wan_audio_runner.py 32.7 KB
Newer Older
wangshankun's avatar
wangshankun committed
1
import gc
PengGao's avatar
PengGao committed
2
3
import os
from dataclasses import dataclass
4
from typing import Dict, List, Optional, Tuple
PengGao's avatar
PengGao committed
5

wangshankun's avatar
wangshankun committed
6
7
import numpy as np
import torch
8
import torch.distributed as dist
gushiqiao's avatar
gushiqiao committed
9
import torchaudio as ta
helloyongyang's avatar
helloyongyang committed
10
import torchvision.transforms.functional as TF
wangshankun's avatar
wangshankun committed
11
from PIL import Image
gushiqiao's avatar
gushiqiao committed
12
from einops import rearrange
PengGao's avatar
PengGao committed
13
from loguru import logger
gushiqiao's avatar
gushiqiao committed
14
15
from torchvision.transforms import InterpolationMode
from torchvision.transforms.functional import resize
16

LiangLiu's avatar
LiangLiu committed
17
18
from lightx2v.deploy.common.va_reader import VAReader
from lightx2v.deploy.common.va_recorder import VARecorder
19
from lightx2v.models.input_encoders.hf.seko_audio.audio_adapter import AudioAdapter
helloyongyang's avatar
helloyongyang committed
20
from lightx2v.models.input_encoders.hf.seko_audio.audio_encoder import SekoAudioEncoderModel
21
from lightx2v.models.networks.wan.audio_model import WanAudioModel
PengGao's avatar
PengGao committed
22
from lightx2v.models.networks.wan.lora_adapter import WanLoraWrapper
23
from lightx2v.models.runners.wan.wan_runner import WanRunner
24
from lightx2v.models.schedulers.wan.audio.scheduler import EulerScheduler
sandy's avatar
sandy committed
25
from lightx2v.models.video_encoders.hf.wan.vae_2_2 import Wan2_2_VAE
26
from lightx2v.utils.envs import *
27
from lightx2v.utils.profiler import *
PengGao's avatar
PengGao committed
28
from lightx2v.utils.registry_factory import RUNNER_REGISTER
LiangLiu's avatar
LiangLiu committed
29
from lightx2v.utils.utils import find_torch_model_path, load_weights, vae_to_comfyui_image_inplace
30

wangshankun's avatar
wangshankun committed
31

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def get_optimal_patched_size_with_sp(patched_h, patched_w, sp_size):
    assert sp_size > 0 and (sp_size & (sp_size - 1)) == 0, "sp_size must be a power of 2"

    h_ratio, w_ratio = 1, 1
    while sp_size != 1:
        sp_size //= 2
        if patched_h % 2 == 0:
            patched_h //= 2
            h_ratio *= 2
        elif patched_w % 2 == 0:
            patched_w //= 2
            w_ratio *= 2
        else:
            if patched_h > patched_w:
                patched_h //= 2
47
48
                h_ratio *= 2
            else:
49
                patched_w //= 2
50
                w_ratio *= 2
51
    return patched_h * h_ratio, patched_w * w_ratio
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72


def get_crop_bbox(ori_h, ori_w, tgt_h, tgt_w):
    tgt_ar = tgt_h / tgt_w
    ori_ar = ori_h / ori_w
    if abs(ori_ar - tgt_ar) < 0.01:
        return 0, ori_h, 0, ori_w
    if ori_ar > tgt_ar:
        crop_h = int(tgt_ar * ori_w)
        y0 = (ori_h - crop_h) // 2
        y1 = y0 + crop_h
        return y0, y1, 0, ori_w
    else:
        crop_w = int(ori_h / tgt_ar)
        x0 = (ori_w - crop_w) // 2
        x1 = x0 + crop_w
        return 0, ori_h, x0, x1


def isotropic_crop_resize(frames: torch.Tensor, size: tuple):
    """
73
    frames: (C, H, W) or (T, C, H, W) or (N, C, H, W)
74
75
    size: (H, W)
    """
76
77
78
79
80
81
82
    original_shape = frames.shape

    if len(frames.shape) == 3:
        frames = frames.unsqueeze(0)
    elif len(frames.shape) == 4 and frames.shape[0] > 1:
        pass

83
84
85
86
    ori_h, ori_w = frames.shape[2:]
    h, w = size
    y0, y1, x0, x1 = get_crop_bbox(ori_h, ori_w, h, w)
    cropped_frames = frames[:, :, y0:y1, x0:x1]
87
    resized_frames = resize(cropped_frames, [h, w], InterpolationMode.BICUBIC, antialias=True)
88
89
90
91

    if len(original_shape) == 3:
        resized_frames = resized_frames.squeeze(0)

92
93
94
    return resized_frames


95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
def fixed_shape_resize(img, target_height, target_width):
    orig_height, orig_width = img.shape[-2:]

    target_ratio = target_height / target_width
    orig_ratio = orig_height / orig_width

    if orig_ratio > target_ratio:
        crop_width = orig_width
        crop_height = int(crop_width * target_ratio)
    else:
        crop_height = orig_height
        crop_width = int(crop_height / target_ratio)

    cropped_img = TF.center_crop(img, [crop_height, crop_width])

    resized_img = TF.resize(cropped_img, [target_height, target_width], antialias=True)

    h, w = resized_img.shape[-2:]
    return resized_img, h, w


116
def resize_image(img, resize_mode="adaptive", bucket_shape=None, fixed_area=None, fixed_shape=None):
117
    assert resize_mode in ["adaptive", "keep_ratio_fixed_area", "fixed_min_area", "fixed_max_area", "fixed_shape", "fixed_min_side"]
118
119
120
121
122

    if resize_mode == "fixed_shape":
        assert fixed_shape is not None
        logger.info(f"[wan_audio] fixed_shape_resize fixed_height: {fixed_shape[0]}, fixed_width: {fixed_shape[1]}")
        return fixed_shape_resize(img, fixed_shape[0], fixed_shape[1])
123

124
125
126
127
128
129
130
131
132
133
134
    if bucket_shape is not None:
        """
        "adaptive_shape": {
            "0.667": [[480, 832], [544, 960], [720, 1280]],
            "1.500": [[832, 480], [960, 544], [1280, 720]],
            "1.000": [[480, 480], [576, 576], [704, 704], [960, 960]]
        }
        """
        bucket_config = {}
        for ratio, resolutions in bucket_shape.items():
            bucket_config[float(ratio)] = np.array(resolutions, dtype=np.int64)
135
        # logger.info(f"[wan_audio] use custom bucket_shape: {bucket_config}")
136
137
138
139
140
141
    else:
        bucket_config = {
            0.667: np.array([[480, 832], [544, 960], [720, 1280]], dtype=np.int64),
            1.500: np.array([[832, 480], [960, 544], [1280, 720]], dtype=np.int64),
            1.000: np.array([[480, 480], [576, 576], [704, 704], [960, 960]], dtype=np.int64),
        }
142
        # logger.info(f"[wan_audio] use default bucket_shape: {bucket_config}")
143

144
145
146
    ori_height = img.shape[-2]
    ori_weight = img.shape[-1]
    ori_ratio = ori_height / ori_weight
147
148
149
150
151
152
153
154
155
156
157

    if resize_mode == "adaptive":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
        if ori_ratio < 1.0:
            target_h, target_w = 480, 832
        elif ori_ratio == 1.0:
            target_h, target_w = 480, 480
        else:
            target_h, target_w = 832, 480
158
        for resolution in bucket_config[closet_ratio]:
159
160
161
162
163
164
165
166
167
168
169
            if ori_height * ori_weight >= resolution[0] * resolution[1]:
                target_h, target_w = resolution
    elif resize_mode == "keep_ratio_fixed_area":
        assert fixed_area in ["480p", "720p"], f"fixed_area must be in ['480p', '720p'], but got {fixed_area}, please set fixed_area in config."
        fixed_area = 480 * 832 if fixed_area == "480p" else 720 * 1280
        target_h = round(np.sqrt(fixed_area * ori_ratio))
        target_w = round(np.sqrt(fixed_area / ori_ratio))
    elif resize_mode == "fixed_min_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
170
        target_h, target_w = bucket_config[closet_ratio][0]
171
172
173
174
175
176
177
178
179
180
    elif resize_mode == "fixed_min_side":
        assert fixed_area in ["480p", "720p"], f"fixed_min_side mode requires fixed_area to be '480p' or '720p', got {fixed_area}"

        min_side = 720 if fixed_area == "720p" else 480
        if ori_ratio < 1.0:
            target_h = min_side
            target_w = round(target_h / ori_ratio)
        else:
            target_w = min_side
            target_h = round(target_w * ori_ratio)
181
182
183
184
    elif resize_mode == "fixed_max_area":
        aspect_ratios = np.array(np.array(list(bucket_config.keys())))
        closet_aspect_idx = np.argmin(np.abs(aspect_ratios - ori_ratio))
        closet_ratio = aspect_ratios[closet_aspect_idx]
185
        target_h, target_w = bucket_config[closet_ratio][-1]
186

187
188
189
190
    cropped_img = isotropic_crop_resize(img, (target_h, target_w))
    return cropped_img, target_h, target_w


191
192
193
194
195
196
197
198
199
@dataclass
class AudioSegment:
    """Data class for audio segment information"""

    audio_array: np.ndarray
    start_frame: int
    end_frame: int


200
class FramePreprocessorTorchVersion:
201
202
203
204
205
206
207
    """Handles frame preprocessing including noise and masking"""

    def __init__(self, noise_mean: float = -3.0, noise_std: float = 0.5, mask_rate: float = 0.1):
        self.noise_mean = noise_mean
        self.noise_std = noise_std
        self.mask_rate = mask_rate

208
    def add_noise(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
209
210
        """Add noise to frames"""

211
        device = frames.device
212
213
        shape = frames.shape
        bs = 1 if len(shape) == 4 else shape[0]
214
215
216
217
218
219
220
221
222
223

        # Generate sigma values on the same device
        sigma = torch.normal(mean=self.noise_mean, std=self.noise_std, size=(bs,), device=device, generator=generator)
        sigma = torch.exp(sigma)

        for _ in range(1, len(shape)):
            sigma = sigma.unsqueeze(-1)

        # Generate noise on the same device
        noise = torch.randn(*shape, device=device, generator=generator) * sigma
224
225
        return frames + noise

226
    def add_mask(self, frames: torch.Tensor, generator: Optional[torch.Generator] = None) -> torch.Tensor:
227
228
        """Add mask to frames"""

229
        device = frames.device
230
        h, w = frames.shape[-2:]
231
232
233

        # Generate mask on the same device
        mask = torch.rand(h, w, device=device, generator=generator) > self.mask_rate
234
235
236
237
        return frames * mask

    def process_prev_frames(self, frames: torch.Tensor) -> torch.Tensor:
        """Process previous frames with noise and masking"""
238
239
240
        frames = self.add_noise(frames, torch.Generator(device=frames.device))
        frames = self.add_mask(frames, torch.Generator(device=frames.device))
        return frames
241
242
243
244
245
246
247
248


class AudioProcessor:
    """Handles audio loading and segmentation"""

    def __init__(self, audio_sr: int = 16000, target_fps: int = 16):
        self.audio_sr = audio_sr
        self.target_fps = target_fps
sandy's avatar
sandy committed
249
        self.audio_frame_rate = audio_sr // target_fps
250
251
252
253
254
255
256
257
258

    def load_audio(self, audio_path: str) -> np.ndarray:
        """Load and resample audio"""
        audio_array, ori_sr = ta.load(audio_path)
        audio_array = ta.functional.resample(audio_array.mean(0), orig_freq=ori_sr, new_freq=self.audio_sr)
        return audio_array.numpy()

    def get_audio_range(self, start_frame: int, end_frame: int) -> Tuple[int, int]:
        """Calculate audio range for given frame range"""
sandy's avatar
sandy committed
259
        return round(start_frame * self.audio_frame_rate), round(end_frame * self.audio_frame_rate)
260
261
262
263

    def segment_audio(self, audio_array: np.ndarray, expected_frames: int, max_num_frames: int, prev_frame_length: int = 5) -> List[AudioSegment]:
        """Segment audio based on frame requirements"""
        segments = []
sandy's avatar
sandy committed
264
        segments_idx = self.init_segments_idx(expected_frames, max_num_frames, prev_frame_length)
265

sandy's avatar
sandy committed
266
267
        audio_start, audio_end = self.get_audio_range(0, expected_frames)
        audio_array_ori = audio_array[audio_start:audio_end]
268

sandy's avatar
sandy committed
269
270
271
        for idx, (start_idx, end_idx) in enumerate(segments_idx):
            audio_start, audio_end = self.get_audio_range(start_idx, end_idx)
            audio_array = audio_array_ori[audio_start:audio_end]
272

sandy's avatar
sandy committed
273
274
            if idx < len(segments_idx) - 1:
                end_idx = segments_idx[idx + 1][0]
275
            else:
sandy's avatar
sandy committed
276
277
278
279
                if audio_array.shape[0] < audio_end - audio_start:
                    padding_len = audio_end - audio_start - audio_array.shape[0]
                    audio_array = np.concatenate((audio_array, np.zeros(padding_len)), axis=0)
                    end_idx = end_idx - padding_len // self.audio_frame_rate
280

sandy's avatar
sandy committed
281
282
            segments.append(AudioSegment(audio_array, start_idx, end_idx))
        del audio_array, audio_array_ori
283
284
        return segments

sandy's avatar
sandy committed
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def init_segments_idx(self, total_frame: int, clip_frame: int = 81, overlap_frame: int = 5) -> list[tuple[int, int, int]]:
        """Initialize segment indices with overlap"""
        start_end_list = []
        min_frame = clip_frame
        for start in range(0, total_frame, clip_frame - overlap_frame):
            is_last = start + clip_frame >= total_frame
            end = min(start + clip_frame, total_frame)
            if end - start < min_frame:
                end = start + min_frame
            if ((end - start) - 1) % 4 != 0:
                end = start + (((end - start) - 1) // 4) * 4 + 1
            start_end_list.append((start, end))
            if is_last:
                break
        return start_end_list

301

Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
302
@RUNNER_REGISTER("seko_talk")
helloyongyang's avatar
helloyongyang committed
303
304
305
class WanAudioRunner(WanRunner):  # type:ignore
    def __init__(self, config):
        super().__init__(config)
306
        self.prev_frame_length = self.config.get("prev_frame_length", 5)
307
        self.frame_preprocessor = FramePreprocessorTorchVersion()
helloyongyang's avatar
helloyongyang committed
308
309
310

    def init_scheduler(self):
        """Initialize consistency model scheduler"""
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
311
        self.scheduler = EulerScheduler(self.config)
helloyongyang's avatar
helloyongyang committed
312
313
314
315
316
317

    def read_audio_input(self):
        """Read audio input"""
        audio_sr = self.config.get("audio_sr", 16000)
        target_fps = self.config.get("target_fps", 16)
        self._audio_processor = AudioProcessor(audio_sr, target_fps)
LiangLiu's avatar
LiangLiu committed
318
319
        if not isinstance(self.config["audio_path"], str):
            return [], 0
helloyongyang's avatar
helloyongyang committed
320
321
322
323
324
325
326
327
        audio_array = self._audio_processor.load_audio(self.config["audio_path"])

        video_duration = self.config.get("video_duration", 5)

        audio_len = int(audio_array.shape[0] / audio_sr * target_fps)
        expected_frames = min(max(1, int(video_duration * target_fps)), audio_len)

        # Segment audio
328
        audio_segments = self._audio_processor.segment_audio(audio_array, expected_frames, self.config.get("target_video_length", 81), self.prev_frame_length)
helloyongyang's avatar
helloyongyang committed
329
330
331
332

        return audio_segments, expected_frames

    def read_image_input(self, img_path):
LiangLiu's avatar
LiangLiu committed
333
334
335
336
        if isinstance(img_path, Image.Image):
            ref_img = img_path
        else:
            ref_img = Image.open(img_path).convert("RGB")
helloyongyang's avatar
helloyongyang committed
337
338
        ref_img = TF.to_tensor(ref_img).sub_(0.5).div_(0.5).unsqueeze(0).cuda()

339
340
341
342
343
344
345
        ref_img, h, w = resize_image(
            ref_img,
            resize_mode=self.config.get("resize_mode", "adaptive"),
            bucket_shape=self.config.get("bucket_shape", None),
            fixed_area=self.config.get("fixed_area", None),
            fixed_shape=self.config.get("fixed_shape", None),
        )
346
        logger.info(f"[wan_audio] resize_image target_h: {h}, target_w: {w}")
helloyongyang's avatar
helloyongyang committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
        patched_h = h // self.config.vae_stride[1] // self.config.patch_size[1]
        patched_w = w // self.config.vae_stride[2] // self.config.patch_size[2]

        patched_h, patched_w = get_optimal_patched_size_with_sp(patched_h, patched_w, 1)

        self.config.lat_h = patched_h * self.config.patch_size[1]
        self.config.lat_w = patched_w * self.config.patch_size[2]

        self.config.tgt_h = self.config.lat_h * self.config.vae_stride[1]
        self.config.tgt_w = self.config.lat_w * self.config.vae_stride[2]

        logger.info(f"[wan_audio] tgt_h: {self.config.tgt_h}, tgt_w: {self.config.tgt_w}, lat_h: {self.config.lat_h}, lat_w: {self.config.lat_w}")

        ref_img = torch.nn.functional.interpolate(ref_img, size=(self.config.tgt_h, self.config.tgt_w), mode="bicubic")
        return ref_img

    def run_image_encoder(self, first_frame, last_frame=None):
364
365
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.image_encoder = self.load_image_encoder()
helloyongyang's avatar
helloyongyang committed
366
        clip_encoder_out = self.image_encoder.visual([first_frame]).squeeze(0).to(GET_DTYPE()) if self.config.get("use_image_encoder", True) else None
367
368
369
370
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.image_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
371
372
373
        return clip_encoder_out

    def run_vae_encoder(self, img):
374
375
376
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

helloyongyang's avatar
helloyongyang committed
377
        img = rearrange(img, "1 C H W -> 1 C 1 H W")
378
        vae_encoder_out = self.vae_encoder.encode(img.to(GET_DTYPE()))
sandy's avatar
sandy committed
379

380
381
382
383
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()
helloyongyang's avatar
helloyongyang committed
384
385
        return vae_encoder_out

386
    @ProfilingContext4DebugL2("Run Encoders")
helloyongyang's avatar
helloyongyang committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
    def _run_input_encoder_local_r2v_audio(self):
        prompt = self.config["prompt_enhanced"] if self.config["use_prompt_enhancer"] else self.config["prompt"]
        img = self.read_image_input(self.config["image_path"])
        clip_encoder_out = self.run_image_encoder(img) if self.config.get("use_image_encoder", True) else None
        vae_encode_out = self.run_vae_encoder(img)
        audio_segments, expected_frames = self.read_audio_input()
        text_encoder_output = self.run_text_encoder(prompt, None)
        torch.cuda.empty_cache()
        gc.collect()
        return {
            "text_encoder_output": text_encoder_output,
            "image_encoder_output": {
                "clip_encoder_out": clip_encoder_out,
                "vae_encoder_out": vae_encode_out,
            },
            "audio_segments": audio_segments,
            "expected_frames": expected_frames,
        }
405
406
407

    def prepare_prev_latents(self, prev_video: Optional[torch.Tensor], prev_frame_length: int) -> Optional[Dict[str, torch.Tensor]]:
        """Prepare previous latents for conditioning"""
wangshankun's avatar
wangshankun committed
408
        device = torch.device("cuda")
409
        dtype = GET_DTYPE()
410
411
412
413

        tgt_h, tgt_w = self.config.tgt_h, self.config.tgt_w
        prev_frames = torch.zeros((1, 3, self.config.target_video_length, tgt_h, tgt_w), device=device)

414
415
416
        if prev_video is not None:
            # Extract and process last frames
            last_frames = prev_video[:, :, -prev_frame_length:].clone().to(device)
sandy's avatar
sandy committed
417
418
            if self.config.model_cls != "wan2.2_audio":
                last_frames = self.frame_preprocessor.process_prev_frames(last_frames)
419
            prev_frames[:, :, :prev_frame_length] = last_frames
sandy's avatar
sandy committed
420
421
422
            prev_len = (prev_frame_length - 1) // 4 + 1
        else:
            prev_len = 0
423

424
425
426
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            self.vae_encoder = self.load_vae_encoder()

427
        _, nframe, height, width = self.model.scheduler.latents.shape
428
        with ProfilingContext4DebugL1("vae_encoder in init run segment"):
429
430
431
432
433
434
            if self.config.model_cls == "wan2.2_audio":
                if prev_video is not None:
                    prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
                else:
                    prev_latents = None
                prev_mask = self.model.scheduler.mask
435
            else:
436
                prev_latents = self.vae_encoder.encode(prev_frames.to(dtype))
437

438
439
            frames_n = (nframe - 1) * 4 + 1
            prev_mask = torch.ones((1, frames_n, height, width), device=device, dtype=dtype)
440
441
            prev_frame_len = max((prev_len - 1) * 4 + 1, 0)
            prev_mask[:, prev_frame_len:] = 0
442
            prev_mask = self._wan_mask_rearrange(prev_mask)
helloyongyang's avatar
fix ci  
helloyongyang committed
443

sandy's avatar
sandy committed
444
445
446
447
        if prev_latents is not None:
            if prev_latents.shape[-2:] != (height, width):
                logger.warning(f"Size mismatch: prev_latents {prev_latents.shape} vs scheduler latents (H={height}, W={width}). Config tgt_h={self.config.tgt_h}, tgt_w={self.config.tgt_w}")
                prev_latents = torch.nn.functional.interpolate(prev_latents, size=(height, width), mode="bilinear", align_corners=False)
448

449
450
451
452
453
        if self.config.get("lazy_load", False) or self.config.get("unload_modules", False):
            del self.vae_encoder
            torch.cuda.empty_cache()
            gc.collect()

sandy's avatar
sandy committed
454
        return {"prev_latents": prev_latents, "prev_mask": prev_mask, "prev_len": prev_len}
455
456
457
458
459
460
461
462
463
464
465

    def _wan_mask_rearrange(self, mask: torch.Tensor) -> torch.Tensor:
        """Rearrange mask for WAN model"""
        if mask.ndim == 3:
            mask = mask[None]
        assert mask.ndim == 4
        _, t, h, w = mask.shape
        assert t == ((t - 1) // 4 * 4 + 1)
        mask_first_frame = torch.repeat_interleave(mask[:, 0:1], repeats=4, dim=1)
        mask = torch.concat([mask_first_frame, mask[:, 1:]], dim=1)
        mask = mask.view(mask.shape[1] // 4, 4, h, w)
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
466
        return mask.transpose(0, 1).contiguous()
467

helloyongyang's avatar
helloyongyang committed
468
469
    def get_video_segment_num(self):
        self.video_segment_num = len(self.inputs["audio_segments"])
wangshankun's avatar
wangshankun committed
470

helloyongyang's avatar
helloyongyang committed
471
472
    def init_run(self):
        super().init_run()
Yang Yong(雍洋)'s avatar
Yang Yong(雍洋) committed
473
        self.scheduler.set_audio_adapter(self.audio_adapter)
helloyongyang's avatar
helloyongyang committed
474
        self.prev_video = None
LiangLiu's avatar
LiangLiu committed
475
476
477
478
479
        if self.config.get("return_video", False):
            self.gen_video_final = torch.zeros((self.inputs["expected_frames"], self.config.tgt_h, self.config.tgt_w, 3), dtype=torch.float32, device="cpu")
        else:
            self.gen_video_final = None
        self.cut_audio_final = None
wangshankun's avatar
wangshankun committed
480

481
    @ProfilingContext4DebugL1("Init run segment")
LiangLiu's avatar
LiangLiu committed
482
    def init_run_segment(self, segment_idx, audio_array=None):
helloyongyang's avatar
helloyongyang committed
483
        self.segment_idx = segment_idx
LiangLiu's avatar
LiangLiu committed
484
        if audio_array is not None:
LiangLiu's avatar
LiangLiu committed
485
486
            end_idx = audio_array.shape[0] // self._audio_processor.audio_frame_rate - self.prev_frame_length
            self.segment = AudioSegment(audio_array, 0, end_idx)
LiangLiu's avatar
LiangLiu committed
487
488
        else:
            self.segment = self.inputs["audio_segments"][segment_idx]
wangshankun's avatar
wangshankun committed
489

helloyongyang's avatar
helloyongyang committed
490
491
        self.config.seed = self.config.seed + segment_idx
        torch.manual_seed(self.config.seed)
492
        # logger.info(f"Processing segment {segment_idx + 1}/{self.video_segment_num}, seed: {self.config.seed}")
wangshankun's avatar
wangshankun committed
493

494
495
496
497
        if (self.config.get("lazy_load", False) or self.config.get("unload_modules", False)) and not hasattr(self, "audio_encoder"):
            self.audio_encoder = self.load_audio_encoder()

        audio_features = self.audio_encoder.infer(self.segment.audio_array)
helloyongyang's avatar
helloyongyang committed
498
        audio_features = self.audio_adapter.forward_audio_proj(audio_features, self.model.scheduler.latents.shape[1])
PengGao's avatar
PengGao committed
499

helloyongyang's avatar
helloyongyang committed
500
        self.inputs["audio_encoder_output"] = audio_features
501
        self.inputs["previmg_encoder_output"] = self.prepare_prev_latents(self.prev_video, prev_frame_length=self.prev_frame_length)
wangshankun's avatar
wangshankun committed
502

helloyongyang's avatar
helloyongyang committed
503
504
        # Reset scheduler for non-first segments
        if segment_idx > 0:
sandy's avatar
sandy committed
505
            self.model.scheduler.reset(self.inputs["previmg_encoder_output"])
wangshankun's avatar
wangshankun committed
506

507
    @ProfilingContext4DebugL1("End run segment")
helloyongyang's avatar
helloyongyang committed
508
509
    def end_run_segment(self):
        self.gen_video = torch.clamp(self.gen_video, -1, 1).to(torch.float)
sandy's avatar
sandy committed
510
        useful_length = self.segment.end_frame - self.segment.start_frame
LiangLiu's avatar
LiangLiu committed
511
512
        video_seg = self.gen_video[:, :, :useful_length].cpu()
        audio_seg = self.segment.audio_array[: useful_length * self._audio_processor.audio_frame_rate]
helloyongyang's avatar
helloyongyang committed
513

LiangLiu's avatar
LiangLiu committed
514
515
516
517
518
519
520
521
522
523
524
        video_seg = vae_to_comfyui_image_inplace(video_seg)

        # [Warning] Need check whether video segment interpolation works...
        if "video_frame_interpolation" in self.config and self.vfi_model is not None:
            target_fps = self.config["video_frame_interpolation"]["target_fps"]
            logger.info(f"Interpolating frames from {self.config.get('fps', 16)} to {target_fps}")
            video_seg = self.vfi_model.interpolate_frames(
                video_seg,
                source_fps=self.config.get("fps", 16),
                target_fps=target_fps,
            )
LiangLiu's avatar
LiangLiu committed
525

LiangLiu's avatar
LiangLiu committed
526
527
528
529
530
        if self.va_recorder:
            self.va_recorder.pub_livestream(video_seg, audio_seg)
        elif self.config.get("return_video", False):
            self.gen_video_final[self.segment.start_frame : self.segment.end_frame].copy_(video_seg)
            self.cut_audio_final = np.concatenate([self.cut_audio_final, audio_seg], axis=0).astype(np.float32) if self.cut_audio_final is not None else audio_seg
LiangLiu's avatar
LiangLiu committed
531

helloyongyang's avatar
helloyongyang committed
532
533
534
        # Update prev_video for next iteration
        self.prev_video = self.gen_video

LiangLiu's avatar
LiangLiu committed
535
        del video_seg, audio_seg
helloyongyang's avatar
helloyongyang committed
536
537
        torch.cuda.empty_cache()

LiangLiu's avatar
LiangLiu committed
538
539
540
541
542
543
544
545
546
547
548
549
    def get_rank_and_world_size(self):
        rank = 0
        world_size = 1
        if dist.is_initialized():
            rank = dist.get_rank()
            world_size = dist.get_world_size()
        return rank, world_size

    def init_va_recorder(self):
        output_video_path = self.config.get("save_video_path", None)
        self.va_recorder = None
        if isinstance(output_video_path, dict):
LiangLiu's avatar
LiangLiu committed
550
551
552
553
554
555
556
557
558
559
560
561
562
            output_video_path = output_video_path["data"]
        logger.info(f"init va_recorder with output_video_path: {output_video_path}")
        rank, world_size = self.get_rank_and_world_size()
        if output_video_path and rank == world_size - 1:
            record_fps = self.config.get("target_fps", 16)
            audio_sr = self.config.get("audio_sr", 16000)
            if "video_frame_interpolation" in self.config and self.vfi_model is not None:
                record_fps = self.config["video_frame_interpolation"]["target_fps"]
            self.va_recorder = VARecorder(
                livestream_url=output_video_path,
                fps=record_fps,
                sample_rate=audio_sr,
            )
LiangLiu's avatar
LiangLiu committed
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

    def init_va_reader(self):
        audio_path = self.config.get("audio_path", None)
        self.va_reader = None
        if isinstance(audio_path, dict):
            assert audio_path["type"] == "stream", f"unexcept audio_path: {audio_path}"
            rank, world_size = self.get_rank_and_world_size()
            target_fps = self.config.get("target_fps", 16)
            max_num_frames = self.config.get("target_video_length", 81)
            audio_sr = self.config.get("audio_sr", 16000)
            prev_frames = self.config.get("prev_frame_length", 5)
            self.va_reader = VAReader(
                rank=rank,
                world_size=world_size,
                stream_url=audio_path["data"],
                sample_rate=audio_sr,
                segment_duration=max_num_frames / target_fps,
                prev_duration=prev_frames / target_fps,
                target_rank=1,
            )

    def run_main(self, total_steps=None):
        try:
            self.init_va_recorder()
            self.init_va_reader()
            logger.info(f"init va_recorder: {self.va_recorder} and va_reader: {self.va_reader}")

            if self.va_reader is None:
                return super().run_main(total_steps)

            rank, world_size = self.get_rank_and_world_size()
LiangLiu's avatar
LiangLiu committed
594
595
            if rank == world_size - 1:
                assert self.va_recorder is not None, "va_recorder is required for stream audio input for rank 2"
LiangLiu's avatar
LiangLiu committed
596
597
598
            self.va_reader.start()

            self.init_run()
LiangLiu's avatar
LiangLiu committed
599
600
            if self.config.get("compile", False):
                self.model.select_graph_for_compile()
LiangLiu's avatar
LiangLiu committed
601
602
603
604
605
606
607
608
            self.video_segment_num = "unlimited"

            fetch_timeout = self.va_reader.segment_duration + 1
            segment_idx = 0
            fail_count = 0
            max_fail_count = 10

            while True:
609
                with ProfilingContext4DebugL1(f"stream segment get audio segment {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
610
611
612
613
614
615
616
617
618
                    self.check_stop()
                    audio_array = self.va_reader.get_audio_segment(timeout=fetch_timeout)
                    if audio_array is None:
                        fail_count += 1
                        logger.warning(f"Failed to get audio chunk {fail_count} times")
                        if fail_count > max_fail_count:
                            raise Exception(f"Failed to get audio chunk {fail_count} times, stop reader")
                        continue

619
                with ProfilingContext4DebugL1(f"stream segment end2end {segment_idx}"):
LiangLiu's avatar
LiangLiu committed
620
621
                    fail_count = 0
                    self.init_run_segment(segment_idx, audio_array)
helloyongyang's avatar
helloyongyang committed
622
                    latents = self.run_segment(total_steps=None)
LiangLiu's avatar
LiangLiu committed
623
624
625
626
627
                    self.gen_video = self.run_vae_decoder(latents)
                    self.end_run_segment()
                    segment_idx += 1

        finally:
LiangLiu's avatar
LiangLiu committed
628
            if hasattr(self.model, "inputs"):
LiangLiu's avatar
LiangLiu committed
629
630
631
632
633
634
635
636
                self.end_run()
            if self.va_reader:
                self.va_reader.stop()
                self.va_reader = None
            if self.va_recorder:
                self.va_recorder.stop(wait=False)
                self.va_recorder = None

637
    @ProfilingContext4DebugL1("Process after vae decoder")
LiangLiu's avatar
LiangLiu committed
638
639
640
641
642
643
    def process_images_after_vae_decoder(self, save_video=False):
        if self.config.get("return_video", False):
            audio_waveform = torch.from_numpy(self.cut_audio_final).unsqueeze(0).unsqueeze(0)
            comfyui_audio = {"waveform": audio_waveform, "sample_rate": self._audio_processor.audio_sr}
            return {"video": self.gen_video_final, "audio": comfyui_audio}
        return {"video": None, "audio": None}
644

helloyongyang's avatar
helloyongyang committed
645
646
647
    def init_modules(self):
        super().init_modules()
        self.run_input_encoder = self._run_input_encoder_local_r2v_audio
wangshankun's avatar
wangshankun committed
648
649

    def load_transformer(self):
650
        """Load transformer with LoRA support"""
wangshankun's avatar
wangshankun committed
651
        base_model = WanAudioModel(self.config.model_path, self.config, self.init_device)
652
        if self.config.get("lora_configs") and self.config.lora_configs:
wangshankun's avatar
wangshankun committed
653
654
            assert not self.config.get("dit_quantized", False) or self.config.mm_config.get("weight_auto_quant", False)
            lora_wrapper = WanLoraWrapper(base_model)
655
656
657
658
659
660
            for lora_config in self.config.lora_configs:
                lora_path = lora_config["path"]
                strength = lora_config.get("strength", 1.0)
                lora_name = lora_wrapper.load_lora(lora_path)
                lora_wrapper.apply_lora(lora_name, strength)
                logger.info(f"Loaded LoRA: {lora_name} with strength: {strength}")
wangshankun's avatar
wangshankun committed
661

wangshankun's avatar
wangshankun committed
662
663
        return base_model

helloyongyang's avatar
helloyongyang committed
664
    def load_audio_encoder(self):
665
        audio_encoder_path = os.path.join(self.config["model_path"], "TencentGameMate-chinese-hubert-large")
666
667
        audio_encoder_offload = self.config.get("audio_encoder_cpu_offload", self.config.get("cpu_offload", False))
        model = SekoAudioEncoderModel(audio_encoder_path, self.config["audio_sr"], audio_encoder_offload)
helloyongyang's avatar
helloyongyang committed
668
        return model
669

helloyongyang's avatar
helloyongyang committed
670
    def load_audio_adapter(self):
671
672
673
674
675
        audio_adapter_offload = self.config.get("audio_adapter_cpu_offload", self.config.get("cpu_offload", False))
        if audio_adapter_offload:
            device = torch.device("cpu")
        else:
            device = torch.device("cuda")
helloyongyang's avatar
helloyongyang committed
676
        audio_adapter = AudioAdapter(
sandy's avatar
sandy committed
677
            attention_head_dim=self.config["dim"] // self.config["num_heads"],
helloyongyang's avatar
helloyongyang committed
678
679
680
681
682
683
684
685
686
            num_attention_heads=self.config["num_heads"],
            base_num_layers=self.config["num_layers"],
            interval=1,
            audio_feature_dim=1024,
            time_freq_dim=256,
            projection_transformer_layers=4,
            mlp_dims=(1024, 1024, 32 * 1024),
            quantized=self.config.get("adapter_quantized", False),
            quant_scheme=self.config.get("adapter_quant_scheme", None),
687
            cpu_offload=audio_adapter_offload,
helloyongyang's avatar
helloyongyang committed
688
        )
689

690
        audio_adapter.to(device)
691
692
        load_from_rank0 = self.config.get("load_from_rank0", False)
        weights_dict = load_weights(self.config.adapter_model_path, cpu_offload=audio_adapter_offload, remove_key="ca", load_from_rank0=load_from_rank0)
693
        audio_adapter.load_state_dict(weights_dict, strict=False)
helloyongyang's avatar
helloyongyang committed
694
        return audio_adapter.to(dtype=GET_DTYPE())
wangshankun's avatar
wangshankun committed
695

helloyongyang's avatar
helloyongyang committed
696
697
    def load_model(self):
        super().load_model()
698
699
700
        with ProfilingContext4DebugL2("Load audio encoder and adapter"):
            self.audio_encoder = self.load_audio_encoder()
            self.audio_adapter = self.load_audio_adapter()
wangshankun's avatar
wangshankun committed
701
702

    def set_target_shape(self):
703
        """Set target shape for generation"""
wangshankun's avatar
wangshankun committed
704
705
        ret = {}
        num_channels_latents = 16
wangshankun's avatar
wangshankun committed
706
707
        if self.config.model_cls == "wan2.2_audio":
            num_channels_latents = self.config.num_channels_latents
708

wangshankun's avatar
wangshankun committed
709
710
711
712
713
714
715
716
717
718
719
        if self.config.task == "i2v":
            self.config.target_shape = (
                num_channels_latents,
                (self.config.target_video_length - 1) // self.config.vae_stride[0] + 1,
                self.config.lat_h,
                self.config.lat_w,
            )
            ret["lat_h"] = self.config.lat_h
            ret["lat_w"] = self.config.lat_w
        else:
            error_msg = "t2v task is not supported in WanAudioRunner"
720
            assert False, error_msg
wangshankun's avatar
wangshankun committed
721
722
723

        ret["target_shape"] = self.config.target_shape
        return ret
sandy's avatar
sandy committed
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768


@RUNNER_REGISTER("wan2.2_audio")
class Wan22AudioRunner(WanAudioRunner):
    def __init__(self, config):
        super().__init__(config)

    def load_vae_decoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        vae_decoder = Wan2_2_VAE(**vae_config)
        return vae_decoder

    def load_vae_encoder(self):
        # offload config
        vae_offload = self.config.get("vae_cpu_offload", self.config.get("cpu_offload"))
        if vae_offload:
            vae_device = torch.device("cpu")
        else:
            vae_device = torch.device("cuda")
        vae_config = {
            "vae_pth": find_torch_model_path(self.config, "vae_pth", "Wan2.2_VAE.pth"),
            "device": vae_device,
            "cpu_offload": vae_offload,
            "offload_cache": self.config.get("vae_offload_cache", False),
        }
        if self.config.task != "i2v":
            return None
        else:
            return Wan2_2_VAE(**vae_config)

    def load_vae(self):
        vae_encoder = self.load_vae_encoder()
        vae_decoder = self.load_vae_decoder()
        return vae_encoder, vae_decoder