utils.py 22.5 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
17
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
18
import base64
19
import ipaddress
20
import json
21
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
22
import os
23
import pickle
Lianmin Zheng's avatar
Lianmin Zheng committed
24
import random
25
import resource
Lianmin Zheng's avatar
Lianmin Zheng committed
26
27
import socket
import time
28
import warnings
29
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
30
from io import BytesIO
31
from typing import Any, Dict, List, Optional, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
32
33

import numpy as np
34
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
35
36
import requests
import torch
37
import torch.distributed as dist
38
from fastapi.responses import JSONResponse
39
from packaging import version as pkg_version
40
from torch import nn
41
from torch.profiler import ProfilerActivity, profile, record_function
42
43
44
45
46
47
from triton.runtime.cache import (
    FileCacheManager,
    default_cache_dir,
    default_dump_dir,
    default_override_dir,
)
48

49
50
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
51

Liangsheng Yin's avatar
Liangsheng Yin committed
52
53
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
54
55


56
def is_hip() -> bool:
57
    """Return whether it is HIP on the AMD ROCm platform."""
58
59
60
    return torch.version.hip is not None


61
62
63
64
65
66
67
68
def is_flashinfer_available():
    """
    Check whether flashinfer is available.
    As of Oct. 6, 2024, it is only available on NVIDIA GPUs.
    """
    return torch.cuda.is_available() and not is_hip()


69
70
71
72
73
74
75
76
def is_ipv6(address):
    try:
        ipaddress.IPv6Address(address)
        return True
    except ipaddress.AddressValueError:
        return False


Liangsheng Yin's avatar
Liangsheng Yin committed
77
78
79
80
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
81

Liangsheng Yin's avatar
Liangsheng Yin committed
82
83
84
85
86
87
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
88

Liangsheng Yin's avatar
Liangsheng Yin committed
89
90
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
91

Liangsheng Yin's avatar
Liangsheng Yin committed
92
93
94
95
96
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
97

Liangsheng Yin's avatar
Liangsheng Yin committed
98
99
100
101
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
102
103


Liangsheng Yin's avatar
Liangsheng Yin committed
104
105
106
107
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
108
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
109
110
111
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
112
113


Liangsheng Yin's avatar
Liangsheng Yin committed
114
115
116
117
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
118
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
119
120
121
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


Zhang, Liangang's avatar
Zhang, Liangang committed
143
def get_available_gpu_memory(device, gpu_id, distributed=False):
Lianmin Zheng's avatar
Lianmin Zheng committed
144
145
146
147
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
Zhang, Liangang's avatar
Zhang, Liangang committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    if device == "cuda":
        num_gpus = torch.cuda.device_count()
        assert gpu_id < num_gpus

        if torch.cuda.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
                "which may cause useless memory allocation for torch CUDA context.",
            )

        torch.cuda.empty_cache()
        free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    elif device == "xpu":
        num_gpus = torch.xpu.device_count()
        assert gpu_id < num_gpus

        if torch.xpu.current_device() != gpu_id:
            print(
                f"WARNING: current device is not {gpu_id}, but {torch.xpu.current_device()}, ",
                "which may cause useless memory allocation for torch XPU context.",
            )
        torch.xpu.empty_cache()
        used_memory = torch.xpu.memory_allocated()
        total_gpu_memory = torch.xpu.get_device_properties(gpu_id).total_memory
        free_gpu_memory = total_gpu_memory - used_memory
Lianmin Zheng's avatar
Lianmin Zheng committed
174
175
176

    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
Zhang, Liangang's avatar
Zhang, Liangang committed
177
            torch.device(device, gpu_id)
Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
180
181
182
183
184
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


Lianmin Zheng's avatar
Lianmin Zheng committed
185
def set_random_seed(seed: int) -> None:
186
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
187
    random.seed(seed)
188
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
189
190
191
192
193
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


194
def is_port_available(port):
195
    """Return whether a port is available."""
196
197
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
198
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
199
            s.bind(("", port))
200
            s.listen(1)
201
202
203
204
205
            return True
        except socket.error:
            return False


206
207
208
209
210
211
212
213
214
215
def is_multimodal_model(model_architectures):
    if (
        "LlavaLlamaForCausalLM" in model_architectures
        or "LlavaQwenForCausalLM" in model_architectures
        or "LlavaMistralForCausalLM" in model_architectures
        or "LlavaVidForCausalLM" in model_architectures
    ):
        return True
    else:
        return False
Yuanhan Zhang's avatar
Yuanhan Zhang committed
216
217


218
219
220
221
222
def is_generation_model(model_architectures, is_embedding: bool = False):
    # We have two ways to determine whether a model is a generative model.
    # 1. Check the model architectue
    # 2. check the `is_embedding` server args

223
224
225
    if (
        "LlamaEmbeddingModel" in model_architectures
        or "MistralModel" in model_architectures
226
227
        or "LlamaForSequenceClassification" in model_architectures
        or "LlamaForSequenceClassificationWithNormal_Weights" in model_architectures
228
229
    ):
        return False
230
231
    else:
        return not is_embedding
232
233


Yuanhan Zhang's avatar
Yuanhan Zhang committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
311
312


313
def load_image(image_file: Union[str, bytes]):
Lianmin Zheng's avatar
Lianmin Zheng committed
314
315
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
316
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
317

318
319
320
    if isinstance(image_file, bytes):
        image = Image.open(BytesIO(image_file))
    elif image_file.startswith("http://") or image_file.startswith("https://"):
Lianmin Zheng's avatar
Lianmin Zheng committed
321
322
323
324
325
326
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
327
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
328
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
329
330
331
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
332
    elif isinstance(image_file, str):
Lianmin Zheng's avatar
Lianmin Zheng committed
333
        image = Image.open(BytesIO(base64.b64decode(image_file)))
334
335
    else:
        raise ValueError(f"Invalid image: {image}")
Lianmin Zheng's avatar
Lianmin Zheng committed
336

Yuanhan Zhang's avatar
Yuanhan Zhang committed
337
    return image, image_size
338
339


340
341
342
343
344
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
345
346
347
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
348
349
350
    logging.getLogger("vllm.distributed.device_communicators.shm_broadcast").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
351
    logging.getLogger("vllm.selector").setLevel(logging.WARN)
352
    logging.getLogger("vllm.utils").setLevel(logging.ERROR)
353

354
355
356
357
    warnings.filterwarnings(
        "ignore", category=UserWarning, message="The given NumPy array is not writable"
    )

358

359
def assert_pkg_version(pkg: str, min_version: str, message: str):
360
361
362
363
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
364
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
365
                f"is less than the minimum required version {min_version}. " + message
366
367
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
368
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
369
370
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
371
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
372
373


374
375
376
377
def kill_parent_process():
    """Kill the parent process and all children of the parent process."""
    current_process = psutil.Process()
    parent_process = current_process.parent()
378
    kill_child_process(parent_process.pid, skip_pid=current_process.pid)
379
380


381
382
def kill_child_process(pid, including_parent=True, skip_pid=None):
    """Kill the process and all its children process."""
383
384
385
386
387
388
389
    try:
        parent = psutil.Process(pid)
    except psutil.NoSuchProcess:
        return

    children = parent.children(recursive=True)
    for child in children:
390
391
        if child.pid == skip_pid:
            continue
392
393
394
395
396
397
398
399
400
401
402
403
        try:
            child.kill()
        except psutil.NoSuchProcess:
            pass

    if including_parent:
        try:
            parent.kill()
        except psutil.NoSuchProcess:
            pass


404
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
405
406
407
408
409
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

410
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
411

412
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
413
414


415
416
417
418
419
420
def monkey_patch_vllm_dummy_weight_loader():
    """
    Monkey patch the dummy weight loader in vllm to call process_weights_after_loading.
    """

    from vllm.model_executor.model_loader.loader import (
Ying Sheng's avatar
Ying Sheng committed
421
422
423
424
425
426
427
428
429
430
431
        CacheConfig,
        DeviceConfig,
        DummyModelLoader,
        LoRAConfig,
        ModelConfig,
        ParallelConfig,
        SchedulerConfig,
        _initialize_model,
        initialize_dummy_weights,
        nn,
        set_default_torch_dtype,
432
433
    )

Ying Sheng's avatar
Ying Sheng committed
434
435
436
437
438
439
440
441
442
443
    def load_model(
        self,
        *,
        model_config: ModelConfig,
        device_config: DeviceConfig,
        lora_config: Optional[LoRAConfig],
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        cache_config: CacheConfig,
    ) -> nn.Module:
444
445
        with set_default_torch_dtype(model_config.dtype):
            with torch.device(device_config.device):
Ying Sheng's avatar
Ying Sheng committed
446
447
448
449
450
451
                model = _initialize_model(
                    model_config,
                    self.load_config,
                    lora_config,
                    cache_config,
                )
452
453
454
455
456
457
458
459
460
461
462
463
464
465

            for _, module in model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    quant_method.process_weights_after_loading(module)

            # NOTE(woosuk): For accurate performance evaluation, we assign
            # random values to the weights.
            initialize_dummy_weights(model)
        return model.eval()

    setattr(DummyModelLoader, "load_model", load_model)


466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
vllm_all_gather_backup = None


def monkey_patch_vllm_all_gather(reverse: bool = False):
    """Monkey patch all-gather to remove in-place operations."""
    from torch.distributed import _functional_collectives as funcol
    from vllm.distributed.parallel_state import GroupCoordinator

    global vllm_all_gather_backup
    if vllm_all_gather_backup is None:
        vllm_all_gather_backup = GroupCoordinator.all_gather

    def all_gather(self, input_: torch.Tensor, dim: int = -1) -> torch.Tensor:
        world_size = self.world_size
        # Bypass the function if we are using only 1 GPU.
        if world_size == 1:
            return input_
        assert (
            -input_.dim() <= dim < input_.dim()
        ), f"Invalid dim ({dim}) for input tensor with shape {input_.size()}"
        if dim < 0:
            # Convert negative dim to positive.
            dim += input_.dim()
        input_size = input_.size()
        # Allocate output tensor.
        output_tensor = torch.empty(
            (world_size,) + input_size, dtype=input_.dtype, device=input_.device
        )

        output_tensor = funcol.all_gather_tensor(
            input_, gather_dim=0, group=self.device_group
        ).view((world_size,) + input_size)

        # Reshape
        output_tensor = output_tensor.movedim(0, dim)
        output_tensor = output_tensor.reshape(
            input_size[:dim] + (world_size * input_size[dim],) + input_size[dim + 1 :]
        )
        return output_tensor

    if reverse:
        setattr(GroupCoordinator, "all_gather", vllm_all_gather_backup)
    else:
        setattr(GroupCoordinator, "all_gather", all_gather)


512
513
514
515
516
517
def maybe_set_triton_cache_manager() -> None:
    """Set environment variable to tell Triton to use a
    custom cache manager"""
    cache_manger = os.environ.get("TRITON_CACHE_MANAGER", None)
    if cache_manger is None:
        manager = "sglang.srt.utils:CustomCacheManager"
518
        logger.debug("Setting Triton cache manager to: %s", manager)
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        os.environ["TRITON_CACHE_MANAGER"] = manager


class CustomCacheManager(FileCacheManager):
    # Adapted from: https://github.com/tdoublep/vllm/blob/3307522289fdfefe323b6c00d0db696651989a2f/vllm/triton_utils/custom_cache_manager.py
    def __init__(self, key, override=False, dump=False):

        self.key = key
        self.lock_path = None
        if dump:
            self.cache_dir = default_dump_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
            self.lock_path = os.path.join(self.cache_dir, "lock")
            os.makedirs(self.cache_dir, exist_ok=True)
        elif override:
            self.cache_dir = default_override_dir()
            self.cache_dir = os.path.join(self.cache_dir, self.key)
        else:
            # create cache directory if it doesn't exist
            self.cache_dir = (
                os.getenv("TRITON_CACHE_DIR", "").strip() or default_cache_dir()
            )
            if self.cache_dir:
                self.cache_dir = f"{self.cache_dir}_{os.getpid()}"
                self.cache_dir = os.path.join(self.cache_dir, self.key)
                self.lock_path = os.path.join(self.cache_dir, "lock")
                os.makedirs(self.cache_dir, exist_ok=True)
            else:
                raise RuntimeError("Could not create or locate cache dir")


550
551
552
553
554
555
556
557
def set_ulimit(target_soft_limit=65535):
    resource_type = resource.RLIMIT_NOFILE
    current_soft, current_hard = resource.getrlimit(resource_type)

    if current_soft < target_soft_limit:
        try:
            resource.setrlimit(resource_type, (target_soft_limit, current_hard))
        except ValueError as e:
Lianmin Zheng's avatar
Lianmin Zheng committed
558
            logger.warning(f"Fail to set RLIMIT_NOFILE: {e}")
559
560


561
def add_api_key_middleware(app, api_key: str):
562
563
564
565
566
567
568
569
570
    @app.middleware("http")
    async def authentication(request, call_next):
        if request.method == "OPTIONS":
            return await call_next(request)
        if request.url.path.startswith("/health"):
            return await call_next(request)
        if request.headers.get("Authorization") != "Bearer " + api_key:
            return JSONResponse(content={"error": "Unauthorized"}, status_code=401)
        return await call_next(request)
571
572


573
def prepare_model_and_tokenizer(model_path: str, tokenizer_path: str):
574
575
576
577
    if "SGLANG_USE_MODELSCOPE" in os.environ:
        if not os.path.exists(model_path):
            from modelscope import snapshot_download

578
579
            model_path = snapshot_download(model_path)
            tokenizer_path = snapshot_download(
580
581
                tokenizer_path, ignore_patterns=["*.bin", "*.safetensors"]
            )
582
    return model_path, tokenizer_path
583
584
585
586
587
588
589
590
591
592


def configure_logger(server_args, prefix: str = ""):
    format = f"[%(asctime)s{prefix}] %(message)s"
    logging.basicConfig(
        level=getattr(logging, server_args.log_level.upper()),
        format=format,
        datefmt="%H:%M:%S",
        force=True,
    )
593
594
595
596
597
598
599
600
601
602
603


# source: https://github.com/vllm-project/vllm/blob/93b38bea5dd03e1b140ca997dfaadef86f8f1855/vllm/lora/utils.py#L9
def replace_submodule(
    model: nn.Module, module_name: str, new_module: nn.Module
) -> nn.Module:
    """Replace a submodule in a model with a new module."""
    parent = model.get_submodule(".".join(module_name.split(".")[:-1]))
    target_name = module_name.split(".")[-1]
    setattr(parent, target_name, new_module)
    return new_module
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623


def set_weight_attrs(
    weight: torch.Tensor,
    weight_attrs: Optional[Dict[str, Any]],
):
    """Set attributes on a weight tensor.

    This method is used to set attributes on a weight tensor. This method
    will not overwrite existing attributes.

    Args:
        weight: The weight tensor.
        weight_attrs: A dictionary of attributes to set on the weight tensor.
    """
    if weight_attrs is None:
        return
    for key, value in weight_attrs.items():
        assert not hasattr(weight, key), f"Overwriting existing tensor attribute: {key}"
        setattr(weight, key, value)
624
625
626


def broadcast_pyobj(
627
628
629
    data: List[Any],
    rank: int,
    dist_group: Optional[torch.distributed.ProcessGroup] = None,
630
631
632
633
634
635
636
637
638
639
):
    """Broadcast inputs from rank=0 to all other ranks with torch.dist backend."""

    if rank == 0:
        if len(data) == 0:
            tensor_size = torch.tensor([0], dtype=torch.long)
            dist.broadcast(tensor_size, src=0, group=dist_group)
        else:
            serialized_data = pickle.dumps(data)
            size = len(serialized_data)
640
641
642
            tensor_data = torch.ByteTensor(
                np.frombuffer(serialized_data, dtype=np.uint8)
            )
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
            tensor_size = torch.tensor([size], dtype=torch.long)

            dist.broadcast(tensor_size, src=0, group=dist_group)
            dist.broadcast(tensor_data, src=0, group=dist_group)
        return data
    else:
        tensor_size = torch.tensor([0], dtype=torch.long)
        dist.broadcast(tensor_size, src=0, group=dist_group)
        size = tensor_size.item()

        if size == 0:
            return []

        tensor_data = torch.empty(size, dtype=torch.uint8)
        dist.broadcast(tensor_data, src=0, group=dist_group)

659
        serialized_data = bytes(tensor_data.cpu().numpy())
660
661
        data = pickle.loads(serialized_data)
        return data
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692


step_counter = 0


def pytorch_profile(name, func, *args, data_size=-1):
    """
    Args:
        name (string): the name of recorded function.
        func: the function to be profiled.
        args: the arguments of the profiled function.
        data_size (int): some measurement of the computation complexity.
            Usually, it could be the batch size.
    """
    global step_counter
    os.makedirs("trace", exist_ok=True)
    with profile(
        activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
        # schedule=torch.profiler.schedule(wait=1, warmup=1, active=3, repeat=2),
        # on_trace_ready=tensorboard_trace_handler('./log_dir'),
        record_shapes=True,
        profile_memory=True,
        with_stack=True,
    ) as prof:
        with record_function(name):
            with open(f"trace/size_{step_counter}.json", "w") as f:
                json.dump({"size": data_size}, f)
            result = func(*args)
    prof.export_chrome_trace(f"trace/{name}_{step_counter}.json")
    step_counter += 1
    return result
693
694
695
696
697
698
699


def first_rank_print(*args, **kwargs):
    if torch.cuda.current_device() == 0:
        print(*args, **kwargs)
    else:
        pass