utils.py 20.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
17
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
18
import base64
19
import ipaddress
20
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
21
import os
22
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
23
import random
24
import resource
Lianmin Zheng's avatar
Lianmin Zheng committed
25
26
import socket
import time
27
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
28
from io import BytesIO
29
from typing import Any, Dict, List, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
30
31

import numpy as np
32
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
33
34
import requests
import torch
35
import torch.distributed as dist
36
from fastapi.responses import JSONResponse
37
from packaging import version as pkg_version
38
from torch import nn
39
40
41
42
43
44
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
45

46
47
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
48

Liangsheng Yin's avatar
Liangsheng Yin committed
49
50
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
51
52


53
54
55
56
57
# torch flag AMD GPU
def is_hip() -> bool:
    return torch.version.hip is not None


58
59
60
61
62
63
64
65
def is_ipv6(address):
    try:
        ipaddress.IPv6Address(address)
        return True
    except ipaddress.AddressValueError:
        return False


Liangsheng Yin's avatar
Liangsheng Yin committed
66
67
68
69
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
70

Liangsheng Yin's avatar
Liangsheng Yin committed
71
72
73
74
75
76
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
77

Liangsheng Yin's avatar
Liangsheng Yin committed
78
79
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
80

Liangsheng Yin's avatar
Liangsheng Yin committed
81
82
83
84
85
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
86

Liangsheng Yin's avatar
Liangsheng Yin committed
87
88
89
90
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
91
92


Liangsheng Yin's avatar
Liangsheng Yin committed
93
94
95
96
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
97
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
100
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
101
102


Liangsheng Yin's avatar
Liangsheng Yin committed
103
104
105
106
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
107
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
108
109
110
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


132
def get_available_gpu_memory(gpu_id, distributed=False):
Lianmin Zheng's avatar
Lianmin Zheng committed
133
134
135
136
137
138
139
140
141
142
143
144
145
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
    num_gpus = torch.cuda.device_count()
    assert gpu_id < num_gpus

    if torch.cuda.current_device() != gpu_id:
        print(
            f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
            "which may cause useless memory allocation for torch CUDA context.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
146
    torch.cuda.empty_cache()
Lianmin Zheng's avatar
Lianmin Zheng committed
147
148
149
150
151
152
153
154
155
156
157
158
    free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
            torch.device("cuda", gpu_id)
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


Lianmin Zheng's avatar
Lianmin Zheng committed
159
def set_random_seed(seed: int) -> None:
160
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
161
    random.seed(seed)
162
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
163
164
165
166
167
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


168
def is_port_available(port):
169
    """Return whether a port is available."""
170
171
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
172
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
173
            s.bind(("", port))
174
            s.listen(1)
175
176
177
178
179
            return True
        except socket.error:
            return False


180
181
182
183
184
185
186
187
188
189
def is_multimodal_model(model_architectures):
    if (
        "LlavaLlamaForCausalLM" in model_architectures
        or "LlavaQwenForCausalLM" in model_architectures
        or "LlavaMistralForCausalLM" in model_architectures
        or "LlavaVidForCausalLM" in model_architectures
    ):
        return True
    else:
        return False
Yuanhan Zhang's avatar
Yuanhan Zhang committed
190
191


192
193
194
195
196
def is_generation_model(model_architectures, is_embedding: bool = False):
    # We have two ways to determine whether a model is a generative model.
    # 1. Check the model architectue
    # 2. check the `is_embedding` server args

197
198
199
    if (
        "LlamaEmbeddingModel" in model_architectures
        or "MistralModel" in model_architectures
200
201
        or "LlamaForSequenceClassification" in model_architectures
        or "LlamaForSequenceClassificationWithNormal_Weights" in model_architectures
202
203
    ):
        return False
204
205
    else:
        return not is_embedding
206
207


Yuanhan Zhang's avatar
Yuanhan Zhang committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
285
286


287
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
288
289
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
290
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
291

292
293
294
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
295
296
297
298
299
300
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
301
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
302
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
303
304
305
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
306
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
307
        image = Image.open(BytesIO(base64.b64decode(image_file)))
308
309
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
310

Yuanhan Zhang's avatar
Yuanhan Zhang committed
311
    return image, image_size
312
313


314
315
316
317
318
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
319
320
321
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
322
323
324
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
325
    logging.getLogger("vllm.selector").setLevel(logging.WARN)
326
    logging.getLogger("vllm.utils").setLevel(logging.ERROR)
327
328


329
def assert_pkg_version(pkg: str, min_version: str, message: str):
330
331
332
333
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
334
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
335
                f"is less than the minimum required version {min_version}. " + message
336
337
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
338
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
339
340
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
341
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
342
343


344
345
346
347
def kill_parent_process():
    """Kill the parent process and all children of the parent process."""
    current_process = psutil.Process()
    parent_process = current_process.parent()
348
    kill_child_process(parent_process.pid, skip_pid=current_process.pid)
349
350


351
352
def kill_child_process(pid, including_parent=True, skip_pid=None):
    """Kill the process and all its children process."""
353
354
355
356
357
358
359
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        return

    children = parent.children(recursive=True)
    for child in children:
360
361
        if child.pid == skip_pid:
            continue
362
363
364
365
366
367
368
369
370
371
372
373
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

    if including_parent:
        try:
            parent.kill()
        except psutil.NoSuchProcess:
            pass


374
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
375
376
377
378
379
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

380
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
381

382
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
383
384


385
386
387
388
389
390
def monkey_patch_vllm_dummy_weight_loader():
    """
    Monkey patch the dummy weight loader in vllm to call process_weights_after_loading.
    """

    from vllm.model_executor.model_loader.loader import (
Ying Sheng's avatar
Ying Sheng committed
391
392
393
394
395
396
397
398
399
400
401
        CacheConfig,
        DeviceConfig,
        DummyModelLoader,
        LoRAConfig,
        ModelConfig,
        ParallelConfig,
        SchedulerConfig,
        _initialize_model,
        initialize_dummy_weights,
        nn,
        set_default_torch_dtype,
402
403
    )

Ying Sheng's avatar
Ying Sheng committed
404
405
406
407
408
409
410
411
412
413
    def load_model(
        self,
        *,
        model_config: ModelConfig,
        device_config: DeviceConfig,
        lora_config: Optional[LoRAConfig],
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        cache_config: CacheConfig,
    ) -> nn.Module:
414
415
        with set_default_torch_dtype(model_config.dtype):
            with torch.device(device_config.device):
Ying Sheng's avatar
Ying Sheng committed
416
417
418
419
420
421
                model = _initialize_model(
                    model_config,
                    self.load_config,
                    lora_config,
                    cache_config,
                )
422
423
424
425
426
427
428
429
430
431
432
433
434
435

            for _, module in model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    quant_method.process_weights_after_loading(module)

            # NOTE(woosuk): For accurate performance evaluation, we assign
            # random values to the weights.
            initialize_dummy_weights(model)
        return model.eval()

    setattr(DummyModelLoader, "load_model", load_model)


436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
vllm_all_gather_backup = None


def monkey_patch_vllm_all_gather(reverse: bool = False):
    """Monkey patch all-gather to remove in-place operations."""
    from torch.distributed import _functional_collectives as funcol
    from vllm.distributed.parallel_state import GroupCoordinator

    global vllm_all_gather_backup
    if vllm_all_gather_backup is None:
        vllm_all_gather_backup = GroupCoordinator.all_gather

    def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # Allocate output tensor.
        output_tensor = torch.empty(
            (world_size,) + input_size, dtype=input_.dtype, device=input_.device
        )

        output_tensor = funcol.all_gather_tensor(
            input_, gather_dim=0, group=self.device_group
        ).view((world_size,) + input_size)

        # Reshape
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    if reverse:
        setattr(GroupCoordinator, "all_gather", vllm_all_gather_backup)
    else:
        setattr(GroupCoordinator, "all_gather", all_gather)


482
483
484
485
486
487
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
488
        logger.debug("Setting Triton cache manager to: %s", manager)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


520
521
522
523
524
525
526
527
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
528
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
529
530


531
def add_api_key_middleware(app, api_key: str):
532
533
534
535
536
537
538
539
540
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
            return JSONResponse(content={"error": "Unauthorized"}, status_code=401)
        return await call_next(request)
541
542


543
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
544
545
546
547
    if "SGLANG_USE_MODELSCOPE" in os.environ:
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

548
549
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
550
551
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
552
    return model_path, tokenizer_path
553
554
555
556
557
558
559
560
561
562


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
        datefmt="%H:%M:%S",
        force=True,
    )
563
564
565
566
567
568
569
570
571
572
573


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
594
595
596


def broadcast_pyobj(
597
598
599
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
            dist.broadcast(tensor_size, src=0, group=dist_group)
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
            tensor_data = torch.ByteTensor(list(serialized_data))
            tensor_size = torch.tensor([size], dtype=torch.long)

            dist.broadcast(tensor_size, src=0, group=dist_group)
            dist.broadcast(tensor_data, src=0, group=dist_group)
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
        dist.broadcast(tensor_size, src=0, group=dist_group)
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
        dist.broadcast(tensor_data, src=0, group=dist_group)

        serialized_data = bytes(tensor_data.tolist())
        data = pickle.loads(serialized_data)
        return data