schedule_batch.py 30.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
"""
Copyright 2023-2024 SGLang Team
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
"""

16
17
18
19
20
21
22
23
24
25
26
27
28
"""
Store information about requests and batches.

The following is the flow of data structures for a batch:

ScheduleBatch -> ModelWorkerBatch -> ForwardBatch

- ScheduleBatch is managed by `scheduler.py::Scheduler`.
  It contains high-level scheduling data. Most of the data is on the CPU.
- ModelWorkerBatch is managed by `tp_worker.py::TpModelWorker`.
- ForwardBatch is managed by `model_runner.py::ModelRunner`.
  It contains low-level tensor data. Most of the data consists of GPU tensors.
"""
Lianmin Zheng's avatar
Lianmin Zheng committed
29

Ying Sheng's avatar
Ying Sheng committed
30
import logging
31
from dataclasses import dataclass
32
from typing import List, Optional, Tuple, Union
Lianmin Zheng's avatar
Lianmin Zheng committed
33
34

import torch
35

Liangsheng Yin's avatar
Liangsheng Yin committed
36
from sglang.global_config import global_config
37
38
from sglang.srt.constrained import RegexGuide
from sglang.srt.constrained.jump_forward import JumpForwardMap
39
from sglang.srt.mem_cache.base_prefix_cache import BasePrefixCache
40
from sglang.srt.mem_cache.chunk_cache import ChunkCache
41
from sglang.srt.mem_cache.memory_pool import BaseTokenToKVPool, ReqToTokenPool
42
from sglang.srt.model_executor.forward_batch_info import ForwardMode
43
from sglang.srt.sampling.sampling_batch_info import SamplingBatchInfo
44
from sglang.srt.sampling.sampling_params import SamplingParams
45
from sglang.srt.server_args import ServerArgs
Liangsheng Yin's avatar
Liangsheng Yin committed
46
47

INIT_INCREMENTAL_DETOKENIZATION_OFFSET = 5
Lianmin Zheng's avatar
Lianmin Zheng committed
48

49
50
# Put some global args for easy access
global_server_args_dict = {
51
52
53
    "attention_backend": ServerArgs.attention_backend,
    "sampling_backend": ServerArgs.sampling_backend,
    "triton_attention_reduce_in_fp32": ServerArgs.triton_attention_reduce_in_fp32,
Ke Bao's avatar
Ke Bao committed
54
    "disable_mla": ServerArgs.disable_mla,
55
    "torchao_config": ServerArgs.torchao_config,
56
57
}

Lianmin Zheng's avatar
Lianmin Zheng committed
58

Ying Sheng's avatar
Ying Sheng committed
59
60
61
logger = logging.getLogger(__name__)


62
63
64
class BaseFinishReason:
    def __init__(self, is_error: bool = False):
        self.is_error = is_error
Lianmin Zheng's avatar
Lianmin Zheng committed
65

66
    def to_json(self):
67
        raise NotImplementedError()
68
69
70


class FINISH_MATCHED_TOKEN(BaseFinishReason):
Mingyi's avatar
Mingyi committed
71
    def __init__(self, matched: Union[int, List[int]]):
72
73
74
        super().__init__()
        self.matched = matched

75
76
77
78
79
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
80
81


82
83
class FINISH_MATCHED_STR(BaseFinishReason):
    def __init__(self, matched: str):
84
        super().__init__()
85
        self.matched = matched
86

87
88
89
90
91
    def to_json(self):
        return {
            "type": "stop",  # to match OpenAI API's return value
            "matched": self.matched,
        }
92
93


94
95
class FINISH_LENGTH(BaseFinishReason):
    def __init__(self, length: int):
96
        super().__init__()
97
        self.length = length
98

99
100
101
102
103
    def to_json(self):
        return {
            "type": "length",  # to match OpenAI API's return value
            "length": self.length,
        }
104
105
106
107
108
109


class FINISH_ABORT(BaseFinishReason):
    def __init__(self):
        super().__init__(is_error=True)

110
111
112
113
    def to_json(self):
        return {
            "type": "abort",
        }
114

Lianmin Zheng's avatar
Lianmin Zheng committed
115

Liangsheng Yin's avatar
Liangsheng Yin committed
116
117
@dataclass
class ImageInputs:
118
119
    """The image related inputs."""

Liangsheng Yin's avatar
Liangsheng Yin committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    pixel_values: torch.Tensor
    image_hash: int
    image_sizes: Optional[list] = None
    image_offsets: Optional[list] = None
    pad_values: Optional[list] = None
    modalities: Optional[list] = None

    image_embeds: Optional[List[torch.Tensor]] = None
    aspect_ratio_ids: Optional[List[torch.Tensor]] = None
    aspect_ratio_mask: Optional[List[torch.Tensor]] = None

    @staticmethod
    def from_dict(obj, vocab_size):
        # Use image hash as fake token_ids, which is then used for prefix matching
        ret = ImageInputs(
            pixel_values=obj["pixel_values"],
            image_hash=hash(tuple(obj["image_hashes"])),
        )
        image_hash = ret.image_hash
        ret.pad_values = [
            (image_hash) % vocab_size,
            (image_hash >> 16) % vocab_size,
            (image_hash >> 32) % vocab_size,
            (image_hash >> 64) % vocab_size,
        ]
        ret.image_sizes = obj["image_sizes"]
        # Only when pixel values is not None we have modalities
        ret.modalities = obj["modalities"]
        return ret


Lianmin Zheng's avatar
Lianmin Zheng committed
151
class Req:
152
    """The input and output status of a request."""
153

154
155
156
157
158
    def __init__(
        self,
        rid: str,
        origin_input_text: str,
        origin_input_ids: Tuple[int],
159
        sampling_params: SamplingParams,
160
161
        lora_path: Optional[str] = None,
    ):
162
        # Input and output info
Lianmin Zheng's avatar
Lianmin Zheng committed
163
        self.rid = rid
Liangsheng Yin's avatar
Liangsheng Yin committed
164
        self.origin_input_text = origin_input_text
Liangsheng Yin's avatar
Liangsheng Yin committed
165
        self.origin_input_ids_unpadded = origin_input_ids  # Before image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
166
        self.origin_input_ids = origin_input_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
167
        self.output_ids = []  # Each decode stage's output ids
168
        self.fill_ids = None  # fill_ids = origin_input_ids + output_ids
169
170

        self.sampling_params = sampling_params
171
        self.lora_path = lora_path
Liangsheng Yin's avatar
Liangsheng Yin committed
172

173
174
175
        # Memory info
        self.req_pool_idx = None

176
177
178
        # Check finish
        self.tokenizer = None
        self.finished_reason = None
179
        self.stream = False
180

181
        # For incremental decoding
182
183
184
185
186
187
188
189
        # ----- | --------- read_ids -------|
        # ----- |   surr_ids  |
        # xxxxx | xxxxxxxxxxx | xxxxxxxxxxx |
        # ----- ^ ----------- ^ ----------- ^
        # ----- 1 ----------- 2 ----------- 3
        # 1: surr_offset
        # 2: read_offset
        # 3: last token
190
        self.vid = 0  # version id to sync decode status with in detokenizer_manager
Liangsheng Yin's avatar
Liangsheng Yin committed
191
192
193
        self.decoded_text = ""
        self.surr_offset = None  # Surrounding offset to defeat the cleanup algorithm
        self.read_offset = None
194

195
196
197
        # The number of decoded tokens for token usage report. Note that
        # this does not include the jump forward tokens.
        self.completion_tokens_wo_jump_forward = 0
198

199
        # For vision inputs
Liangsheng Yin's avatar
Liangsheng Yin committed
200
        self.image_inputs: Optional[ImageInputs] = None
201

202
203
        # Prefix info
        self.prefix_indices = []
204
        self.extend_input_len = 0
205
206
        self.last_node = None

207
        # Logprobs (arguments)
208
209
210
        self.return_logprob = False
        self.logprob_start_len = 0
        self.top_logprobs_num = 0
211
212

        # Logprobs (return value)
213
        self.normalized_prompt_logprob = None
214
215
216
217
        self.input_token_logprobs = None
        self.input_top_logprobs = None
        self.output_token_logprobs = []
        self.output_top_logprobs = []
218
219

        # Logprobs (internal values)
Liangsheng Yin's avatar
Liangsheng Yin committed
220
221
222
        # The tokens is prefilled but need to be considered as decode tokens
        # and should be updated for the decode logprobs
        self.last_update_decode_tokens = 0
223
224
225
226
227
        # The relative logprob_start_len in an extend batch
        self.extend_logprob_start_len = 0

        # Embedding
        self.embedding = None
Lianmin Zheng's avatar
Lianmin Zheng committed
228

229
        # Constrained decoding
Liangsheng Yin's avatar
Liangsheng Yin committed
230
231
232
        self.regex_fsm: RegexGuide = None
        self.regex_fsm_state: int = 0
        self.jump_forward_map: JumpForwardMap = None
Liangsheng Yin's avatar
Liangsheng Yin committed
233

234
235
236
237
    # whether request reached finished condition
    def finished(self) -> bool:
        return self.finished_reason is not None

238
    def init_next_round_input(self, tree_cache: Optional[BasePrefixCache] = None):
239
        self.fill_ids = self.origin_input_ids + self.output_ids
240
241
242
243
        if tree_cache is not None:
            self.prefix_indices, self.last_node = tree_cache.match_prefix(
                rid=self.rid, key=self.adjust_max_prefix_ids()
            )
244
        self.extend_input_len = len(self.fill_ids) - len(self.prefix_indices)
245

246
    def adjust_max_prefix_ids(self):
247
248
        self.fill_ids = self.origin_input_ids + self.output_ids
        input_len = len(self.fill_ids)
249
250
251
252

        # FIXME: To work around some bugs in logprob computation, we need to ensure each
        # request has at least one token. Later, we can relax this requirement and use `input_len`.
        max_prefix_len = input_len - 1
Liangsheng Yin's avatar
Liangsheng Yin committed
253
254
255
256
257

        if self.sampling_params.max_new_tokens > 0:
            # Need at least one token to compute logits
            max_prefix_len = min(max_prefix_len, input_len - 1)

258
        if self.return_logprob:
Liangsheng Yin's avatar
Liangsheng Yin committed
259
260
261
            if self.normalized_prompt_logprob is None:
                # Need at least two tokens to compute normalized logprob
                max_prefix_len = min(max_prefix_len, input_len - 2)
262
            max_prefix_len = min(max_prefix_len, self.logprob_start_len)
263

264
        max_prefix_len = max(max_prefix_len, 0)
265
        return self.fill_ids[:max_prefix_len]
266

Liangsheng Yin's avatar
Liangsheng Yin committed
267
    # Based on https://github.com/vllm-project/vllm/blob/7a64d24aad69e4d2548aa0bf528d9fe63428ab01/vllm/transformers_utils/detokenizer.py#L194-L313
268
    def init_incremental_detokenize(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
269
270
271
272
273
274
275
276
277
        first_iter = self.surr_offset is None or self.read_offset is None

        if first_iter:
            self.read_offset = len(self.origin_input_ids_unpadded)
            self.surr_offset = max(
                self.read_offset - INIT_INCREMENTAL_DETOKENIZATION_OFFSET, 0
            )

        all_ids = self.origin_input_ids_unpadded + self.output_ids
278
        return all_ids[self.surr_offset :], self.read_offset - self.surr_offset
Liangsheng Yin's avatar
Liangsheng Yin committed
279

280
    def get_next_inc_detokenization(self):
281
282
        if self.tokenizer is None:
            return False, ""
283
284
        read_ids, read_offset = self.init_incremental_detokenize()
        surr_ids = read_ids[:read_offset]
Liangsheng Yin's avatar
Liangsheng Yin committed
285
286
287
288
289

        surr_text = self.tokenizer.decode(
            surr_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
Liangsheng Yin's avatar
Liangsheng Yin committed
290
        )
Liangsheng Yin's avatar
Liangsheng Yin committed
291
292
293
294
295
296
297
        new_text = self.tokenizer.decode(
            read_ids,
            skip_special_tokens=self.sampling_params.skip_special_tokens,
            spaces_between_special_tokens=self.sampling_params.spaces_between_special_tokens,
        )

        if len(new_text) > len(surr_text) and not new_text.endswith("�"):
298
            return True, new_text[len(surr_text) :]
Liangsheng Yin's avatar
Liangsheng Yin committed
299
300

        return False, ""
Lianmin Zheng's avatar
Lianmin Zheng committed
301

302
    def check_finished(self):
303
        if self.finished():
304
305
            return

Liangsheng Yin's avatar
Liangsheng Yin committed
306
        if len(self.output_ids) >= self.sampling_params.max_new_tokens:
307
308
309
            self.finished_reason = FINISH_LENGTH(
                length=self.sampling_params.max_new_tokens
            )
310
311
            return

312
        last_token_id = self.output_ids[-1]
313
314
315
316
317
318

        matched_eos = last_token_id in self.sampling_params.stop_token_ids

        if self.tokenizer is not None:
            matched_eos |= last_token_id == self.tokenizer.eos_token_id

319
        if matched_eos and not self.sampling_params.ignore_eos:
320
321
322
            self.finished_reason = FINISH_MATCHED_TOKEN(matched=last_token_id)
            return

323
324
325
326
327
328
        if len(self.sampling_params.stop_strs) > 0:
            tail_str = self.tokenizer.decode(
                self.output_ids[-(self.sampling_params.stop_str_max_len + 1) :]
            )

            for stop_str in self.sampling_params.stop_strs:
Liangsheng Yin's avatar
Liangsheng Yin committed
329
                if stop_str in tail_str or stop_str in self.decoded_text:
330
                    self.finished_reason = FINISH_MATCHED_STR(matched=stop_str)
331
332
                    return

Liangsheng Yin's avatar
Liangsheng Yin committed
333
    def jump_forward_and_retokenize(self, jump_forward_str, next_state):
Liangsheng Yin's avatar
Liangsheng Yin committed
334
335
336
337
338
339
        if self.origin_input_text is None:
            # Recovering text can only use unpadded ids
            self.origin_input_text = self.tokenizer.decode(
                self.origin_input_ids_unpadded
            )

Liangsheng Yin's avatar
Liangsheng Yin committed
340
        all_text = self.origin_input_text + self.decoded_text + jump_forward_str
Liangsheng Yin's avatar
Liangsheng Yin committed
341
        all_ids = self.tokenizer.encode(all_text)
342
        if not all_ids:
havetc's avatar
havetc committed
343
            logger.warning("Encoded all_text resulted in empty all_ids")
344
345
            return False

Liangsheng Yin's avatar
Liangsheng Yin committed
346
        prompt_tokens = len(self.origin_input_ids_unpadded)
347
        if prompt_tokens > len(all_ids):
havetc's avatar
havetc committed
348
            logger.warning("prompt_tokens is larger than encoded all_ids")
349
            return False
Liangsheng Yin's avatar
Liangsheng Yin committed
350
351
352

        if all_ids[prompt_tokens - 1] != self.origin_input_ids_unpadded[-1]:
            # TODO(lsyin): fix token fusion
353
            logger.warning(
Liangsheng Yin's avatar
Liangsheng Yin committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
                "Token fusion between input and output, try to avoid this by removing the space at the end of the input."
            )
            return False

        old_output_ids = self.output_ids
        self.output_ids = all_ids[prompt_tokens:]
        self.decoded_text = self.decoded_text + jump_forward_str
        self.surr_offset = prompt_tokens
        self.read_offset = len(all_ids)

        # NOTE: A trick to reduce the surrouding tokens decoding overhead
        for i in range(0, INIT_INCREMENTAL_DETOKENIZATION_OFFSET):
            surr_text_ = self.tokenizer.decode(
                all_ids[self.read_offset - i : self.read_offset]
            )
            if not surr_text_.endswith("�"):
                self.surr_offset = self.read_offset - i
                break
Liangsheng Yin's avatar
Liangsheng Yin committed
372
373
374
375
376
377

        self.regex_fsm_state = next_state

        if self.return_logprob:
            # For fast-forward part's logprobs
            k = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
378
379
            for i, old_id in enumerate(old_output_ids):
                if old_id == self.output_ids[i]:
Liangsheng Yin's avatar
Liangsheng Yin committed
380
381
382
                    k = k + 1
                else:
                    break
383
384
            self.output_token_logprobs = self.output_token_logprobs[:k]
            self.output_top_logprobs = self.output_top_logprobs[:k]
Liangsheng Yin's avatar
Liangsheng Yin committed
385
            self.logprob_start_len = prompt_tokens + k
Liangsheng Yin's avatar
Liangsheng Yin committed
386
            self.last_update_decode_tokens = len(self.output_ids) - k
387

Liangsheng Yin's avatar
Liangsheng Yin committed
388
        return True
Liangsheng Yin's avatar
Liangsheng Yin committed
389

Lianmin Zheng's avatar
Lianmin Zheng committed
390
    def __repr__(self):
Liangsheng Yin's avatar
Liangsheng Yin committed
391
        return f"rid(n={self.rid}, " f"input_ids={self.origin_input_ids}, "
Lianmin Zheng's avatar
Lianmin Zheng committed
392
393


394
@dataclass
395
class ScheduleBatch:
396
397
    """Store all inforamtion of a batch."""

398
    # Request, memory pool, and cache
399
400
    reqs: List[Req]
    req_to_token_pool: ReqToTokenPool
401
    token_to_kv_pool: BaseTokenToKVPool
402
    tree_cache: BasePrefixCache
403

Liangsheng Yin's avatar
Liangsheng Yin committed
404
    forward_mode: ForwardMode = None
405
    sampling_info: SamplingBatchInfo = None
Liangsheng Yin's avatar
Liangsheng Yin committed
406

407
    # Batched arguments to model runner
408
409
410
    input_ids: List[int] = None
    req_pool_indices: List[int] = None
    seq_lens: List[int] = None
411
    out_cache_loc: torch.Tensor = None
412

413
    # For processing logprobs
414
    return_logprob: bool = False
415
416
417
418
419
420
421
    top_logprobs_nums: Optional[List[int]] = None

    # For extend and mixed chunekd prefill
    prefix_lens: List[int] = None
    extend_lens: List[int] = None
    extend_num_tokens: int = None
    running_bs: int = None
422

423
424
425
    # Stream
    has_stream: bool = False

426
427
428
    # Has regex
    has_regex: bool = False

429
430
    @classmethod
    def init_new(cls, reqs, req_to_token_pool, token_to_kv_pool, tree_cache):
431
        return_logprob = any(req.return_logprob for req in reqs)
432
        has_stream = any(req.stream for req in reqs)
433
        has_regex = any(req.regex_fsm for req in reqs)
434
435
436
437
438
439

        return cls(
            reqs=reqs,
            req_to_token_pool=req_to_token_pool,
            token_to_kv_pool=token_to_kv_pool,
            tree_cache=tree_cache,
440
            return_logprob=return_logprob,
441
            has_stream=has_stream,
442
            has_regex=has_regex,
Lianmin Zheng's avatar
Lianmin Zheng committed
443
444
        )

445
    def batch_size(self):
446
        return len(self.reqs)
447

Lianmin Zheng's avatar
Lianmin Zheng committed
448
449
450
    def is_empty(self):
        return len(self.reqs) == 0

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    def alloc_req_slots(self, num_reqs):
        req_pool_indices = self.req_to_token_pool.alloc(num_reqs)
        if req_pool_indices is None:
            raise RuntimeError(
                "Out of memory. "
                "Please set a smaller number for `--max-running-requests`."
            )
        return req_pool_indices

    def alloc_token_slots(self, num_tokens: int):
        out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

        if out_cache_loc is None:
            if self.tree_cache is not None:
                self.tree_cache.evict(num_tokens, self.token_to_kv_pool.free)
                out_cache_loc = self.token_to_kv_pool.alloc(num_tokens)

            if out_cache_loc is None:
                logger.error("Prefill out of memory. Try to lower your batch size.")
                if self.tree_cache is not None:
                    self.tree_cache.pretty_print()
                exit(1)

        return out_cache_loc

476
    def prepare_for_extend(self, vocab_size: int):
Liangsheng Yin's avatar
Liangsheng Yin committed
477
478
        self.forward_mode = ForwardMode.EXTEND

479
        bs = len(self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
480
        reqs = self.reqs
481
        input_ids = [r.fill_ids[len(r.prefix_indices) :] for r in reqs]
482
        extend_num_tokens = sum(len(ids) for ids in input_ids)
Lianmin Zheng's avatar
Lianmin Zheng committed
483
484
        seq_lens = []

485
        # Allocate memory
486
        req_pool_indices = self.alloc_req_slots(bs)
487
        out_cache_loc = self.alloc_token_slots(extend_num_tokens)
488

489
        pt = 0
490
        for i, req in enumerate(reqs):
491
            req.req_pool_idx = req_pool_indices[i]
492
            pre_len, seq_len = len(req.prefix_indices), len(req.fill_ids)
493
            seq_lens.append(seq_len)
494
            assert seq_len - pre_len == req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
495

496
            if pre_len > 0:
497
                self.req_to_token_pool.req_to_token[req.req_pool_idx][
498
499
                    :pre_len
                ] = req.prefix_indices
Lianmin Zheng's avatar
Lianmin Zheng committed
500

501
            self.req_to_token_pool.req_to_token[req.req_pool_idx][pre_len:seq_len] = (
502
                out_cache_loc[pt : pt + req.extend_input_len]
503
            )
504
505
506
507
508
509
510
511
512
513
514

            # Compute the relative logprob_start_len in an extend batch
            if req.logprob_start_len >= pre_len:
                extend_logprob_start_len = min(
                    req.logprob_start_len - pre_len, req.extend_input_len - 1
                )
            else:
                extend_logprob_start_len = req.extend_input_len - 1

            req.extend_logprob_start_len = extend_logprob_start_len
            pt += req.extend_input_len
Lianmin Zheng's avatar
Lianmin Zheng committed
515
516

        # Set fields
517
518
519
520
        with out_cache_loc.device:
            self.input_ids = torch.tensor(sum(input_ids, []), dtype=torch.int32)
            self.req_pool_indices = torch.tensor(req_pool_indices)
            self.seq_lens = torch.tensor(seq_lens)
521

Lianmin Zheng's avatar
Lianmin Zheng committed
522
523
        self.extend_num_tokens = extend_num_tokens
        self.out_cache_loc = out_cache_loc
524
525
526
527
528
        if self.return_logprob:
            self.top_logprobs_nums = [r.top_logprobs_num for r in reqs]
        self.prefix_lens = [len(r.prefix_indices) for r in reqs]
        self.extend_lens = [r.extend_input_len for r in reqs]
        self.extend_logprob_start_lens = [r.extend_logprob_start_len for r in reqs]
Lianmin Zheng's avatar
Lianmin Zheng committed
529

530
        self.sampling_info = SamplingBatchInfo.from_schedule_batch(self, vocab_size)
531

532
    def mix_with_running(self, running_batch: "ScheduleBatch"):
533
        self.forward_mode = ForwardMode.MIXED
534
        running_bs = running_batch.batch_size()
535
536
537
538
539

        for req in running_batch.reqs:
            req.fill_ids = req.origin_input_ids + req.output_ids
            req.extend_input_len = 1

540
        input_ids = torch.cat([self.input_ids, running_batch.input_ids])
541
        out_cache_loc = torch.cat([self.out_cache_loc, running_batch.out_cache_loc])
542
543
        extend_num_tokens = self.extend_num_tokens + running_bs

544
        self.merge_batch(running_batch)
545
546
547
        self.input_ids = input_ids
        self.out_cache_loc = out_cache_loc
        self.extend_num_tokens = extend_num_tokens
548
549

        # NOTE: prefix_indices is what has been cached, but we don't cache each decode step
550
        self.prefix_lens.extend(
551
552
553
554
555
            [
                len(r.origin_input_ids) + len(r.output_ids) - 1
                for r in running_batch.reqs
            ]
        )
556
557
        self.extend_lens.extend([1] * running_bs)
        self.extend_logprob_start_lens.extend([0] * running_bs)
558

559
    def check_decode_mem(self):
560
        bs = len(self.reqs)
Ying Sheng's avatar
Ying Sheng committed
561
        if self.token_to_kv_pool.available_size() >= bs:
562
563
            return True

Mingyi's avatar
Mingyi committed
564
        self.tree_cache.evict(bs, self.token_to_kv_pool.free)
565

566
567
568
569
570
571
572
        if self.token_to_kv_pool.available_size() >= bs:
            return True

        return False

    def retract_decode(self):
        sorted_indices = [i for i in range(len(self.reqs))]
Liangsheng Yin's avatar
Liangsheng Yin committed
573
574

        # TODO(lsyin): improve retraction policy for radix cache
575
        sorted_indices.sort(
Liangsheng Yin's avatar
Liangsheng Yin committed
576
577
578
579
            key=lambda i: (
                len(self.reqs[i].output_ids),
                -len(self.reqs[i].origin_input_ids),
            ),
580
581
582
583
            reverse=True,
        )

        retracted_reqs = []
584
        seq_lens_cpu = self.seq_lens.cpu().numpy()
Liangsheng Yin's avatar
Liangsheng Yin committed
585
586
587
588
589
590
591
592
593
594
595
        while (
            self.token_to_kv_pool.available_size()
            < len(sorted_indices) * global_config.retract_decode_steps
        ):
            if len(sorted_indices) == 1:
                # Corner case: only one request left
                assert (
                    self.token_to_kv_pool.available_size() > 0
                ), "No space left for only one request"
                break

596
597
598
599
            idx = sorted_indices.pop()
            req = self.reqs[idx]
            retracted_reqs.append(req)

600
601
            if isinstance(self.tree_cache, ChunkCache):
                # ChunkCache does not have eviction
602
603
604
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    : seq_lens_cpu[idx]
                ]
605
                self.token_to_kv_pool.free(token_indices)
606
                self.req_to_token_pool.free(req.req_pool_idx)
607
608
609
610
                del self.tree_cache.entries[req.rid]
            else:
                # TODO: apply more fine-grained retraction
                last_uncached_pos = len(req.prefix_indices)
611
612
613
                token_indices = self.req_to_token_pool.req_to_token[req.req_pool_idx][
                    last_uncached_pos : seq_lens_cpu[idx]
                ]
614
                self.token_to_kv_pool.free(token_indices)
615
                self.req_to_token_pool.free(req.req_pool_idx)
616
617
618
619
620
621
622
623
624
625
626

                # release the last node
                self.tree_cache.dec_lock_ref(req.last_node)

                # NOTE(lsyin): we should use the newly evictable memory instantly.
                residual_size = (
                    len(sorted_indices) * global_config.retract_decode_steps
                    - self.token_to_kv_pool.available_size()
                )
                residual_size = max(0, residual_size)
                self.tree_cache.evict(residual_size, self.token_to_kv_pool.free)
Liangsheng Yin's avatar
Liangsheng Yin committed
627

628
            req.prefix_indices = []
629
            req.last_node = None
630
            req.extend_input_len = 0
Liangsheng Yin's avatar
Liangsheng Yin committed
631
632
633
634

            # For incremental logprobs
            req.last_update_decode_tokens = 0
            req.logprob_start_len = 10**9
Liangsheng Yin's avatar
Liangsheng Yin committed
635

636
637
        self.filter_batch(sorted_indices)

Liangsheng Yin's avatar
Liangsheng Yin committed
638
639
640
641
642
643
644
645
646
647
        # Reqs in batch are filtered
        total_decoded_tokens = sum(len(r.output_ids) for r in self.reqs)
        total_max_new_tokens = sum(r.sampling_params.max_new_tokens for r in self.reqs)

        new_estimate_ratio = (
            total_decoded_tokens + global_config.retract_decode_steps * len(self.reqs)
        ) / total_max_new_tokens
        new_estimate_ratio = min(1.0, new_estimate_ratio)

        return retracted_reqs, new_estimate_ratio
648

649
    def check_for_jump_forward(self, pad_input_ids_func):
Liangsheng Yin's avatar
Liangsheng Yin committed
650
        jump_forward_reqs = []
Liangsheng Yin's avatar
Liangsheng Yin committed
651
652
653
        filter_indices = [i for i in range(len(self.reqs))]

        for i, req in enumerate(self.reqs):
Liangsheng Yin's avatar
Liangsheng Yin committed
654
            if req.jump_forward_map is not None:
Liangsheng Yin's avatar
Liangsheng Yin committed
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
                jump_forward_bytes = req.jump_forward_map.jump_forward_byte(
                    req.regex_fsm_state
                )
                if jump_forward_bytes is not None and len(jump_forward_bytes) > 1:
                    suffix_bytes = []
                    continuation_range = range(0x80, 0xC0)
                    cur_state = req.regex_fsm_state
                    while (
                        len(jump_forward_bytes)
                        and jump_forward_bytes[0][0] in continuation_range
                    ):
                        # continuation bytes
                        byte_edge = jump_forward_bytes.pop(0)
                        suffix_bytes.append(byte_edge[0])
                        cur_state = byte_edge[1]

                    suffix_tokens = [f"<0x{hex(b)[2:].upper()}>" for b in suffix_bytes]
                    suffix_ids = req.tokenizer.convert_tokens_to_ids(suffix_tokens)

                    # Current ids, for cache and revert
                    cur_all_ids = tuple(req.origin_input_ids + req.output_ids)[:-1]
                    cur_output_ids = req.output_ids

                    req.output_ids.extend(suffix_ids)
679
                    decode_res, new_text = req.get_next_inc_detokenization()
Liangsheng Yin's avatar
Liangsheng Yin committed
680
681
                    if not decode_res:
                        req.output_ids = cur_output_ids
Liangsheng Yin's avatar
Liangsheng Yin committed
682
683
                        continue

sglang's avatar
sglang committed
684
685
686
687
                    (
                        jump_forward_str,
                        next_state,
                    ) = req.jump_forward_map.jump_forward_symbol(cur_state)
Liangsheng Yin's avatar
Liangsheng Yin committed
688
689
690
691
692
693
694
695
696

                    # Make the incrementally decoded text part of jump_forward_str
                    # so that the UTF-8 will not corrupt
                    jump_forward_str = new_text + jump_forward_str
                    if not req.jump_forward_and_retokenize(
                        jump_forward_str, next_state
                    ):
                        req.output_ids = cur_output_ids
                        continue
Liangsheng Yin's avatar
Liangsheng Yin committed
697

698
699
700
                    # The decode status has diverged from detokenizer_manager
                    req.vid += 1

Liangsheng Yin's avatar
Liangsheng Yin committed
701
                    # insert the old request into tree_cache
702
                    self.tree_cache.cache_finished_req(req, cur_all_ids)
Liangsheng Yin's avatar
Liangsheng Yin committed
703

Liangsheng Yin's avatar
Liangsheng Yin committed
704
                    # re-applying image padding
Liangsheng Yin's avatar
Liangsheng Yin committed
705
                    if req.image_inputs is not None:
706
                        req.origin_input_ids = pad_input_ids_func(
Liangsheng Yin's avatar
Liangsheng Yin committed
707
                            req.origin_input_ids_unpadded, req.image_inputs
Liangsheng Yin's avatar
Liangsheng Yin committed
708
709
                        )

Liangsheng Yin's avatar
Liangsheng Yin committed
710
                    jump_forward_reqs.append(req)
Liangsheng Yin's avatar
Liangsheng Yin committed
711
712
                    filter_indices.remove(i)

713
        self.filter_batch(filter_indices)
Liangsheng Yin's avatar
Liangsheng Yin committed
714

Liangsheng Yin's avatar
Liangsheng Yin committed
715
        return jump_forward_reqs
Liangsheng Yin's avatar
Liangsheng Yin committed
716

717
    def prepare_for_decode(self, input_ids=None):
Liangsheng Yin's avatar
Liangsheng Yin committed
718
719
        self.forward_mode = ForwardMode.DECODE

Lianmin Zheng's avatar
Lianmin Zheng committed
720
721
        if input_ids is None:
            input_ids = [
722
723
                r.output_ids[-1] if r.output_ids else r.origin_input_ids[-1]
                for r in self.reqs
Lianmin Zheng's avatar
Lianmin Zheng committed
724
            ]
725

726
727
728
        self.input_ids = torch.tensor(
            input_ids, dtype=torch.int32, device=self.seq_lens.device
        )
Lianmin Zheng's avatar
Lianmin Zheng committed
729
730
731
        self.seq_lens.add_(1)

        # Alloc mem
732
        bs = len(self.reqs)
733
        self.out_cache_loc = self.alloc_token_slots(bs)
Lianmin Zheng's avatar
Lianmin Zheng committed
734
735
736
737
738
739

        self.req_to_token_pool.req_to_token[
            self.req_pool_indices, self.seq_lens - 1
        ] = self.out_cache_loc

    def filter_batch(self, unfinished_indices: List[int]):
740
741
742
743
744
745
746
747
748
        if unfinished_indices is None or len(unfinished_indices) == 0:
            # Filter out all requests
            self.reqs = []
            return

        if len(unfinished_indices) == len(self.reqs):
            # No need to filter
            return

Lianmin Zheng's avatar
Lianmin Zheng committed
749
750
751
        self.reqs = [self.reqs[i] for i in unfinished_indices]
        new_indices = torch.tensor(unfinished_indices, dtype=torch.int32, device="cuda")
        self.req_pool_indices = self.req_pool_indices[new_indices]
752
        self.seq_lens = self.seq_lens[new_indices]
753
        self.out_cache_loc = None
754
        self.return_logprob = any(req.return_logprob for req in self.reqs)
755
756
757
758
        if self.return_logprob:
            self.top_logprobs_nums = [
                self.top_logprobs_nums[i] for i in unfinished_indices
            ]
759
760
        else:
            self.top_logprobs_nums = None
761

762
        self.has_stream = any(req.stream for req in self.reqs)
763
        self.has_regex = any(req.regex_fsm for req in self.reqs)
Lianmin Zheng's avatar
Lianmin Zheng committed
764

765
        self.sampling_info.filter_batch(unfinished_indices, new_indices)
Lianmin Zheng's avatar
Lianmin Zheng committed
766

767
    def merge_batch(self, other: "ScheduleBatch"):
768
769
770
        # Penalizer orchestrator must be merged before Batch.reqs is merged. This is because
        # orchestrator.merge() depends on Batch.reqs during preparation of each penalizers, so it
        # needs to be called with pre-merged Batch.reqs.
771
        self.sampling_info.merge_batch(other.sampling_info)
772

Lianmin Zheng's avatar
Lianmin Zheng committed
773
774
775
776
        self.req_pool_indices = torch.concat(
            [self.req_pool_indices, other.req_pool_indices]
        )
        self.seq_lens = torch.concat([self.seq_lens, other.seq_lens])
777
        self.out_cache_loc = None
778
779
780
781
782
783
        if self.return_logprob and other.return_logprob:
            self.top_logprobs_nums.extend(other.top_logprobs_nums)
        elif self.return_logprob:
            self.top_logprobs_nums.extend([0] * len(other.reqs))
        elif other.return_logprob:
            self.top_logprobs_nums = [0] * len(self.reqs) + other.top_logprobs_nums
784
        self.reqs.extend(other.reqs)
785

786
        self.return_logprob = self.return_logprob or other.return_logprob
787
788
        self.has_stream = self.has_stream or other.has_stream
        self.has_regex = self.has_regex or other.has_regex
789
790
791
792
793
794
795
796
797
798
799
800
801

    def get_model_worker_batch(self):
        if self.forward_mode.is_decode():
            extend_seq_lens = extend_prefix_lens = extend_logprob_start_lens = (
                image_inputs
            ) = None
        else:
            extend_seq_lens = self.extend_lens
            extend_prefix_lens = self.prefix_lens
            extend_logprob_start_lens = self.extend_logprob_start_lens
            image_inputs = [r.image_inputs for r in self.reqs]

        lora_paths = [req.lora_path for req in self.reqs]
802
803
804
805
806
        if self.has_regex:
            self.sampling_info.regex_fsms = [req.regex_fsm for req in self.reqs]
            self.sampling_info.regex_fsm_states = [
                req.regex_fsm_state for req in self.reqs
            ]
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829

        return ModelWorkerBatch(
            forward_mode=self.forward_mode,
            input_ids=self.input_ids,
            req_pool_indices=self.req_pool_indices,
            seq_lens=self.seq_lens,
            out_cache_loc=self.out_cache_loc,
            return_logprob=self.return_logprob,
            top_logprobs_nums=self.top_logprobs_nums,
            extend_seq_lens=extend_seq_lens,
            extend_prefix_lens=extend_prefix_lens,
            extend_logprob_start_lens=extend_logprob_start_lens,
            image_inputs=image_inputs,
            lora_paths=lora_paths,
            sampling_info=self.sampling_info,
        )


@dataclass
class ModelWorkerBatch:
    # The forward mode
    forward_mode: ForwardMode
    # The input ids
830
    input_ids: torch.Tensor
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
    # The indices of requests in the req_to_token_pool
    req_pool_indices: torch.Tensor
    # The sequence length
    seq_lens: torch.Tensor
    # The indices of output tokens in the token_to_kv_pool
    out_cache_loc: torch.Tensor

    # For logprob
    return_logprob: bool
    top_logprobs_nums: Optional[List[int]]

    # For extend
    extend_seq_lens: Optional[List[int]]
    extend_prefix_lens: Optional[List[int]]
    extend_logprob_start_lens: Optional[List[int]]

    # For multimodal
    image_inputs: Optional[List[ImageInputs]]

    # For LoRA
    lora_paths: Optional[List[str]]

    # Sampling info
    sampling_info: SamplingBatchInfo