test_ops.py 78.1 KB
Newer Older
1
import math
2
import os
3
from abc import ABC, abstractmethod
4
from functools import lru_cache
5
from itertools import product
6
from typing import Callable, List, Tuple
7

8
import numpy as np
9
import pytest
10
import torch
11
import torch.fx
12
import torch.nn.functional as F
13
import torch.testing._internal.optests as optests
14
from common_utils import assert_equal, cpu_and_cuda, cpu_and_cuda_and_mps, needs_cuda, needs_mps
15
from PIL import Image
16
from torch import nn, Tensor
17
from torch.autograd import gradcheck
18
from torch.nn.modules.utils import _pair
19
from torchvision import models, ops
20
21
22
from torchvision.models.feature_extraction import get_graph_node_names


23
24
25
26
27
28
29
30
OPTESTS = [
    "test_schema",
    "test_autograd_registration",
    "test_faketensor",
    "test_aot_dispatch_dynamic",
]


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Context manager for setting deterministic flag and automatically
# resetting it to its original value
class DeterministicGuard:
    def __init__(self, deterministic, *, warn_only=False):
        self.deterministic = deterministic
        self.warn_only = warn_only

    def __enter__(self):
        self.deterministic_restore = torch.are_deterministic_algorithms_enabled()
        self.warn_only_restore = torch.is_deterministic_algorithms_warn_only_enabled()
        torch.use_deterministic_algorithms(self.deterministic, warn_only=self.warn_only)

    def __exit__(self, exception_type, exception_value, traceback):
        torch.use_deterministic_algorithms(self.deterministic_restore, warn_only=self.warn_only_restore)


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class RoIOpTesterModuleWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 2

    def forward(self, a, b):
        self.layer(a, b)


class MultiScaleRoIAlignModuleWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 3

    def forward(self, a, b, c):
        self.layer(a, b, c)


class DeformConvModuleWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 3

    def forward(self, a, b, c):
        self.layer(a, b, c)


class StochasticDepthWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 1

    def forward(self, a):
        self.layer(a)
85
86


87
88
89
90
91
92
93
94
95
96
class DropBlockWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 1

    def forward(self, a):
        self.layer(a)


97
98
99
100
101
102
103
104
105
class PoolWrapper(nn.Module):
    def __init__(self, pool: nn.Module):
        super().__init__()
        self.pool = pool

    def forward(self, imgs: Tensor, boxes: List[Tensor]) -> Tensor:
        return self.pool(imgs, boxes)


106
107
class RoIOpTester(ABC):
    dtype = torch.float64
108
109
    mps_dtype = torch.float32
    mps_backward_atol = 2e-2
110

111
    @pytest.mark.parametrize("device", cpu_and_cuda_and_mps())
112
    @pytest.mark.parametrize("contiguous", (True, False))
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    @pytest.mark.parametrize(
        "x_dtype",
        (
            torch.float16,
            torch.float32,
            torch.float64,
        ),
        ids=str,
    )
    def test_forward(self, device, contiguous, x_dtype, rois_dtype=None, deterministic=False, **kwargs):
        if device == "mps" and x_dtype is torch.float64:
            pytest.skip("MPS does not support float64")

        rois_dtype = x_dtype if rois_dtype is None else rois_dtype

        tol = 1e-5
        if x_dtype is torch.half:
            if device == "mps":
                tol = 5e-3
            else:
                tol = 4e-3
134
135
        elif x_dtype == torch.bfloat16:
            tol = 5e-3
136

137
        pool_size = 5
138
        # n_channels % (pool_size ** 2) == 0 required for PS operations.
139
        n_channels = 2 * (pool_size**2)
140
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
141
142
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
143
144
145
146
147
        rois = torch.tensor(
            [[0, 0, 0, 9, 9], [0, 0, 5, 4, 9], [0, 5, 5, 9, 9], [1, 0, 0, 9, 9]],  # format is (xyxy)
            dtype=rois_dtype,
            device=device,
        )
148

149
        pool_h, pool_w = pool_size, pool_size
150
151
        with DeterministicGuard(deterministic):
            y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs)
152
        # the following should be true whether we're running an autocast test or not.
153
        assert y.dtype == x.dtype
154
        gt_y = self.expected_fn(
155
            x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=device, dtype=x_dtype, **kwargs
156
        )
157

158
        torch.testing.assert_close(gt_y.to(y), y, rtol=tol, atol=tol)
159

160
    @pytest.mark.parametrize("device", cpu_and_cuda())
161
162
163
164
165
166
167
168
    def test_is_leaf_node(self, device):
        op_obj = self.make_obj(wrap=True).to(device=device)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

169
    @pytest.mark.parametrize("device", cpu_and_cuda())
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def test_torch_fx_trace(self, device, x_dtype=torch.float, rois_dtype=torch.float):
        op_obj = self.make_obj().to(device=device)
        graph_module = torch.fx.symbolic_trace(op_obj)
        pool_size = 5
        n_channels = 2 * (pool_size**2)
        x = torch.rand(2, n_channels, 5, 5, dtype=x_dtype, device=device)
        rois = torch.tensor(
            [[0, 0, 0, 9, 9], [0, 0, 5, 4, 9], [0, 5, 5, 9, 9], [1, 0, 0, 9, 9]],  # format is (xyxy)
            dtype=rois_dtype,
            device=device,
        )
        output_gt = op_obj(x, rois)
        assert output_gt.dtype == x.dtype
        output_fx = graph_module(x, rois)
        assert output_fx.dtype == x.dtype
        tol = 1e-5
        torch.testing.assert_close(output_gt, output_fx, rtol=tol, atol=tol)

188
    @pytest.mark.parametrize("seed", range(10))
189
    @pytest.mark.parametrize("device", cpu_and_cuda_and_mps())
190
    @pytest.mark.parametrize("contiguous", (True, False))
191
    def test_backward(self, seed, device, contiguous, deterministic=False):
192
193
194
        atol = self.mps_backward_atol if device == "mps" else 1e-05
        dtype = self.mps_dtype if device == "mps" else self.dtype

195
        torch.random.manual_seed(seed)
196
        pool_size = 2
197
        x = torch.rand(1, 2 * (pool_size**2), 5, 5, dtype=dtype, device=device, requires_grad=True)
198
199
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
200
        rois = torch.tensor(
201
            [[0, 0, 0, 4, 4], [0, 0, 2, 3, 4], [0, 2, 2, 4, 4]], dtype=dtype, device=device  # format is (xyxy)
202
        )
203

204
205
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
206

207
        script_func = self.get_script_fn(rois, pool_size)
208

209
        with DeterministicGuard(deterministic):
210
211
212
213
214
215
216
217
218
219
220
            gradcheck(func, (x,), atol=atol)

        gradcheck(script_func, (x,), atol=atol)

    @needs_mps
    def test_mps_error_inputs(self):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size**2), 5, 5, dtype=torch.float16, device="mps", requires_grad=True)
        rois = torch.tensor(
            [[0, 0, 0, 4, 4], [0, 0, 2, 3, 4], [0, 2, 2, 4, 4]], dtype=torch.float16, device="mps"  # format is (xyxy)
        )
221

222
223
224
225
226
227
228
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)

        with pytest.raises(
            RuntimeError, match="MPS does not support (?:ps_)?roi_(?:align|pool)? backward with float16 inputs."
        ):
            gradcheck(func, (x,))
229

230
    @needs_cuda
231
232
    @pytest.mark.parametrize("x_dtype", (torch.float, torch.half))
    @pytest.mark.parametrize("rois_dtype", (torch.float, torch.half))
233
234
235
    def test_autocast(self, x_dtype, rois_dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)
236
237
238

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
239
        with pytest.raises(AssertionError):
240
241
242
243
244
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
245
        with pytest.raises(AssertionError):
246
247
248
249
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

250
251
252
253
254
255
256
257
    def _helper_jit_boxes_list(self, model):
        x = torch.rand(2, 1, 10, 10)
        roi = torch.tensor([[0, 0, 0, 9, 9], [0, 0, 5, 4, 9], [0, 5, 5, 9, 9], [1, 0, 0, 9, 9]], dtype=torch.float).t()
        rois = [roi, roi]
        scriped = torch.jit.script(model)
        y = scriped(x, rois)
        assert y.shape == (10, 1, 3, 3)

258
    @abstractmethod
259
260
    def fn(*args, **kwargs):
        pass
261

262
263
264
265
    @abstractmethod
    def make_obj(*args, **kwargs):
        pass

266
    @abstractmethod
267
268
    def get_script_fn(*args, **kwargs):
        pass
269

270
    @abstractmethod
271
272
    def expected_fn(*args, **kwargs):
        pass
273

274

275
class TestRoiPool(RoIOpTester):
276
277
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
278

279
280
281
282
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, wrap=False):
        obj = ops.RoIPool((pool_h, pool_w), spatial_scale)
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

283
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
284
285
        scriped = torch.jit.script(ops.roi_pool)
        return lambda x: scriped(x, rois, pool_size)
286

287
288
289
    def expected_fn(
        self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64
    ):
290
291
        if device is None:
            device = torch.device("cpu")
292

293
294
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
295

296
297
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
298

299
300
301
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
302
            roi_x = x[batch_idx, :, i_begin : i_end + 1, j_begin : j_end + 1]
303

304
305
306
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
307

308
309
310
311
312
313
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
314

315
    def test_boxes_shape(self):
316
317
        self._helper_boxes_shape(ops.roi_pool)

318
319
320
321
    def test_jit_boxes_list(self):
        model = PoolWrapper(ops.RoIPool(output_size=[3, 3], spatial_scale=1.0))
        self._helper_jit_boxes_list(model)

322

323
class TestPSRoIPool(RoIOpTester):
324
325
    mps_backward_atol = 5e-2

326
327
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
328

329
330
331
332
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, wrap=False):
        obj = ops.PSRoIPool((pool_h, pool_w), spatial_scale)
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

333
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
334
335
        scriped = torch.jit.script(ops.ps_roi_pool)
        return lambda x: scriped(x, rois, pool_size)
336

337
338
339
    def expected_fn(
        self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64
    ):
340
341
342
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
343
        assert n_input_channels % (pool_h * pool_w) == 0, "input channels must be divisible by ph * pw"
344
345
346
347
348
349
350
351
352
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
353
            roi_x = x[batch_idx, :, i_begin : i_end + 1, j_begin : j_end + 1]
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
369

370
    def test_boxes_shape(self):
371
372
        self._helper_boxes_shape(ops.ps_roi_pool)

373

374
375
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
376

377
378
379
380
381
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
382

383
384
385
386
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
387

388
389
390
391
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
392

393
394
    wy_h = y - y_low
    wx_h = x - x_low
395
    wy_l = 1 - wy_h
396
    wx_l = 1 - wx_h
397

398
    val = 0
399
400
401
402
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
403
    return val
404
405


406
class TestRoIAlign(RoIOpTester):
407
408
    mps_backward_atol = 6e-2

AhnDW's avatar
AhnDW committed
409
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
410
411
412
        return ops.RoIAlign(
            (pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio, aligned=aligned
        )(x, rois)
413

414
415
416
417
418
419
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, sampling_ratio=-1, aligned=False, wrap=False):
        obj = ops.RoIAlign(
            (pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio, aligned=aligned
        )
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

420
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
421
422
        scriped = torch.jit.script(ops.roi_align)
        return lambda x: scriped(x, rois, pool_size)
423

424
425
426
427
428
429
430
431
432
433
434
435
    def expected_fn(
        self,
        in_data,
        rois,
        pool_h,
        pool_w,
        spatial_scale=1,
        sampling_ratio=-1,
        aligned=False,
        device=None,
        dtype=torch.float64,
    ):
436
437
        if device is None:
            device = torch.device("cpu")
438
439
440
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

441
        offset = 0.5 if aligned else 0.0
AhnDW's avatar
AhnDW committed
442

443
444
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
445
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):
                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
465
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
466
467
468
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
469
470
        return out_data

471
    def test_boxes_shape(self):
472
473
        self._helper_boxes_shape(ops.roi_align)

474
    @pytest.mark.parametrize("aligned", (True, False))
475
    @pytest.mark.parametrize("device", cpu_and_cuda_and_mps())
476
    @pytest.mark.parametrize("x_dtype", (torch.float16, torch.float32, torch.float64))  # , ids=str)
477
    @pytest.mark.parametrize("contiguous", (True, False))
478
    @pytest.mark.parametrize("deterministic", (True, False))
479
    @pytest.mark.opcheck_only_one()
480
    def test_forward(self, device, contiguous, deterministic, aligned, x_dtype, rois_dtype=None):
481
482
        if deterministic and device == "cpu":
            pytest.skip("cpu is always deterministic, don't retest")
483
        super().test_forward(
484
485
486
487
488
489
            device=device,
            contiguous=contiguous,
            deterministic=deterministic,
            x_dtype=x_dtype,
            rois_dtype=rois_dtype,
            aligned=aligned,
490
        )
491

492
    @needs_cuda
493
    @pytest.mark.parametrize("aligned", (True, False))
494
    @pytest.mark.parametrize("deterministic", (True, False))
495
496
    @pytest.mark.parametrize("x_dtype", (torch.float, torch.half))
    @pytest.mark.parametrize("rois_dtype", (torch.float, torch.half))
497
    @pytest.mark.opcheck_only_one()
498
    def test_autocast(self, aligned, deterministic, x_dtype, rois_dtype):
499
        with torch.cuda.amp.autocast():
500
            self.test_forward(
501
502
503
504
505
506
                torch.device("cuda"),
                contiguous=False,
                deterministic=deterministic,
                aligned=aligned,
                x_dtype=x_dtype,
                rois_dtype=rois_dtype,
507
            )
508

509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    @pytest.mark.parametrize("aligned", (True, False))
    @pytest.mark.parametrize("deterministic", (True, False))
    @pytest.mark.parametrize("x_dtype", (torch.float, torch.bfloat16))
    @pytest.mark.parametrize("rois_dtype", (torch.float, torch.bfloat16))
    def test_autocast_cpu(self, aligned, deterministic, x_dtype, rois_dtype):
        with torch.cpu.amp.autocast():
            self.test_forward(
                torch.device("cpu"),
                contiguous=False,
                deterministic=deterministic,
                aligned=aligned,
                x_dtype=x_dtype,
                rois_dtype=rois_dtype,
            )

524
    @pytest.mark.parametrize("seed", range(10))
525
    @pytest.mark.parametrize("device", cpu_and_cuda_and_mps())
526
527
    @pytest.mark.parametrize("contiguous", (True, False))
    @pytest.mark.parametrize("deterministic", (True, False))
528
    @pytest.mark.opcheck_only_one()
529
530
531
532
533
    def test_backward(self, seed, device, contiguous, deterministic):
        if deterministic and device == "cpu":
            pytest.skip("cpu is always deterministic, don't retest")
        super().test_backward(seed, device, contiguous, deterministic)

534
535
536
537
538
539
    def _make_rois(self, img_size, num_imgs, dtype, num_rois=1000):
        rois = torch.randint(0, img_size // 2, size=(num_rois, 5)).to(dtype)
        rois[:, 0] = torch.randint(0, num_imgs, size=(num_rois,))  # set batch index
        rois[:, 3:] += rois[:, 1:3]  # make sure boxes aren't degenerate
        return rois

540
541
542
    @pytest.mark.parametrize("aligned", (True, False))
    @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 10), (0.1, 50)))
    @pytest.mark.parametrize("qdtype", (torch.qint8, torch.quint8, torch.qint32))
543
    @pytest.mark.opcheck_only_one()
544
    def test_qroialign(self, aligned, scale, zero_point, qdtype):
545
546
547
548
549
550
551
        """Make sure quantized version of RoIAlign is close to float version"""
        pool_size = 5
        img_size = 10
        n_channels = 2
        num_imgs = 1
        dtype = torch.float

552
553
554
555
556
557
558
        x = torch.randint(50, 100, size=(num_imgs, n_channels, img_size, img_size)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=scale, zero_point=zero_point, dtype=qdtype)

        rois = self._make_rois(img_size, num_imgs, dtype)
        qrois = torch.quantize_per_tensor(rois, scale=scale, zero_point=zero_point, dtype=qdtype)

        x, rois = qx.dequantize(), qrois.dequantize()  # we want to pass the same inputs
559

560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
        y = ops.roi_align(
            x,
            rois,
            output_size=pool_size,
            spatial_scale=1,
            sampling_ratio=-1,
            aligned=aligned,
        )
        qy = ops.roi_align(
            qx,
            qrois,
            output_size=pool_size,
            spatial_scale=1,
            sampling_ratio=-1,
            aligned=aligned,
        )

        # The output qy is itself a quantized tensor and there might have been a loss of info when it was
        # quantized. For a fair comparison we need to quantize y as well
        quantized_float_y = torch.quantize_per_tensor(y, scale=scale, zero_point=zero_point, dtype=qdtype)

        try:
            # Ideally, we would assert this, which passes with (scale, zero) == (1, 0)
            assert (qy == quantized_float_y).all()
        except AssertionError:
            # But because the computation aren't exactly the same between the 2 RoIAlign procedures, some
            # rounding error may lead to a difference of 2 in the output.
            # For example with (scale, zero) = (2, 10), 45.00000... will be quantized to 44
            # but 45.00000001 will be rounded to 46. We make sure below that:
            # - such discrepancies between qy and quantized_float_y are very rare (less then 5%)
            # - any difference between qy and quantized_float_y is == scale
            diff_idx = torch.where(qy != quantized_float_y)
            num_diff = diff_idx[0].numel()
593
            assert num_diff / qy.numel() < 0.05
594
595
596
597
598
599
600

            abs_diff = torch.abs(qy[diff_idx].dequantize() - quantized_float_y[diff_idx].dequantize())
            t_scale = torch.full_like(abs_diff, fill_value=scale)
            torch.testing.assert_close(abs_diff, t_scale, rtol=1e-5, atol=1e-5)

    def test_qroi_align_multiple_images(self):
        dtype = torch.float
601
602
        x = torch.randint(50, 100, size=(2, 3, 10, 10)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=1, zero_point=0, dtype=torch.qint8)
603
        rois = self._make_rois(img_size=10, num_imgs=2, dtype=dtype, num_rois=10)
604
        qrois = torch.quantize_per_tensor(rois, scale=1, zero_point=0, dtype=torch.qint8)
605
606
        with pytest.raises(RuntimeError, match="Only one image per batch is allowed"):
            ops.roi_align(qx, qrois, output_size=5)
607

608
609
610
611
    def test_jit_boxes_list(self):
        model = PoolWrapper(ops.RoIAlign(output_size=[3, 3], spatial_scale=1.0, sampling_ratio=-1))
        self._helper_jit_boxes_list(model)

612

613
614
615
616
617
618
619
620
621
optests.generate_opcheck_tests(
    testcase=TestRoIAlign,
    namespaces=["torchvision"],
    failures_dict_path=os.path.join(os.path.dirname(__file__), "optests_failures_dict.json"),
    additional_decorators=[],
    test_utils=OPTESTS,
)


622
class TestPSRoIAlign(RoIOpTester):
623
624
    mps_backward_atol = 5e-2

625
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
626
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio)(x, rois)
627

628
629
630
631
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, sampling_ratio=-1, wrap=False):
        obj = ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio)
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

632
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
633
634
        scriped = torch.jit.script(ops.ps_roi_align)
        return lambda x: scriped(x, rois, pool_size)
635

636
637
638
    def expected_fn(
        self, in_data, rois, pool_h, pool_w, device, spatial_scale=1, sampling_ratio=-1, dtype=torch.float64
    ):
639
640
        if device is None:
            device = torch.device("cpu")
641
        n_input_channels = in_data.size(1)
642
        assert n_input_channels % (pool_h * pool_w) == 0, "input channels must be divisible by ph * pw"
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
669
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
670
671
672
673
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
674

675
    def test_boxes_shape(self):
676
677
        self._helper_boxes_shape(ops.ps_roi_align)

678

679
class TestMultiScaleRoIAlign:
680
681
682
683
684
685
    def make_obj(self, fmap_names=None, output_size=(7, 7), sampling_ratio=2, wrap=False):
        if fmap_names is None:
            fmap_names = ["0"]
        obj = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)
        return MultiScaleRoIAlignModuleWrapper(obj) if wrap else obj

686
    def test_msroialign_repr(self):
687
        fmap_names = ["0"]
688
689
690
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
691
        t = self.make_obj(fmap_names, output_size, sampling_ratio, wrap=False)
692
693

        # Check integrity of object __repr__ attribute
694
695
696
697
        expected_string = (
            f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
            f"sampling_ratio={sampling_ratio})"
        )
698
        assert repr(t) == expected_string
699

700
    @pytest.mark.parametrize("device", cpu_and_cuda())
701
702
703
704
705
706
707
708
    def test_is_leaf_node(self, device):
        op_obj = self.make_obj(wrap=True).to(device=device)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

709

710
711
class TestNMS:
    def _reference_nms(self, boxes, scores, iou_threshold):
712
713
        """
        Args:
714
715
716
            boxes: boxes in corner-form
            scores: probabilities
            iou_threshold: intersection over union threshold
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

735
736
737
738
739
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
740
741
742
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
743
        boxes = torch.rand(N, 4) * 100
744
745
746
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
747
        iou_thresh += 1e-5
748
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
749
750
751
        scores = torch.rand(N)
        return boxes, scores

752
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
753
    @pytest.mark.parametrize("seed", range(10))
754
    @pytest.mark.opcheck_only_one()
755
756
    def test_nms_ref(self, iou, seed):
        torch.random.manual_seed(seed)
757
        err_msg = "NMS incompatible between CPU and reference implementation for IoU={}"
758
759
760
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        keep_ref = self._reference_nms(boxes, scores, iou)
        keep = ops.nms(boxes, scores, iou)
761
        torch.testing.assert_close(keep, keep_ref, msg=err_msg.format(iou))
762
763
764
765
766
767
768
769
770
771
772

    def test_nms_input_errors(self):
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(4), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 5), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(3, 2), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(4), 0.5)

773
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
774
    @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 50), (3, 10)))
775
    @pytest.mark.opcheck_only_one()
776
    def test_qnms(self, iou, scale, zero_point):
777
        # Note: we compare qnms vs nms instead of qnms vs reference implementation.
778
        # This is because with the int conversion, the trick used in _create_tensors_with_iou
779
        # doesn't really work (in fact, nms vs reference implem will also fail with ints)
780
        err_msg = "NMS and QNMS give different results for IoU={}"
781
        boxes, scores = self._create_tensors_with_iou(1000, iou)
782
        scores *= 100  # otherwise most scores would be 0 or 1 after int conversion
783

784
785
        qboxes = torch.quantize_per_tensor(boxes, scale=scale, zero_point=zero_point, dtype=torch.quint8)
        qscores = torch.quantize_per_tensor(scores, scale=scale, zero_point=zero_point, dtype=torch.quint8)
786

787
788
        boxes = qboxes.dequantize()
        scores = qscores.dequantize()
789

790
791
        keep = ops.nms(boxes, scores, iou)
        qkeep = ops.nms(qboxes, qscores, iou)
792

793
        torch.testing.assert_close(qkeep, keep, msg=err_msg.format(iou))
794

795
796
797
798
799
800
801
    @pytest.mark.parametrize(
        "device",
        (
            pytest.param("cuda", marks=pytest.mark.needs_cuda),
            pytest.param("mps", marks=pytest.mark.needs_mps),
        ),
    )
802
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
803
    @pytest.mark.opcheck_only_one()
804
805
    def test_nms_gpu(self, iou, device, dtype=torch.float64):
        dtype = torch.float32 if device == "mps" else dtype
806
        tol = 1e-3 if dtype is torch.half else 1e-5
807
        err_msg = "NMS incompatible between CPU and CUDA for IoU={}"
808

809
810
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        r_cpu = ops.nms(boxes, scores, iou)
811
        r_gpu = ops.nms(boxes.to(device), scores.to(device), iou)
812

813
        is_eq = torch.allclose(r_cpu, r_gpu.cpu())
814
815
816
        if not is_eq:
            # if the indices are not the same, ensure that it's because the scores
            # are duplicate
817
            is_eq = torch.allclose(scores[r_cpu], scores[r_gpu.cpu()], rtol=tol, atol=tol)
818
819
820
        assert is_eq, err_msg.format(iou)

    @needs_cuda
821
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
822
    @pytest.mark.parametrize("dtype", (torch.float, torch.half))
823
    @pytest.mark.opcheck_only_one()
824
825
    def test_autocast(self, iou, dtype):
        with torch.cuda.amp.autocast():
826
827
            self.test_nms_gpu(iou=iou, dtype=dtype, device="cuda")

828
829
830
831
832
833
834
835
836
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
    @pytest.mark.parametrize("dtype", (torch.float, torch.bfloat16))
    def test_autocast_cpu(self, iou, dtype):
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        with torch.cpu.amp.autocast():
            keep_ref_float = ops.nms(boxes.to(dtype).float(), scores.to(dtype).float(), iou)
            keep_dtype = ops.nms(boxes.to(dtype), scores.to(dtype), iou)
        torch.testing.assert_close(keep_ref_float, keep_dtype)

837
838
839
840
841
842
843
    @pytest.mark.parametrize(
        "device",
        (
            pytest.param("cuda", marks=pytest.mark.needs_cuda),
            pytest.param("mps", marks=pytest.mark.needs_mps),
        ),
    )
844
    @pytest.mark.opcheck_only_one()
845
    def test_nms_float16(self, device):
846
847
848
849
850
851
        boxes = torch.tensor(
            [
                [285.3538, 185.5758, 1193.5110, 851.4551],
                [285.1472, 188.7374, 1192.4984, 851.0669],
                [279.2440, 197.9812, 1189.4746, 849.2019],
            ]
852
853
        ).to(device)
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).to(device)
854
855
856
857

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
858
        assert_equal(keep32, keep16)
859

860
    @pytest.mark.parametrize("seed", range(10))
861
    @pytest.mark.opcheck_only_one()
862
    def test_batched_nms_implementations(self, seed):
863
        """Make sure that both implementations of batched_nms yield identical results"""
864
        torch.random.manual_seed(seed)
865
866

        num_boxes = 1000
867
        iou_threshold = 0.9
868
869
870
871
872
873
874
875
876
877

        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2

        scores = torch.rand(num_boxes)
        idxs = torch.randint(0, 4, size=(num_boxes,))
        keep_vanilla = ops.boxes._batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
        keep_trick = ops.boxes._batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)

878
879
880
        torch.testing.assert_close(
            keep_vanilla, keep_trick, msg="The vanilla and the trick implementation yield different nms outputs."
        )
881
882
883

        # Also make sure an empty tensor is returned if boxes is empty
        empty = torch.empty((0,), dtype=torch.int64)
884
        torch.testing.assert_close(empty, ops.batched_nms(empty, None, None, None))
885

886

887
888
889
890
891
892
893
894
895
optests.generate_opcheck_tests(
    testcase=TestNMS,
    namespaces=["torchvision"],
    failures_dict_path=os.path.join(os.path.dirname(__file__), "optests_failures_dict.json"),
    additional_decorators=[],
    test_utils=OPTESTS,
)


896
897
898
class TestDeformConv:
    dtype = torch.float64

899
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
930
931
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
932
933
934
935

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

936
937
938
939
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

940
941
942
943
944
                                    out[b, c_out, i, j] += (
                                        mask_value
                                        * weight[c_out, c, di, dj]
                                        * bilinear_interpolate(x[b, c_in, :, :], pi, pj)
                                    )
945
946
947
        out += bias.view(1, n_out_channels, 1, 1)
        return out

948
    @lru_cache(maxsize=None)
949
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

968
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
969

970
971
972
973
974
975
976
977
978
        offset = torch.randn(
            batch_sz,
            n_offset_grps * 2 * weight_h * weight_w,
            out_h,
            out_w,
            device=device,
            dtype=dtype,
            requires_grad=True,
        )
979

980
981
982
        mask = torch.randn(
            batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w, device=device, dtype=dtype, requires_grad=True
        )
983

984
985
986
987
988
989
990
991
992
        weight = torch.randn(
            n_out_channels,
            n_in_channels // n_weight_grps,
            weight_h,
            weight_w,
            device=device,
            dtype=dtype,
            requires_grad=True,
        )
993

994
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
995
996
997
998

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
999
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
1000
1001
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

1002
        return x, weight, offset, mask, bias, stride, pad, dilation
1003

1004
1005
1006
1007
1008
1009
    def make_obj(self, in_channels=6, out_channels=2, kernel_size=(3, 2), groups=2, wrap=False):
        obj = ops.DeformConv2d(
            in_channels, out_channels, kernel_size, stride=(2, 1), padding=(1, 0), dilation=(2, 1), groups=groups
        )
        return DeformConvModuleWrapper(obj) if wrap else obj

1010
    @pytest.mark.parametrize("device", cpu_and_cuda())
1011
1012
1013
1014
1015
1016
1017
1018
    def test_is_leaf_node(self, device):
        op_obj = self.make_obj(wrap=True).to(device=device)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

1019
    @pytest.mark.parametrize("device", cpu_and_cuda())
1020
1021
    @pytest.mark.parametrize("contiguous", (True, False))
    @pytest.mark.parametrize("batch_sz", (0, 33))
1022
    @pytest.mark.opcheck_only_one()
1023
1024
    def test_forward(self, device, contiguous, batch_sz, dtype=None):
        dtype = dtype or self.dtype
1025
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
1026
1027
1028
1029
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
1030
        tol = 2e-3 if dtype is torch.half else 1e-5
1031

1032
1033
1034
        layer = self.make_obj(in_channels, out_channels, kernel_size, groups, wrap=False).to(
            device=x.device, dtype=dtype
        )
1035
        res = layer(x, offset, mask)
1036
1037
1038

        weight = layer.weight.data
        bias = layer.bias.data
1039
1040
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

1041
        torch.testing.assert_close(
1042
            res.to(expected), expected, rtol=tol, atol=tol, msg=f"\nres:\n{res}\nexpected:\n{expected}"
1043
        )
1044
1045
1046
1047

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
1048

1049
        torch.testing.assert_close(
1050
            res.to(expected), expected, rtol=tol, atol=tol, msg=f"\nres:\n{res}\nexpected:\n{expected}"
1051
        )
1052

1053
1054
1055
1056
1057
    def test_wrong_sizes(self):
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
1058
1059
1060
1061
1062
1063
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(
            "cpu", contiguous=True, batch_sz=10, dtype=self.dtype
        )
        layer = ops.DeformConv2d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups
        )
1064
        with pytest.raises(RuntimeError, match="the shape of the offset"):
1065
            wrong_offset = torch.rand_like(offset[:, :2])
1066
            layer(x, wrong_offset)
1067

1068
        with pytest.raises(RuntimeError, match=r"mask.shape\[1\] is not valid"):
1069
            wrong_mask = torch.rand_like(mask[:, :2])
1070
            layer(x, offset, wrong_mask)
1071

1072
    @pytest.mark.parametrize("device", cpu_and_cuda())
1073
1074
    @pytest.mark.parametrize("contiguous", (True, False))
    @pytest.mark.parametrize("batch_sz", (0, 33))
1075
    @pytest.mark.opcheck_only_one()
1076
    def test_backward(self, device, contiguous, batch_sz):
1077
1078
1079
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(
            device, contiguous, batch_sz, self.dtype
        )
1080
1081

        def func(x_, offset_, mask_, weight_, bias_):
1082
1083
1084
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride, padding=padding, dilation=dilation, mask=mask_
            )
1085

1086
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5, fast_mode=True)
1087
1088

        def func_no_mask(x_, offset_, weight_, bias_):
1089
1090
1091
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride, padding=padding, dilation=dilation, mask=None
            )
1092

1093
        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5, fast_mode=True)
1094
1095
1096
1097

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride_, padding=pad_, dilation=dilation_, mask=mask_
            )

        gradcheck(
            lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
            (x, offset, mask, weight, bias),
            nondet_tol=1e-5,
            fast_mode=True,
        )
1108
1109

        @torch.jit.script
1110
1111
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride_, padding=pad_, dilation=dilation_, mask=None
            )

        gradcheck(
            lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
            (x, offset, weight, bias),
            nondet_tol=1e-5,
            fast_mode=True,
        )
1122

1123
    @needs_cuda
1124
    @pytest.mark.parametrize("contiguous", (True, False))
1125
    @pytest.mark.opcheck_only_one()
1126
    def test_compare_cpu_cuda_grads(self, contiguous):
1127
1128
1129
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only

1130
1131
        # compare grads computed on CUDA with grads computed on CPU
        true_cpu_grads = None
1132

1133
1134
1135
1136
        init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
        img = torch.randn(8, 9, 1000, 110)
        offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
        mask = torch.rand(8, 3 * 3, 1000, 110)
1137

1138
1139
1140
1141
1142
1143
1144
        if not contiguous:
            img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
        else:
            weight = init_weight
1145

1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
        for d in ["cpu", "cuda"]:
            out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
            out.mean().backward()
            if true_cpu_grads is None:
                true_cpu_grads = init_weight.grad
                assert true_cpu_grads is not None
            else:
                assert init_weight.grad is not None
                res_grads = init_weight.grad.to("cpu")
                torch.testing.assert_close(true_cpu_grads, res_grads)

    @needs_cuda
1158
1159
    @pytest.mark.parametrize("batch_sz", (0, 33))
    @pytest.mark.parametrize("dtype", (torch.float, torch.half))
1160
    @pytest.mark.opcheck_only_one()
1161
1162
1163
1164
    def test_autocast(self, batch_sz, dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, batch_sz=batch_sz, dtype=dtype)

1165
1166
1167
1168
    def test_forward_scriptability(self):
        # Non-regression test for https://github.com/pytorch/vision/issues/4078
        torch.jit.script(ops.DeformConv2d(in_channels=8, out_channels=8, kernel_size=3))

1169

1170
1171
1172
1173
1174
1175
1176
1177
1178
optests.generate_opcheck_tests(
    testcase=TestDeformConv,
    namespaces=["torchvision"],
    failures_dict_path=os.path.join(os.path.dirname(__file__), "optests_failures_dict.json"),
    additional_decorators=[],
    test_utils=OPTESTS,
)


1179
class TestFrozenBNT:
1180
1181
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
1182
1183
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
1184
1185

        # Check integrity of object __repr__ attribute
1186
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
1187
        assert repr(t) == expected_string
1188

1189
1190
1191
    @pytest.mark.parametrize("seed", range(10))
    def test_frozenbatchnorm2d_eps(self, seed):
        torch.random.manual_seed(seed)
1192
1193
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
1194
1195
1196
1197
1198
1199
1200
        state_dict = dict(
            weight=torch.rand(sample_size[1]),
            bias=torch.rand(sample_size[1]),
            running_mean=torch.rand(sample_size[1]),
            running_var=torch.rand(sample_size[1]),
            num_batches_tracked=torch.tensor(100),
        )
1201

1202
        # Check that default eps is equal to the one of BN
1203
1204
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
1205
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
1206
1207
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
1208
        torch.testing.assert_close(fbn(x), bn(x), rtol=1e-5, atol=1e-6)
1209
1210
1211
1212
1213
1214

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
1215
        torch.testing.assert_close(fbn(x), bn(x), rtol=1e-5, atol=1e-6)
1216

1217

Aditya Oke's avatar
Aditya Oke committed
1218
class TestBoxConversionToRoi:
1219
1220
1221
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
1222
1223
1224
1225
        box_list = [
            torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
            torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
        ]
1226
1227
1228
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

1229
    @pytest.mark.parametrize("box_sequence", _get_box_sequences())
1230
    def test_check_roi_boxes_shape(self, box_sequence):
1231
        # Ensure common sequences of tensors are supported
1232
        ops._utils.check_roi_boxes_shape(box_sequence)
1233

1234
    @pytest.mark.parametrize("box_sequence", _get_box_sequences())
1235
    def test_convert_boxes_to_roi_format(self, box_sequence):
1236
1237
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
1238
1239
1240
1241
        if ref_tensor is None:
            ref_tensor = box_sequence
        else:
            assert_equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence))
1242
1243


Aditya Oke's avatar
Aditya Oke committed
1244
class TestBoxConvert:
1245
    def test_bbox_same(self):
1246
1247
1248
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
1249

1250
        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
1251

1252
1253
1254
1255
        assert exp_xyxy.size() == torch.Size([4, 4])
        assert_equal(ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy"), exp_xyxy)
        assert_equal(ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh"), exp_xyxy)
        assert_equal(ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh"), exp_xyxy)
1256
1257
1258
1259

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
1260
1261
1262
1263
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)
1264

1265
        assert exp_xywh.size() == torch.Size([4, 4])
1266
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
1267
        assert_equal(box_xywh, exp_xywh)
1268
1269
1270

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
1271
        assert_equal(box_xyxy, box_tensor)
1272
1273

    def test_bbox_xyxy_cxcywh(self):
Aditya Oke's avatar
Aditya Oke committed
1274
        # Simple test convert boxes to cxcywh and back. Make sure they are same.
1275
        # box_tensor is in x1 y1 x2 y2 format.
1276
1277
1278
1279
1280
1281
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
        exp_cxcywh = torch.tensor(
            [[50, 50, 100, 100], [0, 0, 0, 0], [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float
        )
1282

1283
        assert exp_cxcywh.size() == torch.Size([4, 4])
1284
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
1285
        assert_equal(box_cxcywh, exp_cxcywh)
1286
1287
1288

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
1289
        assert_equal(box_xyxy, box_tensor)
1290
1291

    def test_bbox_xywh_cxcywh(self):
1292
1293
1294
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float
        )
1295

1296
1297
1298
        exp_cxcywh = torch.tensor(
            [[50, 50, 100, 100], [0, 0, 0, 0], [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float
        )
1299

1300
        assert exp_cxcywh.size() == torch.Size([4, 4])
1301
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
1302
        assert_equal(box_cxcywh, exp_cxcywh)
1303
1304
1305

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
1306
        assert_equal(box_xywh, box_tensor)
1307

1308
1309
    @pytest.mark.parametrize("inv_infmt", ["xwyh", "cxwyh"])
    @pytest.mark.parametrize("inv_outfmt", ["xwcx", "xhwcy"])
1310
    def test_bbox_invalid(self, inv_infmt, inv_outfmt):
1311
1312
1313
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float
        )
1314

1315
1316
        with pytest.raises(ValueError):
            ops.box_convert(box_tensor, inv_infmt, inv_outfmt)
1317
1318

    def test_bbox_convert_jit(self):
1319
1320
1321
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
1322

1323
        scripted_fn = torch.jit.script(ops.box_convert)
1324

1325
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
1326
        scripted_xywh = scripted_fn(box_tensor, "xyxy", "xywh")
Aditya Oke's avatar
Aditya Oke committed
1327
        torch.testing.assert_close(scripted_xywh, box_xywh)
1328

1329
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
1330
        scripted_cxcywh = scripted_fn(box_tensor, "xyxy", "cxcywh")
Aditya Oke's avatar
Aditya Oke committed
1331
        torch.testing.assert_close(scripted_cxcywh, box_cxcywh)
1332
1333


Aditya Oke's avatar
Aditya Oke committed
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
class TestBoxArea:
    def area_check(self, box, expected, atol=1e-4):
        out = ops.box_area(box)
        torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=atol)

    @pytest.mark.parametrize("dtype", [torch.int8, torch.int16, torch.int32, torch.int64])
    def test_int_boxes(self, dtype):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=dtype)
        expected = torch.tensor([10000, 0], dtype=torch.int32)
        self.area_check(box_tensor, expected)

    @pytest.mark.parametrize("dtype", [torch.float32, torch.float64])
    def test_float_boxes(self, dtype):
        box_tensor = torch.tensor(FLOAT_BOXES, dtype=dtype)
        expected = torch.tensor([604723.0806, 600965.4666, 592761.0085], dtype=dtype)
        self.area_check(box_tensor, expected)

    def test_float16_box(self):
        box_tensor = torch.tensor(
            [[2.825, 1.8625, 3.90, 4.85], [2.825, 4.875, 19.20, 5.10], [2.925, 1.80, 8.90, 4.90]], dtype=torch.float16
        )

        expected = torch.tensor([3.2170, 3.7108, 18.5071], dtype=torch.float16)
        self.area_check(box_tensor, expected, atol=0.01)
1358

Aditya Oke's avatar
Aditya Oke committed
1359
1360
1361
1362
1363
1364
    def test_box_area_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=torch.float)
        expected = ops.box_area(box_tensor)
        scripted_fn = torch.jit.script(ops.box_area)
        scripted_area = scripted_fn(box_tensor)
        torch.testing.assert_close(scripted_area, expected)
1365

Aditya Oke's avatar
Aditya Oke committed
1366

1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
INT_BOXES = [[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300], [0, 0, 25, 25]]
INT_BOXES2 = [[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]]
FLOAT_BOXES = [
    [285.3538, 185.5758, 1193.5110, 851.4551],
    [285.1472, 188.7374, 1192.4984, 851.0669],
    [279.2440, 197.9812, 1189.4746, 849.2019],
]


def gen_box(size, dtype=torch.float):
    xy1 = torch.rand((size, 2), dtype=dtype)
    xy2 = xy1 + torch.rand((size, 2), dtype=dtype)
    return torch.cat([xy1, xy2], axis=-1)


Aditya Oke's avatar
Aditya Oke committed
1382
1383
class TestIouBase:
    @staticmethod
1384
    def _run_test(target_fn: Callable, actual_box1, actual_box2, dtypes, atol, expected):
1385
        for dtype in dtypes:
1386
1387
            actual_box1 = torch.tensor(actual_box1, dtype=dtype)
            actual_box2 = torch.tensor(actual_box2, dtype=dtype)
1388
            expected_box = torch.tensor(expected)
1389
            out = target_fn(actual_box1, actual_box2)
Aditya Oke's avatar
Aditya Oke committed
1390
            torch.testing.assert_close(out, expected_box, rtol=0.0, check_dtype=False, atol=atol)
Aditya Oke's avatar
Aditya Oke committed
1391

Aditya Oke's avatar
Aditya Oke committed
1392
    @staticmethod
1393
1394
    def _run_jit_test(target_fn: Callable, actual_box: List):
        box_tensor = torch.tensor(actual_box, dtype=torch.float)
Aditya Oke's avatar
Aditya Oke committed
1395
1396
1397
1398
        expected = target_fn(box_tensor, box_tensor)
        scripted_fn = torch.jit.script(target_fn)
        scripted_out = scripted_fn(box_tensor, box_tensor)
        torch.testing.assert_close(scripted_out, expected)
Aditya Oke's avatar
Aditya Oke committed
1399

1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
    @staticmethod
    def _cartesian_product(boxes1, boxes2, target_fn: Callable):
        N = boxes1.size(0)
        M = boxes2.size(0)
        result = torch.zeros((N, M))
        for i in range(N):
            for j in range(M):
                result[i, j] = target_fn(boxes1[i].unsqueeze(0), boxes2[j].unsqueeze(0))
        return result

    @staticmethod
    def _run_cartesian_test(target_fn: Callable):
        boxes1 = gen_box(5)
        boxes2 = gen_box(7)
        a = TestIouBase._cartesian_product(boxes1, boxes2, target_fn)
        b = target_fn(boxes1, boxes2)
1416
        torch.testing.assert_close(a, b)
1417

1418

Aditya Oke's avatar
Aditya Oke committed
1419
class TestBoxIou(TestIouBase):
1420
    int_expected = [[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0], [0.0625, 0.25, 0.0]]
Aditya Oke's avatar
Aditya Oke committed
1421
    float_expected = [[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]]
Aditya Oke's avatar
Aditya Oke committed
1422

Aditya Oke's avatar
Aditya Oke committed
1423
    @pytest.mark.parametrize(
1424
        "actual_box1, actual_box2, dtypes, atol, expected",
Aditya Oke's avatar
Aditya Oke committed
1425
        [
1426
1427
1428
            pytest.param(INT_BOXES, INT_BOXES2, [torch.int16, torch.int32, torch.int64], 1e-4, int_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float16], 0.002, float_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float32, torch.float64], 1e-3, float_expected),
Aditya Oke's avatar
Aditya Oke committed
1429
1430
        ],
    )
1431
1432
    def test_iou(self, actual_box1, actual_box2, dtypes, atol, expected):
        self._run_test(ops.box_iou, actual_box1, actual_box2, dtypes, atol, expected)
Aditya Oke's avatar
Aditya Oke committed
1433

Aditya Oke's avatar
Aditya Oke committed
1434
1435
    def test_iou_jit(self):
        self._run_jit_test(ops.box_iou, INT_BOXES)
Aditya Oke's avatar
Aditya Oke committed
1436

1437
1438
1439
    def test_iou_cartesian(self):
        self._run_cartesian_test(ops.box_iou)

1440

Aditya Oke's avatar
Aditya Oke committed
1441
class TestGeneralizedBoxIou(TestIouBase):
1442
    int_expected = [[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0], [0.0625, 0.25, -0.8819]]
Aditya Oke's avatar
Aditya Oke committed
1443
    float_expected = [[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]]
1444
1445

    @pytest.mark.parametrize(
1446
        "actual_box1, actual_box2, dtypes, atol, expected",
1447
        [
1448
1449
1450
            pytest.param(INT_BOXES, INT_BOXES2, [torch.int16, torch.int32, torch.int64], 1e-4, int_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float16], 0.002, float_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float32, torch.float64], 1e-3, float_expected),
1451
1452
        ],
    )
1453
1454
    def test_iou(self, actual_box1, actual_box2, dtypes, atol, expected):
        self._run_test(ops.generalized_box_iou, actual_box1, actual_box2, dtypes, atol, expected)
1455

Aditya Oke's avatar
Aditya Oke committed
1456
1457
    def test_iou_jit(self):
        self._run_jit_test(ops.generalized_box_iou, INT_BOXES)
1458

1459
1460
1461
    def test_iou_cartesian(self):
        self._run_cartesian_test(ops.generalized_box_iou)

1462

Aditya Oke's avatar
Aditya Oke committed
1463
class TestDistanceBoxIoU(TestIouBase):
1464
1465
1466
1467
1468
1469
    int_expected = [
        [1.0000, 0.1875, -0.4444],
        [0.1875, 1.0000, -0.5625],
        [-0.4444, -0.5625, 1.0000],
        [-0.0781, 0.1875, -0.6267],
    ]
Aditya Oke's avatar
Aditya Oke committed
1470
    float_expected = [[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]]
1471

Aditya Oke's avatar
Aditya Oke committed
1472
    @pytest.mark.parametrize(
1473
        "actual_box1, actual_box2, dtypes, atol, expected",
Aditya Oke's avatar
Aditya Oke committed
1474
        [
1475
1476
1477
            pytest.param(INT_BOXES, INT_BOXES2, [torch.int16, torch.int32, torch.int64], 1e-4, int_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float16], 0.002, float_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float32, torch.float64], 1e-3, float_expected),
Aditya Oke's avatar
Aditya Oke committed
1478
1479
        ],
    )
1480
1481
    def test_iou(self, actual_box1, actual_box2, dtypes, atol, expected):
        self._run_test(ops.distance_box_iou, actual_box1, actual_box2, dtypes, atol, expected)
1482

Aditya Oke's avatar
Aditya Oke committed
1483
1484
    def test_iou_jit(self):
        self._run_jit_test(ops.distance_box_iou, INT_BOXES)
1485

1486
1487
1488
    def test_iou_cartesian(self):
        self._run_cartesian_test(ops.distance_box_iou)

1489

Aditya Oke's avatar
Aditya Oke committed
1490
class TestCompleteBoxIou(TestIouBase):
1491
1492
1493
1494
1495
1496
    int_expected = [
        [1.0000, 0.1875, -0.4444],
        [0.1875, 1.0000, -0.5625],
        [-0.4444, -0.5625, 1.0000],
        [-0.0781, 0.1875, -0.6267],
    ]
Aditya Oke's avatar
Aditya Oke committed
1497
    float_expected = [[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]]
1498
1499

    @pytest.mark.parametrize(
1500
        "actual_box1, actual_box2, dtypes, atol, expected",
1501
        [
1502
1503
1504
            pytest.param(INT_BOXES, INT_BOXES2, [torch.int16, torch.int32, torch.int64], 1e-4, int_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float16], 0.002, float_expected),
            pytest.param(FLOAT_BOXES, FLOAT_BOXES, [torch.float32, torch.float64], 1e-3, float_expected),
1505
1506
        ],
    )
1507
1508
    def test_iou(self, actual_box1, actual_box2, dtypes, atol, expected):
        self._run_test(ops.complete_box_iou, actual_box1, actual_box2, dtypes, atol, expected)
1509

Aditya Oke's avatar
Aditya Oke committed
1510
1511
    def test_iou_jit(self):
        self._run_jit_test(ops.complete_box_iou, INT_BOXES)
1512

1513
1514
1515
    def test_iou_cartesian(self):
        self._run_cartesian_test(ops.complete_box_iou)

1516

Aditya Oke's avatar
Aditya Oke committed
1517
1518
1519
1520
1521
def get_boxes(dtype, device):
    box1 = torch.tensor([-1, -1, 1, 1], dtype=dtype, device=device)
    box2 = torch.tensor([0, 0, 1, 1], dtype=dtype, device=device)
    box3 = torch.tensor([0, 1, 1, 2], dtype=dtype, device=device)
    box4 = torch.tensor([1, 1, 2, 2], dtype=dtype, device=device)
1522

Aditya Oke's avatar
Aditya Oke committed
1523
1524
    box1s = torch.stack([box2, box2], dim=0)
    box2s = torch.stack([box3, box4], dim=0)
1525

Aditya Oke's avatar
Aditya Oke committed
1526
    return box1, box2, box3, box4, box1s, box2s
1527

Aditya Oke's avatar
Aditya Oke committed
1528

Aditya Oke's avatar
Aditya Oke committed
1529
1530
1531
1532
def assert_iou_loss(iou_fn, box1, box2, expected_loss, device, reduction="none"):
    computed_loss = iou_fn(box1, box2, reduction=reduction)
    expected_loss = torch.tensor(expected_loss, device=device)
    torch.testing.assert_close(computed_loss, expected_loss)
1533
1534


Aditya Oke's avatar
Aditya Oke committed
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
def assert_empty_loss(iou_fn, dtype, device):
    box1 = torch.randn([0, 4], dtype=dtype, device=device).requires_grad_()
    box2 = torch.randn([0, 4], dtype=dtype, device=device).requires_grad_()
    loss = iou_fn(box1, box2, reduction="mean")
    loss.backward()
    torch.testing.assert_close(loss, torch.tensor(0.0, device=device))
    assert box1.grad is not None, "box1.grad should not be None after backward is called"
    assert box2.grad is not None, "box2.grad should not be None after backward is called"
    loss = iou_fn(box1, box2, reduction="none")
    assert loss.numel() == 0, f"{str(iou_fn)} for two empty box should be empty"
Aditya Oke's avatar
Aditya Oke committed
1545

Aditya Oke's avatar
Aditya Oke committed
1546

Aditya Oke's avatar
Aditya Oke committed
1547
1548
class TestGeneralizedBoxIouLoss:
    # We refer to original test: https://github.com/facebookresearch/fvcore/blob/main/tests/test_giou_loss.py
1549
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1550
1551
1552
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_giou_loss(self, dtype, device):
        box1, box2, box3, box4, box1s, box2s = get_boxes(dtype, device)
Yassine Alouini's avatar
Yassine Alouini committed
1553

Aditya Oke's avatar
Aditya Oke committed
1554
1555
        # Identical boxes should have loss of 0
        assert_iou_loss(ops.generalized_box_iou_loss, box1, box1, 0.0, device=device)
Yassine Alouini's avatar
Yassine Alouini committed
1556

Aditya Oke's avatar
Aditya Oke committed
1557
1558
        # quarter size box inside other box = IoU of 0.25
        assert_iou_loss(ops.generalized_box_iou_loss, box1, box2, 0.75, device=device)
Yassine Alouini's avatar
Yassine Alouini committed
1559

Aditya Oke's avatar
Aditya Oke committed
1560
1561
1562
        # Two side by side boxes, area=union
        # IoU=0 and GIoU=0 (loss 1.0)
        assert_iou_loss(ops.generalized_box_iou_loss, box2, box3, 1.0, device=device)
Yassine Alouini's avatar
Yassine Alouini committed
1563

Aditya Oke's avatar
Aditya Oke committed
1564
1565
1566
        # Two diagonally adjacent boxes, area=2*union
        # IoU=0 and GIoU=-0.5 (loss 1.5)
        assert_iou_loss(ops.generalized_box_iou_loss, box2, box4, 1.5, device=device)
Yassine Alouini's avatar
Yassine Alouini committed
1567

Aditya Oke's avatar
Aditya Oke committed
1568
1569
1570
        # Test batched loss and reductions
        assert_iou_loss(ops.generalized_box_iou_loss, box1s, box2s, 2.5, device=device, reduction="sum")
        assert_iou_loss(ops.generalized_box_iou_loss, box1s, box2s, 1.25, device=device, reduction="mean")
Yassine Alouini's avatar
Yassine Alouini committed
1571

1572
1573
1574
1575
1576
        # Test reduction value
        # reduction value other than ["none", "mean", "sum"] should raise a ValueError
        with pytest.raises(ValueError, match="Invalid"):
            ops.generalized_box_iou_loss(box1s, box2s, reduction="xyz")

1577
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1578
1579
1580
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_empty_inputs(self, dtype, device):
        assert_empty_loss(ops.generalized_box_iou_loss, dtype, device)
Yassine Alouini's avatar
Yassine Alouini committed
1581
1582


Aditya Oke's avatar
Aditya Oke committed
1583
1584
class TestCompleteBoxIouLoss:
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
1585
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1586
1587
    def test_ciou_loss(self, dtype, device):
        box1, box2, box3, box4, box1s, box2s = get_boxes(dtype, device)
Yassine Alouini's avatar
Yassine Alouini committed
1588

Aditya Oke's avatar
Aditya Oke committed
1589
1590
1591
1592
1593
1594
        assert_iou_loss(ops.complete_box_iou_loss, box1, box1, 0.0, device=device)
        assert_iou_loss(ops.complete_box_iou_loss, box1, box2, 0.8125, device=device)
        assert_iou_loss(ops.complete_box_iou_loss, box1, box3, 1.1923, device=device)
        assert_iou_loss(ops.complete_box_iou_loss, box1, box4, 1.2500, device=device)
        assert_iou_loss(ops.complete_box_iou_loss, box1s, box2s, 1.2250, device=device, reduction="mean")
        assert_iou_loss(ops.complete_box_iou_loss, box1s, box2s, 2.4500, device=device, reduction="sum")
Yassine Alouini's avatar
Yassine Alouini committed
1595

1596
1597
1598
        with pytest.raises(ValueError, match="Invalid"):
            ops.complete_box_iou_loss(box1s, box2s, reduction="xyz")

1599
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1600
1601
1602
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_empty_inputs(self, dtype, device):
        assert_empty_loss(ops.complete_box_iou_loss, dtype, device)
Yassine Alouini's avatar
Yassine Alouini committed
1603
1604


Aditya Oke's avatar
Aditya Oke committed
1605
class TestDistanceBoxIouLoss:
1606
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1607
1608
1609
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_distance_iou_loss(self, dtype, device):
        box1, box2, box3, box4, box1s, box2s = get_boxes(dtype, device)
Yassine Alouini's avatar
Yassine Alouini committed
1610

Aditya Oke's avatar
Aditya Oke committed
1611
1612
1613
1614
1615
1616
        assert_iou_loss(ops.distance_box_iou_loss, box1, box1, 0.0, device=device)
        assert_iou_loss(ops.distance_box_iou_loss, box1, box2, 0.8125, device=device)
        assert_iou_loss(ops.distance_box_iou_loss, box1, box3, 1.1923, device=device)
        assert_iou_loss(ops.distance_box_iou_loss, box1, box4, 1.2500, device=device)
        assert_iou_loss(ops.distance_box_iou_loss, box1s, box2s, 1.2250, device=device, reduction="mean")
        assert_iou_loss(ops.distance_box_iou_loss, box1s, box2s, 2.4500, device=device, reduction="sum")
Yassine Alouini's avatar
Yassine Alouini committed
1617

1618
1619
1620
        with pytest.raises(ValueError, match="Invalid"):
            ops.distance_box_iou_loss(box1s, box2s, reduction="xyz")

1621
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1622
1623
1624
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_empty_distance_iou_inputs(self, dtype, device):
        assert_empty_loss(ops.distance_box_iou_loss, dtype, device)
Yassine Alouini's avatar
Yassine Alouini committed
1625
1626


Aditya Oke's avatar
Aditya Oke committed
1627
1628
1629
1630
class TestFocalLoss:
    def _generate_diverse_input_target_pair(self, shape=(5, 2), **kwargs):
        def logit(p):
            return torch.log(p / (1 - p))
Yassine Alouini's avatar
Yassine Alouini committed
1631

Aditya Oke's avatar
Aditya Oke committed
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
        def generate_tensor_with_range_type(shape, range_type, **kwargs):
            if range_type != "random_binary":
                low, high = {
                    "small": (0.0, 0.2),
                    "big": (0.8, 1.0),
                    "zeros": (0.0, 0.0),
                    "ones": (1.0, 1.0),
                    "random": (0.0, 1.0),
                }[range_type]
                return torch.testing.make_tensor(shape, low=low, high=high, **kwargs)
            else:
                return torch.randint(0, 2, shape, **kwargs)
Yassine Alouini's avatar
Yassine Alouini committed
1644

Aditya Oke's avatar
Aditya Oke committed
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
        # This function will return inputs and targets with shape: (shape[0]*9, shape[1])
        inputs = []
        targets = []
        for input_range_type, target_range_type in [
            ("small", "zeros"),
            ("small", "ones"),
            ("small", "random_binary"),
            ("big", "zeros"),
            ("big", "ones"),
            ("big", "random_binary"),
            ("random", "zeros"),
            ("random", "ones"),
            ("random", "random_binary"),
        ]:
            inputs.append(logit(generate_tensor_with_range_type(shape, input_range_type, **kwargs)))
            targets.append(generate_tensor_with_range_type(shape, target_range_type, **kwargs))
Yassine Alouini's avatar
Yassine Alouini committed
1661

Aditya Oke's avatar
Aditya Oke committed
1662
        return torch.cat(inputs), torch.cat(targets)
Yassine Alouini's avatar
Yassine Alouini committed
1663

Aditya Oke's avatar
Aditya Oke committed
1664
1665
    @pytest.mark.parametrize("alpha", [-1.0, 0.0, 0.58, 1.0])
    @pytest.mark.parametrize("gamma", [0, 2])
1666
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    @pytest.mark.parametrize("seed", [0, 1])
    def test_correct_ratio(self, alpha, gamma, device, dtype, seed):
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        # For testing the ratio with manual calculation, we require the reduction to be "none"
        reduction = "none"
        torch.random.manual_seed(seed)
        inputs, targets = self._generate_diverse_input_target_pair(dtype=dtype, device=device)
        focal_loss = ops.sigmoid_focal_loss(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)
        ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction=reduction)
Yassine Alouini's avatar
Yassine Alouini committed
1678

Aditya Oke's avatar
Aditya Oke committed
1679
1680
1681
        assert torch.all(
            focal_loss <= ce_loss
        ), "focal loss must be less or equal to cross entropy loss with same input"
Abhijit Deo's avatar
Abhijit Deo committed
1682

Aditya Oke's avatar
Aditya Oke committed
1683
1684
1685
1686
1687
1688
1689
        loss_ratio = (focal_loss / ce_loss).squeeze()
        prob = torch.sigmoid(inputs)
        p_t = prob * targets + (1 - prob) * (1 - targets)
        correct_ratio = (1.0 - p_t) ** gamma
        if alpha >= 0:
            alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
            correct_ratio = correct_ratio * alpha_t
Abhijit Deo's avatar
Abhijit Deo committed
1690

Aditya Oke's avatar
Aditya Oke committed
1691
1692
        tol = 1e-3 if dtype is torch.half else 1e-5
        torch.testing.assert_close(correct_ratio, loss_ratio, atol=tol, rtol=tol)
Abhijit Deo's avatar
Abhijit Deo committed
1693

Aditya Oke's avatar
Aditya Oke committed
1694
    @pytest.mark.parametrize("reduction", ["mean", "sum"])
1695
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    @pytest.mark.parametrize("seed", [2, 3])
    def test_equal_ce_loss(self, reduction, device, dtype, seed):
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        # focal loss should be equal ce_loss if alpha=-1 and gamma=0
        alpha = -1
        gamma = 0
        torch.random.manual_seed(seed)
        inputs, targets = self._generate_diverse_input_target_pair(dtype=dtype, device=device)
        inputs_fl = inputs.clone().requires_grad_()
        targets_fl = targets.clone()
        inputs_ce = inputs.clone().requires_grad_()
        targets_ce = targets.clone()
        focal_loss = ops.sigmoid_focal_loss(inputs_fl, targets_fl, gamma=gamma, alpha=alpha, reduction=reduction)
        ce_loss = F.binary_cross_entropy_with_logits(inputs_ce, targets_ce, reduction=reduction)
Abhijit Deo's avatar
Abhijit Deo committed
1712

Aditya Oke's avatar
Aditya Oke committed
1713
        torch.testing.assert_close(focal_loss, ce_loss)
Abhijit Deo's avatar
Abhijit Deo committed
1714

Aditya Oke's avatar
Aditya Oke committed
1715
1716
1717
        focal_loss.backward()
        ce_loss.backward()
        torch.testing.assert_close(inputs_fl.grad, inputs_ce.grad)
Abhijit Deo's avatar
Abhijit Deo committed
1718

Aditya Oke's avatar
Aditya Oke committed
1719
1720
1721
    @pytest.mark.parametrize("alpha", [-1.0, 0.0, 0.58, 1.0])
    @pytest.mark.parametrize("gamma", [0, 2])
    @pytest.mark.parametrize("reduction", ["none", "mean", "sum"])
1722
    @pytest.mark.parametrize("device", cpu_and_cuda())
Aditya Oke's avatar
Aditya Oke committed
1723
1724
1725
1726
1727
1728
1729
1730
1731
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    @pytest.mark.parametrize("seed", [4, 5])
    def test_jit(self, alpha, gamma, reduction, device, dtype, seed):
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        script_fn = torch.jit.script(ops.sigmoid_focal_loss)
        torch.random.manual_seed(seed)
        inputs, targets = self._generate_diverse_input_target_pair(dtype=dtype, device=device)
        focal_loss = ops.sigmoid_focal_loss(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)
1732
        scripted_focal_loss = script_fn(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)
Aditya Oke's avatar
Aditya Oke committed
1733
1734
1735

        tol = 1e-3 if dtype is torch.half else 1e-5
        torch.testing.assert_close(focal_loss, scripted_focal_loss, rtol=tol, atol=tol)
Abhijit Deo's avatar
Abhijit Deo committed
1736

1737
    # Raise ValueError for anonymous reduction mode
1738
    @pytest.mark.parametrize("device", cpu_and_cuda())
1739
1740
1741
1742
1743
1744
1745
1746
1747
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_reduction_mode(self, device, dtype, reduction="xyz"):
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        torch.random.manual_seed(0)
        inputs, targets = self._generate_diverse_input_target_pair(device=device, dtype=dtype)
        with pytest.raises(ValueError, match="Invalid"):
            ops.sigmoid_focal_loss(inputs, targets, 0.25, 2, reduction)

Abhijit Deo's avatar
Abhijit Deo committed
1748

1749
1750
class TestMasksToBoxes:
    def test_masks_box(self):
Aditya Oke's avatar
Aditya Oke committed
1751
        def masks_box_check(masks, expected, atol=1e-4):
1752
1753
            out = ops.masks_to_boxes(masks)
            assert out.dtype == torch.float
Aditya Oke's avatar
Aditya Oke committed
1754
            torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=True, atol=atol)
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770

        # Check for int type boxes.
        def _get_image():
            assets_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
            mask_path = os.path.join(assets_directory, "masks.tiff")
            image = Image.open(mask_path)
            return image

        def _create_masks(image, masks):
            for index in range(image.n_frames):
                image.seek(index)
                frame = np.array(image)
                masks[index] = torch.tensor(frame)

            return masks

1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
        expected = torch.tensor(
            [
                [127, 2, 165, 40],
                [2, 50, 44, 92],
                [56, 63, 98, 100],
                [139, 68, 175, 104],
                [160, 112, 198, 145],
                [49, 138, 99, 182],
                [108, 148, 152, 213],
            ],
            dtype=torch.float,
        )
1783
1784
1785
1786
1787
1788
1789
1790

        image = _get_image()
        for dtype in [torch.float16, torch.float32, torch.float64]:
            masks = torch.zeros((image.n_frames, image.height, image.width), dtype=dtype)
            masks = _create_masks(image, masks)
            masks_box_check(masks, expected)


1791
class TestStochasticDepth:
1792
    @pytest.mark.parametrize("seed", range(10))
1793
1794
    @pytest.mark.parametrize("p", [0.2, 0.5, 0.8])
    @pytest.mark.parametrize("mode", ["batch", "row"])
1795
1796
    def test_stochastic_depth_random(self, seed, mode, p):
        torch.manual_seed(seed)
1797
1798
1799
        stats = pytest.importorskip("scipy.stats")
        batch_size = 5
        x = torch.ones(size=(batch_size, 3, 4, 4))
1800
        layer = ops.StochasticDepth(p=p, mode=mode)
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
        layer.__repr__()

        trials = 250
        num_samples = 0
        counts = 0
        for _ in range(trials):
            out = layer(x)
            non_zero_count = out.sum(dim=(1, 2, 3)).nonzero().size(0)
            if mode == "batch":
                if non_zero_count == 0:
                    counts += 1
                num_samples += 1
            elif mode == "row":
                counts += batch_size - non_zero_count
                num_samples += batch_size

1817
        p_value = stats.binomtest(counts, num_samples, p=p).pvalue
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
        assert p_value > 0.01

    @pytest.mark.parametrize("seed", range(10))
    @pytest.mark.parametrize("p", (0, 1))
    @pytest.mark.parametrize("mode", ["batch", "row"])
    def test_stochastic_depth(self, seed, mode, p):
        torch.manual_seed(seed)
        batch_size = 5
        x = torch.ones(size=(batch_size, 3, 4, 4))
        layer = ops.StochasticDepth(p=p, mode=mode)

        out = layer(x)
        if p == 0:
            assert out.equal(x)
        elif p == 1:
            assert out.equal(torch.zeros_like(x))
1834

1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
    def make_obj(self, p, mode, wrap=False):
        obj = ops.StochasticDepth(p, mode)
        return StochasticDepthWrapper(obj) if wrap else obj

    @pytest.mark.parametrize("p", (0, 1))
    @pytest.mark.parametrize("mode", ["batch", "row"])
    def test_is_leaf_node(self, p, mode):
        op_obj = self.make_obj(p, mode, wrap=True)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

1849

1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
class TestUtils:
    @pytest.mark.parametrize("norm_layer", [None, nn.BatchNorm2d, nn.LayerNorm])
    def test_split_normalization_params(self, norm_layer):
        model = models.mobilenet_v3_large(norm_layer=norm_layer)
        params = ops._utils.split_normalization_params(model, None if norm_layer is None else [norm_layer])

        assert len(params[0]) == 92
        assert len(params[1]) == 82


1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
class TestDropBlock:
    @pytest.mark.parametrize("seed", range(10))
    @pytest.mark.parametrize("dim", [2, 3])
    @pytest.mark.parametrize("p", [0, 0.5])
    @pytest.mark.parametrize("block_size", [5, 11])
    @pytest.mark.parametrize("inplace", [True, False])
    def test_drop_block(self, seed, dim, p, block_size, inplace):
        torch.manual_seed(seed)
        batch_size = 5
        channels = 3
        height = 11
        width = height
        depth = height
        if dim == 2:
            x = torch.ones(size=(batch_size, channels, height, width))
            layer = ops.DropBlock2d(p=p, block_size=block_size, inplace=inplace)
            feature_size = height * width
        elif dim == 3:
            x = torch.ones(size=(batch_size, channels, depth, height, width))
            layer = ops.DropBlock3d(p=p, block_size=block_size, inplace=inplace)
            feature_size = depth * height * width
        layer.__repr__()

        out = layer(x)
        if p == 0:
            assert out.equal(x)
        if block_size == height:
            for b, c in product(range(batch_size), range(channels)):
                assert out[b, c].count_nonzero() in (0, feature_size)

    @pytest.mark.parametrize("seed", range(10))
    @pytest.mark.parametrize("dim", [2, 3])
    @pytest.mark.parametrize("p", [0.1, 0.2])
    @pytest.mark.parametrize("block_size", [3])
    @pytest.mark.parametrize("inplace", [False])
    def test_drop_block_random(self, seed, dim, p, block_size, inplace):
        torch.manual_seed(seed)
        batch_size = 5
        channels = 3
        height = 11
        width = height
        depth = height
        if dim == 2:
            x = torch.ones(size=(batch_size, channels, height, width))
            layer = ops.DropBlock2d(p=p, block_size=block_size, inplace=inplace)
        elif dim == 3:
            x = torch.ones(size=(batch_size, channels, depth, height, width))
            layer = ops.DropBlock3d(p=p, block_size=block_size, inplace=inplace)

        trials = 250
        num_samples = 0
        counts = 0
        cell_numel = torch.tensor(x.shape).prod()
        for _ in range(trials):
            with torch.no_grad():
                out = layer(x)
            non_zero_count = out.nonzero().size(0)
            counts += cell_numel - non_zero_count
            num_samples += cell_numel

        assert abs(p - counts / num_samples) / p < 0.15

    def make_obj(self, dim, p, block_size, inplace, wrap=False):
        if dim == 2:
            obj = ops.DropBlock2d(p, block_size, inplace)
        elif dim == 3:
            obj = ops.DropBlock3d(p, block_size, inplace)
        return DropBlockWrapper(obj) if wrap else obj

    @pytest.mark.parametrize("dim", (2, 3))
    @pytest.mark.parametrize("p", [0, 1])
    @pytest.mark.parametrize("block_size", [5, 7])
    @pytest.mark.parametrize("inplace", [True, False])
    def test_is_leaf_node(self, dim, p, block_size, inplace):
        op_obj = self.make_obj(dim, p, block_size, inplace, wrap=True)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs


1942
if __name__ == "__main__":
1943
    pytest.main([__file__])