and page_size > 1.
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
def is_no_spec_infer_or_topk_one(server_args):
    return server_args.speculative_eagle_topk is None or (
        server_args.speculative_eagle_topk is not None
        and server_args.speculative_eagle_topk == 1
        and is_page_size_one(server_args)
    )


def is_fa3_default_architecture(hf_config):
    architectures = getattr(hf_config, "architectures", None)
    if not isinstance(architectures, list) or not architectures:
        return False
    default_archs = {
        "Qwen2ForCausalLM",
        "Llama4ForConditionalGeneration",
        "LlamaForCausalLM",
Yineng Zhang's avatar
Yineng Zhang committed
2348
        "Gemma2ForCausalLM",
2349
        "Gemma3ForConditionalGeneration",
2350
2351
        "Qwen3ForCausalLM",
        "Qwen3MoeForCausalLM",
2352
2353
    }
    return architectures[0] in default_archs
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366


# Can be more general if it is used in multiple places (keep it simple and thus not general now)
class BumpAllocator:
    def __init__(self, buffer_size: int, dtype, device):
        self._buffer = torch.zeros((buffer_size,), dtype=dtype, device=device)
        self._pointer = 0

    def allocate(self, size: int):
        assert self._pointer + size <= len(self._buffer)
        output = self._buffer[self._pointer : self._pointer + size]
        self._pointer += size
        return output
2367
2368
2369
2370
2371
2372
2373


def log_info_on_rank0(logger, msg):
    from sglang.srt.distributed import get_tensor_model_parallel_rank

    if get_tensor_model_parallel_rank() == 0:
        logger.info(msg)
fzyzcjy's avatar
fzyzcjy committed
2374
2375


2376
2377
2378
2379
2380
2381
2382
def load_json_config(data: str):
    try:
        return json.loads(data)
    except JSONDecodeError:
        return json.loads(Path(data).read_text())


fzyzcjy's avatar
fzyzcjy committed
2383
2384
def dispose_tensor(x: torch.Tensor):
    x.set_(torch.empty((0,), device=x.device, dtype=x.dtype))
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406


T = TypeVar("T")


class Withable(Generic[T]):
    def __init__(self):
        self._value: Optional[T] = None

    @property
    def value(self) -> T:
        return self._value

    @contextmanager
    def with_value(self, new_value: T):
        assert self._value is None
        self._value = new_value
        try:
            yield
        finally:
            assert self._value is new_value
            self._value = None
2407
2408


2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
def require_mlp_tp_gather(server_args):
    """
    Check if the input of MLP is obtained by all-gather rather than all-reduce. This only happens when each MLP TP group contains multiple attention DP groups.
    """
    if server_args.enable_dp_attention:
        assert server_args.dp_size > 1, "dp_size must be greater than 1"
        if (
            server_args.moe_dense_tp_size is None
        ):  # TODO(ch-wan): some MoE models do not have dense layers
            return True
        elif not server_args.enable_dp_lm_head:
            return True
        elif not server_args.enable_deepep_moe:
            return True
        else:
            return (
                server_args.moe_dense_tp_size
                > server_args.tp_size // server_args.dp_size
            )
    else:
        return False


def require_attn_tp_gather(server_args):
    """
    Check if the input of attention is scattered.
    """
    assert server_args.moe_dense_tp_size in [1, None]
    if server_args.enable_deepep_moe or server_args.moe_dense_tp_size == 1:
        if server_args.enable_dp_attention:
            return server_args.dp_size < server_args.tp_size
        else:
            return True
    else:
        return False


def require_gathered_buffer(server_args):
    return require_mlp_tp_gather(server_args) or require_attn_tp_gather(server_args)


def require_mlp_sync(server_args):
    return server_args.enable_dp_attention or require_gathered_buffer(server_args)


2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
def find_local_repo_dir(repo_id: str, revision: Optional[str] = None) -> Optional[str]:
    import huggingface_hub as hf

    # Build cache path
    cache_path = os.path.join(
        hf.constants.HF_HUB_CACHE,
        hf.constants.REPO_ID_SEPARATOR.join(["models", *repo_id.split("/")]),
    )

    # Get revision from main ref if not specified
    if not revision:
        ref_path = os.path.join(cache_path, "refs", "main")
        if os.path.isfile(ref_path):
            with open(ref_path) as f:
                revision = f.read().strip()

    # List files from revision directory
    if revision:
        rev_dir = os.path.join(cache_path, "snapshots", revision)
        if os.path.isdir(rev_dir):
            return rev_dir

    return None


def read_system_prompt_from_file(model_name: str) -> str:
    """Read system prompt from a file in the HuggingFace cache directory.

    Args:
        model_name: The model name to construct the file path

    Returns:
        The system prompt content from the file, or empty string if file not found
    """
    try:
        local_repo_dir = find_local_repo_dir(model_name)
        if local_repo_dir:
            system_prompt_file = os.path.join(local_repo_dir, "SYSTEM_PROMPT.txt")
            if os.path.exists(system_prompt_file):
                with open(system_prompt_file, "r", encoding="utf-8") as f:
                    return f.read()

        return ""
    except Exception:
        # If anything fails, return empty string
        return ""
2500
2501
2502
2503
2504
2505
2506
2507


def bind_or_assign(target, source):
    if target is not None:
        target.copy_(source)
        return target
    else:
        return source
2508
2509


2510
2511
2512
2513
2514
def prepack_weight_if_needed(weight):
    if weight.device != torch.device("cpu"):
        return weight
    if not cpu_has_amx_support():
        return weight
2515

2516
    return torch.ops.sgl_kernel.convert_weight_packed(weight)
2517
2518


2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
# TODO: currently gemm kernel has the below requirements:
# OC % TILE_N == 0, where TILE_N = 16
# IC % TILE_K == 0, where TILE_K = 32
def dim_is_supported(weight):
    return weight.size(0) % 16 == 0 and weight.size(1) % 32 == 0


def _process_weight_after_loading(module, weight_names, transpose_dims=None) -> None:
    # Pack weight for get better performance on CPU
    devices = {getattr(module, weight_name).device for weight_name in weight_names}
    assert len(devices) == 1, f"Expects all weights to be on the same device"
    device = devices.pop()

    if transpose_dims:
        assert len(weight_names) == len(
            transpose_dims
        ), "len(weight_names) should be equal to len(transpose_dims)"

    for i, weight_name in enumerate(weight_names):
        weight_tensor = getattr(module, weight_name)

        # We don't pack weight or use intel amx backend if any weight of this module has unsupported dim.
        if not dim_is_supported(weight_tensor):
            logger.warning(
                f"Expects weight.size(0) % 16 == 0 and weight.size(1) % 32 == 0 "
                f"but {weight_tensor.size(0)=} and {weight_tensor.size(1)=} in {module}. "
                f"{module} won't use intel amx backend."
            )
            module.use_intel_amx_backend = False
            return

        if transpose_dims and transpose_dims[i]:
            weight_tensor = weight_tensor.transpose(*transpose_dims[i])

        packed_weight = torch.nn.Parameter(
            prepack_weight_if_needed(weight_tensor),
            requires_grad=False,
        )
        packed_weight.__dict__ = weight_tensor.__dict__
        setattr(module, weight_name, packed_weight)

    module.use_intel_amx_backend = (
        device == torch.device("cpu") and cpu_has_amx_support()
2562
2563
    )

2564
2565
2566
2567
2568
2569
    if (
        module.use_intel_amx_backend
        and hasattr(module, "bias")
        and module.bias is not None
    ):
        module.bias = torch.nn.Parameter(module.bias.data.float(), requires_grad=False)
2570

2571

2572
2573
2574
2575
class PackWeightMethod:
    def __init__(self, weight_names, transpose_dims=None):
        self.weight_names = weight_names
        self.transpose_dims = transpose_dims
2576

2577
2578
    def process_weights_after_loading(self, module) -> None:
        _process_weight_after_loading(module, self.weight_names, self.transpose_dims)
2579
2580


2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
class LazyValue:
    def __init__(self, creator: Callable):
        self._creator = creator
        self._value = None

    @property
    def value(self):
        if self._creator is not None:
            self._value = self._creator()
            self._creator = None
        return self._value
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604


def dynamic_import(func_path: str):
    parts = func_path.split(".")
    if len(parts) < 2:
        raise ValueError(
            "func_path should contain both module name and func name (such as 'module.func')"
        )
    module_path = ".".join(parts[:-1])
    func_name = parts[-1]
    module = importlib.import_module(module_path)
    func = getattr(module, func_name)
    return func
fzyzcjy's avatar
fzyzcjy committed
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629


def configure_gc_logger():
    logger.info("Enable GC Logger")

    import gc

    gc_start_time = {}

    def gc_callback(phase, info):
        gen = info.get("generation", "?")
        if phase == "start":
            gc_start_time[gen] = time.time()
            logger.info(f"GC start: Time {time.time()} | Generation {gen}")
        elif phase == "stop":
            duration = time.time() - gc_start_time.get(gen, time.time())
            collected = info.get("collected", "?")
            uncollectable = info.get("uncollectable", "?")
            logger.info(
                f"GC end: Time {time.time()} | Generation {gen} | "
                f"Duration: {duration:.4f}s | Collected: {collected} | Uncollectable: {uncollectable} "
                f'{"(LONG GC)" if duration > 0.1 else ""}'
            )

    gc.callbacks.append(gc_callback)
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639


# COPIED FROM DeepGEMM
def align(x: int, y: int) -> int:
    return ceil_div(x, y) * y


# COPIED FROM DeepGEMM
def ceil_div(x: int, y: int) -> int:
    return (x + y - 1) // y
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705


def parse_lscpu_topology():
    try:
        # Get CPU topology: CPU,Core,Socket,Node
        output = subprocess.check_output(
            ["lscpu", "-p=CPU,Core,Socket,Node"], text=True
        )
    except Exception as e:
        raise RuntimeError(f"Unexpected error running 'lscpu': {e}")

    # Parse only data lines (skip comments)
    cpu_info = []
    for line in output.splitlines():
        if not line.startswith("#"):
            cpu, core, socket, node = map(int, line.strip().split(","))
            cpu_info.append((cpu, core, socket, node))

    # [(0,0,0,0),(1,1,0,0),...,(43,43,0,1),...,(256,0,0,0),...]
    return cpu_info


def get_physical_cpus_by_numa():
    cpu_info = parse_lscpu_topology()

    # Map NUMA node -> set of (core_id, socket) to avoid duplicates
    # 0: {(0,0): 0, (1, 0): 1,...}
    # ...
    # 5: {(214,1): 214, (215,1): 215}
    physical_by_node = defaultdict(dict)  # node -> core_id -> cpu_id

    for cpu, core, socket, node in cpu_info:
        key = (core, socket)
        if key not in physical_by_node[node]:
            physical_by_node[node][
                key
            ] = cpu  # pick first CPU seen for that physical core

    # Retrieves CPUs that the current process is allowed to run on
    cpus_allowed_list = psutil.Process().cpu_affinity()

    # Convert to list of physical CPUs per node
    # 0: [0,1,2,...,42]
    # ...
    # 2: [86,87,...,127]
    # ...
    # 5: [214,215,...,255]
    node_to_cpus = {}
    for node, core_to_cpu in physical_by_node.items():
        cpus = sorted(core_to_cpu.values())
        allowed_cpus = set(cpus).intersection(cpus_allowed_list)
        node_to_cpus[node] = allowed_cpus

    return node_to_cpus


# Only physical cores are used. Logical cores are excluded.
def get_cpu_ids_by_node():
    node_to_cpus = get_physical_cpus_by_numa()
    # Sort by NUMA node index
    cpu_ids = [
        ",".join(map(str, sorted(node_to_cpus[node]))) for node in sorted(node_to_cpus)
    ]

    # ['0,1,2,3', '4,5,6,7', '8,9,10,11', '12,13,14,15', '16,17,18,19', '20,21,22,23']
    return cpu_ids
2706
2707
2708
2709
2710
2711
2712
2713
2714


def is_shm_available(dtype, world_size, local_size):
    return (
        cpu_has_amx_support()
        and dtype in [torch.bfloat16, torch.float]
        and world_size >= 1
        and world_size == local_size
    )
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759


def lru_cache_frozenset(maxsize=128):
    def _to_hashable(o):
        try:
            hash(o)
            return o
        except TypeError:
            # Not hashable; convert based on type
            if isinstance(o, (dict)):
                return frozenset(
                    (_to_hashable(k), _to_hashable(v)) for k, v in o.items()
                )
            elif isinstance(o, set):
                return frozenset(_to_hashable(v) for v in o)
            elif isinstance(o, (list, tuple)) or (
                isinstance(o, Sequence) and not isinstance(o, (str, bytes))
            ):
                return tuple(_to_hashable(v) for v in o)
            else:
                raise TypeError(f"Cannot make hashable: {type(o)}")

    def decorator(func):
        cache = OrderedDict()

        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            h_args = tuple(_to_hashable(a) for a in args)
            h_kwargs = frozenset(
                (_to_hashable(k), _to_hashable(v)) for k, v in kwargs.items()
            )
            key = (h_args, h_kwargs)
            if key in cache:
                cache.move_to_end(key)
                return cache[key]
            result = func(*args, **kwargs)
            cache[key] = result
            if maxsize is not None and len(cache) > maxsize:
                cache.popitem(last=False)
            return result

        wrapper.cache_clear = cache.clear  # For manual cache clearing
        return wrapper

    return decorator