utils.py 17.7 KB
Newer Older
1
2
"""Common utilities."""

Lianmin Zheng's avatar
Lianmin Zheng committed
3
import base64
4
import fcntl
5
import logging
Lianmin Zheng's avatar
Lianmin Zheng committed
6
7
8
import os
import random
import socket
9
import struct
Lianmin Zheng's avatar
Lianmin Zheng committed
10
import time
11
from importlib.metadata import PackageNotFoundError, version
Lianmin Zheng's avatar
Lianmin Zheng committed
12
from io import BytesIO
Lianmin Zheng's avatar
Lianmin Zheng committed
13
from typing import List, Optional
Lianmin Zheng's avatar
Lianmin Zheng committed
14
15

import numpy as np
16
import psutil
Lianmin Zheng's avatar
Lianmin Zheng committed
17
18
import requests
import torch
19
import triton
20
from fastapi.responses import JSONResponse
21
from packaging import version as pkg_version
Lianmin Zheng's avatar
Lianmin Zheng committed
22
from starlette.middleware.base import BaseHTTPMiddleware
23

24
25
logger = logging.getLogger(__name__)

Lianmin Zheng's avatar
Lianmin Zheng committed
26

Liangsheng Yin's avatar
Liangsheng Yin committed
27
28
show_time_cost = False
time_infos = {}
Lianmin Zheng's avatar
Lianmin Zheng committed
29
30


Liangsheng Yin's avatar
Liangsheng Yin committed
31
32
33
34
def enable_show_time_cost():
    global show_time_cost
    show_time_cost = True

Lianmin Zheng's avatar
Lianmin Zheng committed
35

Liangsheng Yin's avatar
Liangsheng Yin committed
36
37
38
39
40
41
class TimeInfo:
    def __init__(self, name, interval=0.1, color=0, indent=0):
        self.name = name
        self.interval = interval
        self.color = color
        self.indent = indent
Lianmin Zheng's avatar
Lianmin Zheng committed
42

Liangsheng Yin's avatar
Liangsheng Yin committed
43
44
        self.acc_time = 0
        self.last_acc_time = 0
Lianmin Zheng's avatar
Lianmin Zheng committed
45

Liangsheng Yin's avatar
Liangsheng Yin committed
46
47
48
49
50
    def check(self):
        if self.acc_time - self.last_acc_time > self.interval:
            self.last_acc_time = self.acc_time
            return True
        return False
Lianmin Zheng's avatar
Lianmin Zheng committed
51

Liangsheng Yin's avatar
Liangsheng Yin committed
52
53
54
55
    def pretty_print(self):
        print(f"\x1b[{self.color}m", end="")
        print("-" * self.indent * 2, end="")
        print(f"{self.name}: {self.acc_time:.3f}s\x1b[0m")
Lianmin Zheng's avatar
Lianmin Zheng committed
56
57


Liangsheng Yin's avatar
Liangsheng Yin committed
58
59
60
61
def mark_start(name, interval=0.1, color=0, indent=0):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
62
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
63
64
65
    if time_infos.get(name, None) is None:
        time_infos[name] = TimeInfo(name, interval, color, indent)
    time_infos[name].acc_time -= time.time()
Lianmin Zheng's avatar
Lianmin Zheng committed
66
67


Liangsheng Yin's avatar
Liangsheng Yin committed
68
69
70
71
def mark_end(name):
    global time_infos, show_time_cost
    if not show_time_cost:
        return
Lianmin Zheng's avatar
Lianmin Zheng committed
72
    torch.cuda.synchronize()
Liangsheng Yin's avatar
Liangsheng Yin committed
73
74
75
    time_infos[name].acc_time += time.time()
    if time_infos[name].check():
        time_infos[name].pretty_print()
Lianmin Zheng's avatar
Lianmin Zheng committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96


def calculate_time(show=False, min_cost_ms=0.0):
    def wrapper(func):
        def inner_func(*args, **kwargs):
            torch.cuda.synchronize()
            if show:
                start_time = time.time()
            result = func(*args, **kwargs)
            torch.cuda.synchronize()
            if show:
                cost_time = (time.time() - start_time) * 1000
                if cost_time > min_cost_ms:
                    print(f"Function {func.__name__} took {cost_time} ms to run.")
            return result

        return inner_func

    return wrapper


97
def get_available_gpu_memory(gpu_id, distributed=False):
Lianmin Zheng's avatar
Lianmin Zheng committed
98
99
100
101
102
103
104
105
106
107
108
109
110
    """
    Get available memory for cuda:gpu_id device.
    When distributed is True, the available memory is the minimum available memory of all GPUs.
    """
    num_gpus = torch.cuda.device_count()
    assert gpu_id < num_gpus

    if torch.cuda.current_device() != gpu_id:
        print(
            f"WARNING: current device is not {gpu_id}, but {torch.cuda.current_device()}, ",
            "which may cause useless memory allocation for torch CUDA context.",
        )

Lianmin Zheng's avatar
Lianmin Zheng committed
111
    torch.cuda.empty_cache()
Lianmin Zheng's avatar
Lianmin Zheng committed
112
113
114
115
116
117
118
119
120
121
122
123
    free_gpu_memory, _ = torch.cuda.mem_get_info(gpu_id)

    if distributed:
        tensor = torch.tensor(free_gpu_memory, dtype=torch.float32).to(
            torch.device("cuda", gpu_id)
        )
        torch.distributed.all_reduce(tensor, op=torch.distributed.ReduceOp.MIN)
        free_gpu_memory = tensor.item()

    return free_gpu_memory / (1 << 30)


Lianmin Zheng's avatar
Lianmin Zheng committed
124
def set_random_seed(seed: int) -> None:
125
    """Set the random seed for all libraries."""
Lianmin Zheng's avatar
Lianmin Zheng committed
126
    random.seed(seed)
127
    np.random.seed(seed)
Lianmin Zheng's avatar
Lianmin Zheng committed
128
129
130
131
132
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)


133
def is_port_available(port):
134
    """Return whether a port is available."""
135
136
    with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s:
        try:
137
            s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)
138
            s.bind(("", port))
139
            s.listen(1)
140
141
142
143
144
            return True
        except socket.error:
            return False


Lianmin Zheng's avatar
Lianmin Zheng committed
145
def allocate_init_ports(
Lianmin Zheng's avatar
Lianmin Zheng committed
146
147
    port: Optional[int] = None,
    additional_ports: Optional[List[int]] = None,
148
    dp_size: int = 1,
Lianmin Zheng's avatar
Lianmin Zheng committed
149
):
150
    """Allocate ports for all connections."""
151
152
153
154
155
156
157
158
    if additional_ports:
        ret_ports = [port] + additional_ports
    else:
        ret_ports = [port]

    ret_ports = list(set(x for x in ret_ports if is_port_available(x)))
    cur_port = ret_ports[-1] + 1 if len(ret_ports) > 0 else 10000

Mingyi's avatar
Mingyi committed
159
160
    # HTTP + Tokenizer + Controller + Detokenizer + dp_size * 1 (nccl)
    num_ports_needed = 4 + dp_size
161
    while len(ret_ports) < num_ports_needed:
162
163
164
165
        if cur_port not in ret_ports and is_port_available(cur_port):
            ret_ports.append(cur_port)
        cur_port += 1

166
    if port is not None and ret_ports[0] != port:
167
168
169
        logger.warn(
            f"WARNING: Port {port} is not available. Use port {ret_ports[0]} instead."
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
170

171
    return ret_ports[0], ret_ports[1:num_ports_needed]
172

Lianmin Zheng's avatar
Lianmin Zheng committed
173

Lianmin Zheng's avatar
Lianmin Zheng committed
174
def get_int_token_logit_bias(tokenizer, vocab_size):
175
    """Get the logit bias for integer-only tokens."""
176
177
    # a bug when model's vocab size > tokenizer.vocab_size
    vocab_size = tokenizer.vocab_size
Lianmin Zheng's avatar
Lianmin Zheng committed
178
179
    logit_bias = np.zeros(vocab_size, dtype=np.float32)
    for t_id in range(vocab_size):
180
        ss = tokenizer.decode([t_id]).strip()
Lianmin Zheng's avatar
Lianmin Zheng committed
181
182
183
184
185
186
187
188
        if not (ss.isdigit() or len(ss) == 0 or t_id == tokenizer.eos_token_id):
            logit_bias[t_id] = -1e5

    return logit_bias


def wrap_kernel_launcher(kernel):
    """A faster launcher for triton kernels."""
189
190
    if int(triton.__version__.split(".")[0]) >= 3:
        return None
Lianmin Zheng's avatar
Lianmin Zheng committed
191

192
193
    gpu_id = torch.cuda.current_device()
    kernels = kernel.cache[gpu_id].values()
Lianmin Zheng's avatar
Lianmin Zheng committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
    kernel = next(iter(kernels))

    # Different trition versions use different low-level names
    if hasattr(kernel, "cu_function"):
        kfunction = kernel.cu_function
    else:
        kfunction = kernel.function

    if hasattr(kernel, "c_wrapper"):
        run = kernel.c_wrapper
    else:
        run = kernel.run

    add_cluster_dim = True

    def ret_func(grid, num_warps, *args):
        nonlocal add_cluster_dim

        try:
            if add_cluster_dim:
                run(
                    grid[0],
                    grid[1],
                    grid[2],
                    num_warps,
                    1,
                    1,
                    1,
                    1,
                    kernel.shared,
                    0,
                    kfunction,
                    None,
                    None,
                    kernel,
                    *args,
                )
            else:
                run(
                    grid[0],
                    grid[1],
                    grid[2],
                    num_warps,
                    kernel.shared,
                    0,
                    kfunction,
                    None,
                    None,
                    kernel,
                    *args,
                )
        except TypeError:
            add_cluster_dim = not add_cluster_dim
            ret_func(grid, num_warps, *args)

    return ret_func


def is_multimodal_model(model):
    from sglang.srt.model_config import ModelConfig

Yuanhan Zhang's avatar
Yuanhan Zhang committed
255
256
257
258
    if isinstance(model, str):
        model = model.lower()
        return "llava" in model or "yi-vl" in model or "llava-next" in model

Lianmin Zheng's avatar
Lianmin Zheng committed
259
    if isinstance(model, ModelConfig):
Christopher Chou's avatar
Christopher Chou committed
260
        model_path = model.path.lower()
Liangsheng Yin's avatar
Liangsheng Yin committed
261
262
263
        return (
            "llava" in model_path or "yi-vl" in model_path or "llava-next" in model_path
        )
Yuanhan Zhang's avatar
Yuanhan Zhang committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

    raise ValueError("unrecognized type")


def decode_video_base64(video_base64):
    from PIL import Image

    # Decode the base64 string
    video_bytes = base64.b64decode(video_base64)

    # Placeholder for the start indices of each PNG image
    img_starts = []

    frame_format = "PNG"  # str(os.getenv('FRAME_FORMAT', "JPEG"))

    assert frame_format in [
        "PNG",
        "JPEG",
    ], "FRAME_FORMAT must be either 'PNG' or 'JPEG'"

    if frame_format == "PNG":
        # Find each PNG start signature to isolate images
        i = 0
        while i < len(video_bytes) - 7:  # Adjusted for the length of the PNG signature
            # Check if we found the start of a PNG file
            if (
                video_bytes[i] == 0x89
                and video_bytes[i + 1] == 0x50
                and video_bytes[i + 2] == 0x4E
                and video_bytes[i + 3] == 0x47
                and video_bytes[i + 4] == 0x0D
                and video_bytes[i + 5] == 0x0A
                and video_bytes[i + 6] == 0x1A
                and video_bytes[i + 7] == 0x0A
            ):
                img_starts.append(i)
                i += 8  # Skip the PNG signature
            else:
                i += 1
    else:
        # Find each JPEG start (0xFFD8) to isolate images
        i = 0
        while (
            i < len(video_bytes) - 1
        ):  # Adjusted for the length of the JPEG SOI signature
            # Check if we found the start of a JPEG file
            if video_bytes[i] == 0xFF and video_bytes[i + 1] == 0xD8:
                img_starts.append(i)
                # Move to the next byte to continue searching for the next image start
                i += 2
            else:
                i += 1

    frames = []
    for start_idx in img_starts:
        # Assuming each image is back-to-back, the end of one image is the start of another
        # The last image goes until the end of the byte string
        end_idx = (
            img_starts[img_starts.index(start_idx) + 1]
            if img_starts.index(start_idx) + 1 < len(img_starts)
            else len(video_bytes)
        )
        img_bytes = video_bytes[start_idx:end_idx]

        # Convert bytes to a PIL Image
        img = Image.open(BytesIO(img_bytes))

        # Convert PIL Image to a NumPy array
        frame = np.array(img)

        # Append the frame to the list of frames
        frames.append(frame)

    # Ensure there's at least one frame to avoid errors with np.stack
    if frames:
        return np.stack(frames, axis=0), img.size
    else:
        return np.array([]), (
            0,
            0,
        )  # Return an empty array and size tuple if no frames were found
Lianmin Zheng's avatar
Lianmin Zheng committed
345
346
347
348
349


def load_image(image_file):
    from PIL import Image

Yuanhan Zhang's avatar
Yuanhan Zhang committed
350
    image = image_size = None
Lianmin Zheng's avatar
Lianmin Zheng committed
351
352
353
354
355
356
357
358

    if image_file.startswith("http://") or image_file.startswith("https://"):
        timeout = int(os.getenv("REQUEST_TIMEOUT", "3"))
        response = requests.get(image_file, timeout=timeout)
        image = Image.open(BytesIO(response.content))
    elif image_file.lower().endswith(("png", "jpg", "jpeg", "webp", "gif")):
        image = Image.open(image_file)
    elif image_file.startswith("data:"):
359
        image_file = image_file.split(",")[1]
Lianmin Zheng's avatar
Lianmin Zheng committed
360
        image = Image.open(BytesIO(base64.b64decode(image_file)))
Yuanhan Zhang's avatar
Yuanhan Zhang committed
361
362
363
    elif image_file.startswith("video:"):
        image_file = image_file.replace("video:", "")
        image, image_size = decode_video_base64(image_file)
Lianmin Zheng's avatar
Lianmin Zheng committed
364
365
366
    else:
        image = Image.open(BytesIO(base64.b64decode(image_file)))

Yuanhan Zhang's avatar
Yuanhan Zhang committed
367
    return image, image_size
368
369


370
371
372
373
374
def suppress_other_loggers():
    from vllm.logger import logger as vllm_default_logger

    vllm_default_logger.setLevel(logging.WARN)
    logging.getLogger("vllm.config").setLevel(logging.ERROR)
375
376
377
    logging.getLogger("vllm.distributed.device_communicators.pynccl").setLevel(
        logging.WARN
    )
Lianmin Zheng's avatar
Lianmin Zheng committed
378
379
    logging.getLogger("vllm.selector").setLevel(logging.WARN)
    logging.getLogger("vllm.utils").setLevel(logging.WARN)
380
381


382
def assert_pkg_version(pkg: str, min_version: str, message: str):
383
384
385
386
    try:
        installed_version = version(pkg)
        if pkg_version.parse(installed_version) < pkg_version.parse(min_version):
            raise Exception(
387
                f"{pkg} is installed with version {installed_version}, which "
Ying Sheng's avatar
Ying Sheng committed
388
                f"is less than the minimum required version {min_version}. " + message
389
390
            )
    except PackageNotFoundError:
Yuanhan Zhang's avatar
Yuanhan Zhang committed
391
        raise Exception(
Ying Sheng's avatar
Ying Sheng committed
392
393
            f"{pkg} with minimum required version {min_version} is not installed. "
            + message
Yuanhan Zhang's avatar
Yuanhan Zhang committed
394
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
395
396


397
398
399
400
401
402
403
404
405
406
407
def kill_parent_process():
    """Kill the parent process and all children of the parent process."""
    current_process = psutil.Process()
    parent_process = current_process.parent()
    children = current_process.children(recursive=True)
    for child in children:
        if child.pid != current_process.pid:
            os.kill(child.pid, 9)
    os.kill(parent_process.pid, 9)


408
def monkey_patch_vllm_p2p_access_check(gpu_id: int):
409
410
411
412
413
    """
    Monkey patch the slow p2p access check in vllm.
    NOTE: We assume the p2p access is always allowed, which can be wrong for some setups.
    """

414
    import vllm.distributed.device_communicators.custom_all_reduce_utils as tgt
Liangsheng Yin's avatar
Liangsheng Yin committed
415

416
    setattr(tgt, "gpu_p2p_access_check", lambda *arg, **kwargs: True)
417
418


419
420
421
422
423
424
def monkey_patch_vllm_dummy_weight_loader():
    """
    Monkey patch the dummy weight loader in vllm to call process_weights_after_loading.
    """

    from vllm.model_executor.model_loader.loader import (
Ying Sheng's avatar
Ying Sheng committed
425
426
427
428
429
        CacheConfig,
        DeviceConfig,
        DummyModelLoader,
        LoRAConfig,
        ModelConfig,
430
        MultiModalConfig,
Ying Sheng's avatar
Ying Sheng committed
431
432
433
434
435
436
        ParallelConfig,
        SchedulerConfig,
        _initialize_model,
        initialize_dummy_weights,
        nn,
        set_default_torch_dtype,
437
438
    )

Ying Sheng's avatar
Ying Sheng committed
439
440
441
442
443
444
    def load_model(
        self,
        *,
        model_config: ModelConfig,
        device_config: DeviceConfig,
        lora_config: Optional[LoRAConfig],
445
        multimodal_config: Optional[MultiModalConfig],
Ying Sheng's avatar
Ying Sheng committed
446
447
448
449
        parallel_config: ParallelConfig,
        scheduler_config: SchedulerConfig,
        cache_config: CacheConfig,
    ) -> nn.Module:
450
451
        with set_default_torch_dtype(model_config.dtype):
            with torch.device(device_config.device):
Ying Sheng's avatar
Ying Sheng committed
452
453
454
455
                model = _initialize_model(
                    model_config,
                    self.load_config,
                    lora_config,
456
                    multimodal_config,
Ying Sheng's avatar
Ying Sheng committed
457
458
                    cache_config,
                )
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476

            for _, module in model.named_modules():
                quant_method = getattr(module, "quant_method", None)
                if quant_method is not None:
                    quant_method.process_weights_after_loading(module)
                # FIXME: Remove this after Mixtral is updated
                # to use quant_method.
                if hasattr(module, "process_weights_after_loading"):
                    module.process_weights_after_loading()

            # NOTE(woosuk): For accurate performance evaluation, we assign
            # random values to the weights.
            initialize_dummy_weights(model)
        return model.eval()

    setattr(DummyModelLoader, "load_model", load_model)


Lianmin Zheng's avatar
Lianmin Zheng committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
API_KEY_HEADER_NAME = "X-API-Key"


class APIKeyValidatorMiddleware(BaseHTTPMiddleware):
    def __init__(self, app, api_key: str):
        super().__init__(app)
        self.api_key = api_key

    async def dispatch(self, request, call_next):
        # extract API key from the request headers
        api_key_header = request.headers.get(API_KEY_HEADER_NAME)
        if not api_key_header or api_key_header != self.api_key:
            return JSONResponse(
                status_code=403,
                content={"detail": "Invalid API Key"},
            )
        response = await call_next(request)
494
        return response
495
496
497
498
499
500
501
502
503
504
505
506
507


def get_ip_address(ifname):
    """
    Get the IP address of a network interface.

    :param ifname: Name of the network interface (e.g., 'eth0')
    :return: IP address of the network interface
    """
    s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
    ip_address = fcntl.ioctl(
        s.fileno(),
        0x8915,  # SIOCGIFADDR
Ying Sheng's avatar
Ying Sheng committed
508
        struct.pack("256s", bytes(ifname[:15], "utf-8")),
509
510
511
512
513
514
515
516
    )[20:24]
    return socket.inet_ntoa(ip_address)


def send_addrs_to_rank_0(model_port_args, server_args):
    assert server_args.node_rank != 0 and server_args.dp_size == 1
    import torch.distributed as dist

Ying Sheng's avatar
Ying Sheng committed
517
518
519
    ifname = os.environ.get(
        "SGLANG_SOCKET_IFNAME", os.environ.get("NCCL_SOCKET_IFNAME", "eth0")
    )
520
521
522
523
524
    ip_addr = get_ip_address(ifname)

    num_tp_ports = server_args.tp_size // server_args.nnodes
    model_port_args.model_tp_ips[:num_tp_ports] = [ip_addr] * num_tp_ports
    ip_addr = [int(x) for x in ip_addr.split(".")]
Ying Sheng's avatar
Ying Sheng committed
525
526
527
    addrs_tensor = torch.tensor(
        ip_addr + model_port_args.model_tp_ports, dtype=torch.int
    )
528
529

    init_method = f"tcp://{server_args.nccl_init_addr}"
Ying Sheng's avatar
Ying Sheng committed
530
531
532
533
534
535
    dist.init_process_group(
        backend="gloo",
        init_method=init_method,
        rank=server_args.node_rank,
        world_size=server_args.nnodes,
    )
536
    dist.send(addrs_tensor, dst=0)
Ying Sheng's avatar
Ying Sheng committed
537
538
539
    print(
        f"Node {server_args.node_rank} sent: ip_address {ip_addr} and ports {model_port_args.model_tp_ports}"
    )
540
541

    dist.barrier()
Ying Sheng's avatar
Ying Sheng committed
542
    dist.destroy_process_group()
543
544
545
546
547
548


def receive_addrs(model_port_args, server_args):
    assert server_args.node_rank == 0 and server_args.dp_size == 1
    import torch.distributed as dist

Ying Sheng's avatar
Ying Sheng committed
549
550
551
    ifname = os.environ.get(
        "SGLANG_SOCKET_IFNAME", os.environ.get("NCCL_SOCKET_IFNAME", "eth0")
    )
552
553
554
555
556
557
    ip_addr = get_ip_address(ifname)

    num_tp_ports = server_args.tp_size // server_args.nnodes
    model_port_args.model_tp_ips[:num_tp_ports] = [ip_addr] * num_tp_ports

    init_method = f"tcp://{server_args.nccl_init_addr}"
Ying Sheng's avatar
Ying Sheng committed
558
559
560
561
562
563
    dist.init_process_group(
        backend="gloo",
        init_method=init_method,
        rank=server_args.node_rank,
        world_size=server_args.nnodes,
    )
564
565
566
567
568
569

    for src_rank in range(1, server_args.nnodes):
        tensor = torch.zeros(4 + num_tp_ports, dtype=torch.int)
        dist.recv(tensor, src=src_rank)
        ip = ".".join([str(x) for x in tensor[:4].tolist()])
        ports = tensor[4:].tolist()
Ying Sheng's avatar
Ying Sheng committed
570
571
572
573
574
575
        model_port_args.model_tp_ips[
            num_tp_ports * src_rank : num_tp_ports * (src_rank + 1)
        ] = [ip] * num_tp_ports
        model_port_args.model_tp_ports[
            num_tp_ports * src_rank : num_tp_ports * (src_rank + 1)
        ] = ports
576
577
578
        print(f"Node 0 received from rank {src_rank}: {tensor.tolist()}")

    dist.barrier()
Ying Sheng's avatar
Ying Sheng committed
579
    dist.destroy_process_group()