"vscode:/vscode.git/clone" did not exist on "21aa666a1eeff87d3fc6f4f8a43167e1fdd0d3ad"
test_ops.py 65.9 KB
Newer Older
1
import math
2
import os
3
from abc import ABC, abstractmethod
4
from functools import lru_cache
5
from itertools import product
6
from typing import Callable, List, Tuple
7

8
import numpy as np
9
import pytest
10
import torch
11
import torch.fx
12
import torch.nn.functional as F
13
from common_utils import assert_equal, cpu_and_gpu, needs_cuda
14
from PIL import Image
15
from torch import nn, Tensor
16
from torch.autograd import gradcheck
17
from torch.nn.modules.utils import _pair
18
from torchvision import models, ops
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
from torchvision.models.feature_extraction import get_graph_node_names


class RoIOpTesterModuleWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 2

    def forward(self, a, b):
        self.layer(a, b)


class MultiScaleRoIAlignModuleWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 3

    def forward(self, a, b, c):
        self.layer(a, b, c)


class DeformConvModuleWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 3

    def forward(self, a, b, c):
        self.layer(a, b, c)


class StochasticDepthWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 1

    def forward(self, a):
        self.layer(a)
60
61


62
63
64
65
66
67
68
69
70
71
class DropBlockWrapper(nn.Module):
    def __init__(self, obj):
        super().__init__()
        self.layer = obj
        self.n_inputs = 1

    def forward(self, a):
        self.layer(a)


72
73
class RoIOpTester(ABC):
    dtype = torch.float64
74

75
76
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("contiguous", (True, False))
77
    def test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
78
79
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
80
81
82
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
83
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
84
85
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
86
87
88
89
90
        rois = torch.tensor(
            [[0, 0, 0, 9, 9], [0, 0, 5, 4, 9], [0, 5, 5, 9, 9], [1, 0, 0, 9, 9]],  # format is (xyxy)
            dtype=rois_dtype,
            device=device,
        )
91

92
        pool_h, pool_w = pool_size, pool_size
93
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs)
94
        # the following should be true whether we're running an autocast test or not.
95
        assert y.dtype == x.dtype
96
97
98
        gt_y = self.expected_fn(
            x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=device, dtype=self.dtype, **kwargs
        )
99

100
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
101
        torch.testing.assert_close(gt_y.to(y), y, rtol=tol, atol=tol)
102

103
104
105
106
107
108
109
110
111
    @pytest.mark.parametrize("device", cpu_and_gpu())
    def test_is_leaf_node(self, device):
        op_obj = self.make_obj(wrap=True).to(device=device)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

112
    @pytest.mark.parametrize("seed", range(10))
113
114
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("contiguous", (True, False))
115
116
    def test_backward(self, seed, device, contiguous):
        torch.random.manual_seed(seed)
117
118
119
120
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
121
122
123
        rois = torch.tensor(
            [[0, 0, 0, 4, 4], [0, 0, 2, 3, 4], [0, 2, 2, 4, 4]], dtype=self.dtype, device=device  # format is (xyxy)
        )
124

125
126
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
127

128
        script_func = self.get_script_fn(rois, pool_size)
129

130
131
        gradcheck(func, (x,))
        gradcheck(script_func, (x,))
132

133
    @needs_cuda
134
135
    @pytest.mark.parametrize("x_dtype", (torch.float, torch.half))
    @pytest.mark.parametrize("rois_dtype", (torch.float, torch.half))
136
137
138
    def test_autocast(self, x_dtype, rois_dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)
139
140
141

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
142
        with pytest.raises(AssertionError):
143
144
145
146
147
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
148
        with pytest.raises(AssertionError):
149
150
151
152
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

153
    @abstractmethod
154
155
    def fn(*args, **kwargs):
        pass
156

157
158
159
160
    @abstractmethod
    def make_obj(*args, **kwargs):
        pass

161
    @abstractmethod
162
163
    def get_script_fn(*args, **kwargs):
        pass
164

165
    @abstractmethod
166
167
    def expected_fn(*args, **kwargs):
        pass
168

169

170
class TestRoiPool(RoIOpTester):
171
172
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
173

174
175
176
177
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, wrap=False):
        obj = ops.RoIPool((pool_h, pool_w), spatial_scale)
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

178
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
179
180
        scriped = torch.jit.script(ops.roi_pool)
        return lambda x: scriped(x, rois, pool_size)
181

182
183
184
    def expected_fn(
        self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64
    ):
185
186
        if device is None:
            device = torch.device("cpu")
187

188
189
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
190

191
192
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
193

194
195
196
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
197
            roi_x = x[batch_idx, :, i_begin : i_end + 1, j_begin : j_end + 1]
198

199
200
201
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
202

203
204
205
206
207
208
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
209

210
    def test_boxes_shape(self):
211
212
        self._helper_boxes_shape(ops.roi_pool)

213

214
class TestPSRoIPool(RoIOpTester):
215
216
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
217

218
219
220
221
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, wrap=False):
        obj = ops.PSRoIPool((pool_h, pool_w), spatial_scale)
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

222
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
223
224
        scriped = torch.jit.script(ops.ps_roi_pool)
        return lambda x: scriped(x, rois, pool_size)
225

226
227
228
    def expected_fn(
        self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, device=None, dtype=torch.float64
    ):
229
230
231
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
232
        assert n_input_channels % (pool_h * pool_w) == 0, "input channels must be divisible by ph * pw"
233
234
235
236
237
238
239
240
241
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
242
            roi_x = x[batch_idx, :, i_begin : i_end + 1, j_begin : j_end + 1]
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
258

259
    def test_boxes_shape(self):
260
261
        self._helper_boxes_shape(ops.ps_roi_pool)

262

263
264
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
265

266
267
268
269
270
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
271

272
273
274
275
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
276

277
278
279
280
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
281

282
283
    wy_h = y - y_low
    wx_h = x - x_low
284
    wy_l = 1 - wy_h
285
    wx_l = 1 - wx_h
286

287
    val = 0
288
289
290
291
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
292
    return val
293
294


295
class TestRoIAlign(RoIOpTester):
AhnDW's avatar
AhnDW committed
296
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
297
298
299
        return ops.RoIAlign(
            (pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio, aligned=aligned
        )(x, rois)
300

301
302
303
304
305
306
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, sampling_ratio=-1, aligned=False, wrap=False):
        obj = ops.RoIAlign(
            (pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio, aligned=aligned
        )
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

307
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
308
309
        scriped = torch.jit.script(ops.roi_align)
        return lambda x: scriped(x, rois, pool_size)
310

311
312
313
314
315
316
317
318
319
320
321
322
    def expected_fn(
        self,
        in_data,
        rois,
        pool_h,
        pool_w,
        spatial_scale=1,
        sampling_ratio=-1,
        aligned=False,
        device=None,
        dtype=torch.float64,
    ):
323
324
        if device is None:
            device = torch.device("cpu")
325
326
327
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

328
        offset = 0.5 if aligned else 0.0
AhnDW's avatar
AhnDW committed
329

330
331
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
332
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
353
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
354
355
356
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
357
358
        return out_data

359
    def test_boxes_shape(self):
360
361
        self._helper_boxes_shape(ops.roi_align)

362
363
364
    @pytest.mark.parametrize("aligned", (True, False))
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("contiguous", (True, False))
365
    def test_forward(self, device, contiguous, aligned, x_dtype=None, rois_dtype=None):
366
367
368
        super().test_forward(
            device=device, contiguous=contiguous, x_dtype=x_dtype, rois_dtype=rois_dtype, aligned=aligned
        )
369

370
    @needs_cuda
371
372
373
    @pytest.mark.parametrize("aligned", (True, False))
    @pytest.mark.parametrize("x_dtype", (torch.float, torch.half))
    @pytest.mark.parametrize("rois_dtype", (torch.float, torch.half))
374
375
    def test_autocast(self, aligned, x_dtype, rois_dtype):
        with torch.cuda.amp.autocast():
376
377
378
            self.test_forward(
                torch.device("cuda"), contiguous=False, aligned=aligned, x_dtype=x_dtype, rois_dtype=rois_dtype
            )
379
380
381
382
383
384
385

    def _make_rois(self, img_size, num_imgs, dtype, num_rois=1000):
        rois = torch.randint(0, img_size // 2, size=(num_rois, 5)).to(dtype)
        rois[:, 0] = torch.randint(0, num_imgs, size=(num_rois,))  # set batch index
        rois[:, 3:] += rois[:, 1:3]  # make sure boxes aren't degenerate
        return rois

386
387
388
    @pytest.mark.parametrize("aligned", (True, False))
    @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 10), (0.1, 50)))
    @pytest.mark.parametrize("qdtype", (torch.qint8, torch.quint8, torch.qint32))
389
    def test_qroialign(self, aligned, scale, zero_point, qdtype):
390
391
392
393
394
395
396
        """Make sure quantized version of RoIAlign is close to float version"""
        pool_size = 5
        img_size = 10
        n_channels = 2
        num_imgs = 1
        dtype = torch.float

397
398
399
400
401
402
403
        x = torch.randint(50, 100, size=(num_imgs, n_channels, img_size, img_size)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=scale, zero_point=zero_point, dtype=qdtype)

        rois = self._make_rois(img_size, num_imgs, dtype)
        qrois = torch.quantize_per_tensor(rois, scale=scale, zero_point=zero_point, dtype=qdtype)

        x, rois = qx.dequantize(), qrois.dequantize()  # we want to pass the same inputs
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
        y = ops.roi_align(
            x,
            rois,
            output_size=pool_size,
            spatial_scale=1,
            sampling_ratio=-1,
            aligned=aligned,
        )
        qy = ops.roi_align(
            qx,
            qrois,
            output_size=pool_size,
            spatial_scale=1,
            sampling_ratio=-1,
            aligned=aligned,
        )

        # The output qy is itself a quantized tensor and there might have been a loss of info when it was
        # quantized. For a fair comparison we need to quantize y as well
        quantized_float_y = torch.quantize_per_tensor(y, scale=scale, zero_point=zero_point, dtype=qdtype)

        try:
            # Ideally, we would assert this, which passes with (scale, zero) == (1, 0)
            assert (qy == quantized_float_y).all()
        except AssertionError:
            # But because the computation aren't exactly the same between the 2 RoIAlign procedures, some
            # rounding error may lead to a difference of 2 in the output.
            # For example with (scale, zero) = (2, 10), 45.00000... will be quantized to 44
            # but 45.00000001 will be rounded to 46. We make sure below that:
            # - such discrepancies between qy and quantized_float_y are very rare (less then 5%)
            # - any difference between qy and quantized_float_y is == scale
            diff_idx = torch.where(qy != quantized_float_y)
            num_diff = diff_idx[0].numel()
438
            assert num_diff / qy.numel() < 0.05
439
440
441
442
443
444
445

            abs_diff = torch.abs(qy[diff_idx].dequantize() - quantized_float_y[diff_idx].dequantize())
            t_scale = torch.full_like(abs_diff, fill_value=scale)
            torch.testing.assert_close(abs_diff, t_scale, rtol=1e-5, atol=1e-5)

    def test_qroi_align_multiple_images(self):
        dtype = torch.float
446
447
        x = torch.randint(50, 100, size=(2, 3, 10, 10)).to(dtype)
        qx = torch.quantize_per_tensor(x, scale=1, zero_point=0, dtype=torch.qint8)
448
        rois = self._make_rois(img_size=10, num_imgs=2, dtype=dtype, num_rois=10)
449
        qrois = torch.quantize_per_tensor(rois, scale=1, zero_point=0, dtype=torch.qint8)
450
451
        with pytest.raises(RuntimeError, match="Only one image per batch is allowed"):
            ops.roi_align(qx, qrois, output_size=5)
452

453

454
class TestPSRoIAlign(RoIOpTester):
455
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
456
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio)(x, rois)
457

458
459
460
461
    def make_obj(self, pool_h=5, pool_w=5, spatial_scale=1, sampling_ratio=-1, wrap=False):
        obj = ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale, sampling_ratio=sampling_ratio)
        return RoIOpTesterModuleWrapper(obj) if wrap else obj

462
    def get_script_fn(self, rois, pool_size):
Nicolas Hug's avatar
Nicolas Hug committed
463
464
        scriped = torch.jit.script(ops.ps_roi_align)
        return lambda x: scriped(x, rois, pool_size)
465

466
467
468
    def expected_fn(
        self, in_data, rois, pool_h, pool_w, device, spatial_scale=1, sampling_ratio=-1, dtype=torch.float64
    ):
469
470
        if device is None:
            device = torch.device("cpu")
471
        n_input_channels = in_data.size(1)
472
        assert n_input_channels % (pool_h * pool_w) == 0, "input channels must be divisible by ph * pw"
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
499
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
500
501
502
503
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
504

505
    def test_boxes_shape(self):
506
507
        self._helper_boxes_shape(ops.ps_roi_align)

508

509
class TestMultiScaleRoIAlign:
510
511
512
513
514
515
    def make_obj(self, fmap_names=None, output_size=(7, 7), sampling_ratio=2, wrap=False):
        if fmap_names is None:
            fmap_names = ["0"]
        obj = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)
        return MultiScaleRoIAlignModuleWrapper(obj) if wrap else obj

516
    def test_msroialign_repr(self):
517
        fmap_names = ["0"]
518
519
520
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
521
        t = self.make_obj(fmap_names, output_size, sampling_ratio, wrap=False)
522
523

        # Check integrity of object __repr__ attribute
524
525
526
527
        expected_string = (
            f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
            f"sampling_ratio={sampling_ratio})"
        )
528
        assert repr(t) == expected_string
529

530
531
532
533
534
535
536
537
538
    @pytest.mark.parametrize("device", cpu_and_gpu())
    def test_is_leaf_node(self, device):
        op_obj = self.make_obj(wrap=True).to(device=device)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

539

540
541
class TestNMS:
    def _reference_nms(self, boxes, scores, iou_threshold):
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

564
565
566
567
568
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
569
570
571
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
572
        boxes = torch.rand(N, 4) * 100
573
574
575
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
576
        iou_thresh += 1e-5
577
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
578
579
580
        scores = torch.rand(N)
        return boxes, scores

581
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
582
583
584
    @pytest.mark.parametrize("seed", range(10))
    def test_nms_ref(self, iou, seed):
        torch.random.manual_seed(seed)
585
        err_msg = "NMS incompatible between CPU and reference implementation for IoU={}"
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        keep_ref = self._reference_nms(boxes, scores, iou)
        keep = ops.nms(boxes, scores, iou)
        assert torch.allclose(keep, keep_ref), err_msg.format(iou)

    def test_nms_input_errors(self):
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(4), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 5), torch.rand(3), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(3, 2), 0.5)
        with pytest.raises(RuntimeError):
            ops.nms(torch.rand(3, 4), torch.rand(4), 0.5)

601
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
602
603
    @pytest.mark.parametrize("scale, zero_point", ((1, 0), (2, 50), (3, 10)))
    def test_qnms(self, iou, scale, zero_point):
604
605
606
        # Note: we compare qnms vs nms instead of qnms vs reference implementation.
        # This is because with the int convertion, the trick used in _create_tensors_with_iou
        # doesn't really work (in fact, nms vs reference implem will also fail with ints)
607
        err_msg = "NMS and QNMS give different results for IoU={}"
608
609
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        scores *= 100  # otherwise most scores would be 0 or 1 after int convertion
610

611
612
        qboxes = torch.quantize_per_tensor(boxes, scale=scale, zero_point=zero_point, dtype=torch.quint8)
        qscores = torch.quantize_per_tensor(scores, scale=scale, zero_point=zero_point, dtype=torch.quint8)
613

614
615
        boxes = qboxes.dequantize()
        scores = qscores.dequantize()
616

617
618
        keep = ops.nms(boxes, scores, iou)
        qkeep = ops.nms(qboxes, qscores, iou)
619

620
        assert torch.allclose(qkeep, keep), err_msg.format(iou)
621

622
    @needs_cuda
623
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
624
    def test_nms_cuda(self, iou, dtype=torch.float64):
625
        tol = 1e-3 if dtype is torch.half else 1e-5
626
        err_msg = "NMS incompatible between CPU and CUDA for IoU={}"
627

628
629
630
631
632
633
634
635
636
637
638
639
        boxes, scores = self._create_tensors_with_iou(1000, iou)
        r_cpu = ops.nms(boxes, scores, iou)
        r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

        is_eq = torch.allclose(r_cpu, r_cuda.cpu())
        if not is_eq:
            # if the indices are not the same, ensure that it's because the scores
            # are duplicate
            is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
        assert is_eq, err_msg.format(iou)

    @needs_cuda
640
    @pytest.mark.parametrize("iou", (0.2, 0.5, 0.8))
641
642
643
644
645
646
    @pytest.mark.parametrize("dtype", (torch.float, torch.half))
    def test_autocast(self, iou, dtype):
        with torch.cuda.amp.autocast():
            self.test_nms_cuda(iou=iou, dtype=dtype)

    @needs_cuda
647
    def test_nms_cuda_float16(self):
648
649
650
651
652
653
654
        boxes = torch.tensor(
            [
                [285.3538, 185.5758, 1193.5110, 851.4551],
                [285.1472, 188.7374, 1192.4984, 851.0669],
                [279.2440, 197.9812, 1189.4746, 849.2019],
            ]
        ).cuda()
655
656
657
658
659
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).cuda()

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
660
        assert_equal(keep32, keep16)
661

662
663
    @pytest.mark.parametrize("seed", range(10))
    def test_batched_nms_implementations(self, seed):
664
        """Make sure that both implementations of batched_nms yield identical results"""
665
        torch.random.manual_seed(seed)
666
667

        num_boxes = 1000
668
        iou_threshold = 0.9
669
670
671
672
673
674
675
676
677
678

        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2

        scores = torch.rand(num_boxes)
        idxs = torch.randint(0, 4, size=(num_boxes,))
        keep_vanilla = ops.boxes._batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
        keep_trick = ops.boxes._batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)

679
680
681
        torch.testing.assert_close(
            keep_vanilla, keep_trick, msg="The vanilla and the trick implementation yield different nms outputs."
        )
682
683
684

        # Also make sure an empty tensor is returned if boxes is empty
        empty = torch.empty((0,), dtype=torch.int64)
685
        torch.testing.assert_close(empty, ops.batched_nms(empty, None, None, None))
686

687

688
689
690
class TestDeformConv:
    dtype = torch.float64

691
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
722
723
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
724
725
726
727

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

728
729
730
731
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

732
733
734
735
736
                                    out[b, c_out, i, j] += (
                                        mask_value
                                        * weight[c_out, c, di, dj]
                                        * bilinear_interpolate(x[b, c_in, :, :], pi, pj)
                                    )
737
738
739
        out += bias.view(1, n_out_channels, 1, 1)
        return out

740
    @lru_cache(maxsize=None)
741
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

760
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
761

762
763
764
765
766
767
768
769
770
        offset = torch.randn(
            batch_sz,
            n_offset_grps * 2 * weight_h * weight_w,
            out_h,
            out_w,
            device=device,
            dtype=dtype,
            requires_grad=True,
        )
771

772
773
774
        mask = torch.randn(
            batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w, device=device, dtype=dtype, requires_grad=True
        )
775

776
777
778
779
780
781
782
783
784
        weight = torch.randn(
            n_out_channels,
            n_in_channels // n_weight_grps,
            weight_h,
            weight_w,
            device=device,
            dtype=dtype,
            requires_grad=True,
        )
785

786
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
787
788
789
790

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
791
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
792
793
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

794
        return x, weight, offset, mask, bias, stride, pad, dilation
795

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
    def make_obj(self, in_channels=6, out_channels=2, kernel_size=(3, 2), groups=2, wrap=False):
        obj = ops.DeformConv2d(
            in_channels, out_channels, kernel_size, stride=(2, 1), padding=(1, 0), dilation=(2, 1), groups=groups
        )
        return DeformConvModuleWrapper(obj) if wrap else obj

    @pytest.mark.parametrize("device", cpu_and_gpu())
    def test_is_leaf_node(self, device):
        op_obj = self.make_obj(wrap=True).to(device=device)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

811
812
813
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("contiguous", (True, False))
    @pytest.mark.parametrize("batch_sz", (0, 33))
814
815
    def test_forward(self, device, contiguous, batch_sz, dtype=None):
        dtype = dtype or self.dtype
816
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
817
818
819
820
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
821
        tol = 2e-3 if dtype is torch.half else 1e-5
822

823
824
825
        layer = self.make_obj(in_channels, out_channels, kernel_size, groups, wrap=False).to(
            device=x.device, dtype=dtype
        )
826
        res = layer(x, offset, mask)
827
828
829

        weight = layer.weight.data
        bias = layer.bias.data
830
831
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

832
        torch.testing.assert_close(
833
            res.to(expected), expected, rtol=tol, atol=tol, msg=f"\nres:\n{res}\nexpected:\n{expected}"
834
        )
835
836
837
838

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
839

840
        torch.testing.assert_close(
841
            res.to(expected), expected, rtol=tol, atol=tol, msg=f"\nres:\n{res}\nexpected:\n{expected}"
842
        )
843

844
845
846
847
848
    def test_wrong_sizes(self):
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
849
850
851
852
853
854
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(
            "cpu", contiguous=True, batch_sz=10, dtype=self.dtype
        )
        layer = ops.DeformConv2d(
            in_channels, out_channels, kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups
        )
855
        with pytest.raises(RuntimeError, match="the shape of the offset"):
856
            wrong_offset = torch.rand_like(offset[:, :2])
857
            layer(x, wrong_offset)
858

859
        with pytest.raises(RuntimeError, match=r"mask.shape\[1\] is not valid"):
860
            wrong_mask = torch.rand_like(mask[:, :2])
861
            layer(x, offset, wrong_mask)
862

863
864
865
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("contiguous", (True, False))
    @pytest.mark.parametrize("batch_sz", (0, 33))
866
    def test_backward(self, device, contiguous, batch_sz):
867
868
869
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(
            device, contiguous, batch_sz, self.dtype
        )
870
871

        def func(x_, offset_, mask_, weight_, bias_):
872
873
874
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride, padding=padding, dilation=dilation, mask=mask_
            )
875

876
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5, fast_mode=True)
877
878

        def func_no_mask(x_, offset_, weight_, bias_):
879
880
881
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride, padding=padding, dilation=dilation, mask=None
            )
882

883
        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5, fast_mode=True)
884
885
886
887

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
888
889
890
891
892
893
894
895
896
897
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride_, padding=pad_, dilation=dilation_, mask=mask_
            )

        gradcheck(
            lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
            (x, offset, mask, weight, bias),
            nondet_tol=1e-5,
            fast_mode=True,
        )
898
899

        @torch.jit.script
900
901
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
902
903
904
905
906
907
908
909
910
911
            return ops.deform_conv2d(
                x_, offset_, weight_, bias_, stride=stride_, padding=pad_, dilation=dilation_, mask=None
            )

        gradcheck(
            lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
            (x, offset, weight, bias),
            nondet_tol=1e-5,
            fast_mode=True,
        )
912

913
    @needs_cuda
914
    @pytest.mark.parametrize("contiguous", (True, False))
915
    def test_compare_cpu_cuda_grads(self, contiguous):
916
917
918
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only

919
920
        # compare grads computed on CUDA with grads computed on CPU
        true_cpu_grads = None
921

922
923
924
925
        init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
        img = torch.randn(8, 9, 1000, 110)
        offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
        mask = torch.rand(8, 3 * 3, 1000, 110)
926

927
928
929
930
931
932
933
        if not contiguous:
            img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
        else:
            weight = init_weight
934

935
        for d in ["cpu", "cuda"]:
936

937
938
939
940
941
942
943
944
945
946
947
            out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
            out.mean().backward()
            if true_cpu_grads is None:
                true_cpu_grads = init_weight.grad
                assert true_cpu_grads is not None
            else:
                assert init_weight.grad is not None
                res_grads = init_weight.grad.to("cpu")
                torch.testing.assert_close(true_cpu_grads, res_grads)

    @needs_cuda
948
949
    @pytest.mark.parametrize("batch_sz", (0, 33))
    @pytest.mark.parametrize("dtype", (torch.float, torch.half))
950
951
952
953
    def test_autocast(self, batch_sz, dtype):
        with torch.cuda.amp.autocast():
            self.test_forward(torch.device("cuda"), contiguous=False, batch_sz=batch_sz, dtype=dtype)

954
955
956
957
    def test_forward_scriptability(self):
        # Non-regression test for https://github.com/pytorch/vision/issues/4078
        torch.jit.script(ops.DeformConv2d(in_channels=8, out_channels=8, kernel_size=3))

958
959

class TestFrozenBNT:
960
961
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
962
963
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
964
965

        # Check integrity of object __repr__ attribute
966
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
967
        assert repr(t) == expected_string
968

969
970
971
    @pytest.mark.parametrize("seed", range(10))
    def test_frozenbatchnorm2d_eps(self, seed):
        torch.random.manual_seed(seed)
972
973
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
974
975
976
977
978
979
980
        state_dict = dict(
            weight=torch.rand(sample_size[1]),
            bias=torch.rand(sample_size[1]),
            running_mean=torch.rand(sample_size[1]),
            running_var=torch.rand(sample_size[1]),
            num_batches_tracked=torch.tensor(100),
        )
981

982
        # Check that default eps is equal to the one of BN
983
984
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
985
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
986
987
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
988
        torch.testing.assert_close(fbn(x), bn(x), rtol=1e-5, atol=1e-6)
989
990
991
992
993
994

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
995
        torch.testing.assert_close(fbn(x), bn(x), rtol=1e-5, atol=1e-6)
996

997

998
class TestBoxConversion:
999
1000
1001
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
1002
1003
1004
1005
        box_list = [
            torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
            torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
        ]
1006
1007
1008
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

1009
    @pytest.mark.parametrize("box_sequence", _get_box_sequences())
1010
    def test_check_roi_boxes_shape(self, box_sequence):
1011
        # Ensure common sequences of tensors are supported
1012
        ops._utils.check_roi_boxes_shape(box_sequence)
1013

1014
    @pytest.mark.parametrize("box_sequence", _get_box_sequences())
1015
    def test_convert_boxes_to_roi_format(self, box_sequence):
1016
1017
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
1018
1019
1020
1021
        if ref_tensor is None:
            ref_tensor = box_sequence
        else:
            assert_equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence))
1022
1023


1024
class TestBox:
1025
    def test_bbox_same(self):
1026
1027
1028
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
1029

1030
        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
1031

1032
1033
1034
1035
        assert exp_xyxy.size() == torch.Size([4, 4])
        assert_equal(ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy"), exp_xyxy)
        assert_equal(ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh"), exp_xyxy)
        assert_equal(ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh"), exp_xyxy)
1036
1037
1038
1039

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
1040
1041
1042
1043
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)
1044

1045
        assert exp_xywh.size() == torch.Size([4, 4])
1046
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
1047
        assert_equal(box_xywh, exp_xywh)
1048
1049
1050

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
1051
        assert_equal(box_xyxy, box_tensor)
1052
1053
1054
1055

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
1056
1057
1058
1059
1060
1061
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
        exp_cxcywh = torch.tensor(
            [[50, 50, 100, 100], [0, 0, 0, 0], [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float
        )
1062

1063
        assert exp_cxcywh.size() == torch.Size([4, 4])
1064
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
1065
        assert_equal(box_cxcywh, exp_cxcywh)
1066
1067
1068

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
1069
        assert_equal(box_xyxy, box_tensor)
1070
1071

    def test_bbox_xywh_cxcywh(self):
1072
1073
1074
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float
        )
1075
1076

        # This is wrong
1077
1078
1079
        exp_cxcywh = torch.tensor(
            [[50, 50, 100, 100], [0, 0, 0, 0], [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float
        )
1080

1081
        assert exp_cxcywh.size() == torch.Size([4, 4])
1082
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
1083
        assert_equal(box_cxcywh, exp_cxcywh)
1084
1085
1086

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
1087
        assert_equal(box_xywh, box_tensor)
1088

1089
1090
    @pytest.mark.parametrize("inv_infmt", ["xwyh", "cxwyh"])
    @pytest.mark.parametrize("inv_outfmt", ["xwcx", "xhwcy"])
1091
    def test_bbox_invalid(self, inv_infmt, inv_outfmt):
1092
1093
1094
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float
        )
1095

1096
1097
        with pytest.raises(ValueError):
            ops.box_convert(box_tensor, inv_infmt, inv_outfmt)
1098
1099

    def test_bbox_convert_jit(self):
1100
1101
1102
        box_tensor = torch.tensor(
            [[0, 0, 100, 100], [0, 0, 0, 0], [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float
        )
1103

1104
1105
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
1106

1107
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
1108
        scripted_xywh = scripted_fn(box_tensor, "xyxy", "xywh")
1109
        torch.testing.assert_close(scripted_xywh, box_xywh, rtol=0.0, atol=TOLERANCE)
1110

1111
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
1112
        scripted_cxcywh = scripted_fn(box_tensor, "xyxy", "cxcywh")
1113
        torch.testing.assert_close(scripted_cxcywh, box_cxcywh, rtol=0.0, atol=TOLERANCE)
1114
1115


1116
1117
1118
1119
class BoxTestBase(ABC):
    @abstractmethod
    def _target_fn(self) -> Tuple[bool, Callable]:
        pass
1120

1121
1122
1123
1124
1125
    def _perform_box_operation(self, box: Tensor, run_as_script: bool = False) -> Tensor:
        is_binary_fn = self._target_fn()[0]
        target_fn = self._target_fn()[1]
        box_operation = torch.jit.script(target_fn) if run_as_script else target_fn
        return box_operation(box, box) if is_binary_fn else box_operation(box)
1126

1127
1128
1129
1130
    def _run_test(self, test_input: List, dtypes: List[torch.dtype], tolerance: float, expected: List) -> None:
        def assert_close(box: Tensor, expected: Tensor, tolerance):
            out = self._perform_box_operation(box)
            torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=tolerance)
Aditya Oke's avatar
Aditya Oke committed
1131

1132
1133
1134
1135
        for dtype in dtypes:
            actual_box = torch.tensor(test_input, dtype=dtype)
            expected_box = torch.tensor(expected)
            assert_close(actual_box, expected_box, tolerance)
Aditya Oke's avatar
Aditya Oke committed
1136

1137
1138
1139
1140
1141
    def _run_jit_test(self, test_input: List) -> None:
        box_tensor = torch.tensor(test_input, dtype=torch.float)
        expected = self._perform_box_operation(box_tensor, True)
        scripted_area = self._perform_box_operation(box_tensor, True)
        torch.testing.assert_close(scripted_area, expected, rtol=0.0, atol=1e-3)
Aditya Oke's avatar
Aditya Oke committed
1142

1143

1144
1145
1146
class TestBoxArea(BoxTestBase):
    def _target_fn(self) -> Tuple[bool, Callable]:
        return (False, ops.box_area)
Aditya Oke's avatar
Aditya Oke committed
1147

1148
1149
    def _generate_int_input() -> List[List[int]]:
        return [[0, 0, 100, 100], [0, 0, 0, 0]]
Aditya Oke's avatar
Aditya Oke committed
1150

1151
1152
    def _generate_int_expected() -> List[int]:
        return [10000, 0]
Aditya Oke's avatar
Aditya Oke committed
1153

1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
    def _generate_float_input(index: int) -> List[List[float]]:
        return [
            [
                [285.3538, 185.5758, 1193.5110, 851.4551],
                [285.1472, 188.7374, 1192.4984, 851.0669],
                [279.2440, 197.9812, 1189.4746, 849.2019],
            ],
            [[285.25, 185.625, 1194.0, 851.5], [285.25, 188.75, 1192.0, 851.0], [279.25, 198.0, 1189.0, 849.0]],
        ][index]

    def _generate_float_expected(index: int) -> List[float]:
        return [[604723.0806, 600965.4666, 592761.0085], [605113.875, 600495.1875, 592247.25]][index]

    @pytest.mark.parametrize(
        "test_input, dtypes, tolerance, expected",
        [
            pytest.param(
                _generate_int_input(),
                [torch.int8, torch.int16, torch.int32, torch.int64],
                1e-4,
                _generate_int_expected(),
            ),
            pytest.param(_generate_float_input(0), [torch.float32, torch.float64], 0.05, _generate_float_expected(0)),
            pytest.param(_generate_float_input(1), [torch.float16], 1e-4, _generate_float_expected(1)),
        ],
    )
    def test_box_area(self, test_input: List, dtypes: List[torch.dtype], tolerance: float, expected: List) -> None:
        self._run_test(test_input, dtypes, tolerance, expected)

    def test_box_area_jit(self) -> None:
        self._run_jit_test([[0, 0, 100, 100], [0, 0, 0, 0]])


class TestBoxIou(BoxTestBase):
    def _target_fn(self) -> Tuple[bool, Callable]:
        return (True, ops.box_iou)

    def _generate_int_input() -> List[List[int]]:
        return [[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]]

    def _generate_int_expected() -> List[List[float]]:
        return [[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]]

    def _generate_float_input() -> List[List[float]]:
        return [
            [285.3538, 185.5758, 1193.5110, 851.4551],
            [285.1472, 188.7374, 1192.4984, 851.0669],
            [279.2440, 197.9812, 1189.4746, 849.2019],
        ]
1203

1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
    def _generate_float_expected() -> List[List[float]]:
        return [[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]]

    @pytest.mark.parametrize(
        "test_input, dtypes, tolerance, expected",
        [
            pytest.param(
                _generate_int_input(), [torch.int16, torch.int32, torch.int64], 1e-4, _generate_int_expected()
            ),
            pytest.param(_generate_float_input(), [torch.float16], 0.002, _generate_float_expected()),
            pytest.param(_generate_float_input(), [torch.float32, torch.float64], 1e-4, _generate_float_expected()),
        ],
    )
    def test_iou(self, test_input: List, dtypes: List[torch.dtype], tolerance: float, expected: List) -> None:
        self._run_test(test_input, dtypes, tolerance, expected)

    def test_iou_jit(self) -> None:
        self._run_jit_test([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]])


class TestGenBoxIou(BoxTestBase):
    def _target_fn(self) -> Tuple[bool, Callable]:
        return (True, ops.generalized_box_iou)

    def _generate_int_input() -> List[List[int]]:
        return [[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]]

    def _generate_int_expected() -> List[List[float]]:
        return [[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0]]

    def _generate_float_input() -> List[List[float]]:
        return [
            [285.3538, 185.5758, 1193.5110, 851.4551],
            [285.1472, 188.7374, 1192.4984, 851.0669],
            [279.2440, 197.9812, 1189.4746, 849.2019],
        ]
Aditya Oke's avatar
Aditya Oke committed
1240

1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
    def _generate_float_expected() -> List[List[float]]:
        return [[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]]

    @pytest.mark.parametrize(
        "test_input, dtypes, tolerance, expected",
        [
            pytest.param(
                _generate_int_input(), [torch.int16, torch.int32, torch.int64], 1e-4, _generate_int_expected()
            ),
            pytest.param(_generate_float_input(), [torch.float16], 0.002, _generate_float_expected()),
            pytest.param(_generate_float_input(), [torch.float32, torch.float64], 0.001, _generate_float_expected()),
        ],
    )
    def test_gen_iou(self, test_input: List, dtypes: List[torch.dtype], tolerance: float, expected: List) -> None:
        self._run_test(test_input, dtypes, tolerance, expected)

    def test_giou_jit(self) -> None:
        self._run_jit_test([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]])
Aditya Oke's avatar
Aditya Oke committed
1259

Aditya Oke's avatar
Aditya Oke committed
1260

1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
class TestMasksToBoxes:
    def test_masks_box(self):
        def masks_box_check(masks, expected, tolerance=1e-4):
            out = ops.masks_to_boxes(masks)
            assert out.dtype == torch.float
            torch.testing.assert_close(out, expected, rtol=0.0, check_dtype=False, atol=tolerance)

        # Check for int type boxes.
        def _get_image():
            assets_directory = os.path.join(os.path.dirname(os.path.abspath(__file__)), "assets")
            mask_path = os.path.join(assets_directory, "masks.tiff")
            image = Image.open(mask_path)
            return image

        def _create_masks(image, masks):
            for index in range(image.n_frames):
                image.seek(index)
                frame = np.array(image)
                masks[index] = torch.tensor(frame)

            return masks

1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
        expected = torch.tensor(
            [
                [127, 2, 165, 40],
                [2, 50, 44, 92],
                [56, 63, 98, 100],
                [139, 68, 175, 104],
                [160, 112, 198, 145],
                [49, 138, 99, 182],
                [108, 148, 152, 213],
            ],
            dtype=torch.float,
        )
1295
1296
1297
1298
1299
1300
1301
1302

        image = _get_image()
        for dtype in [torch.float16, torch.float32, torch.float64]:
            masks = torch.zeros((image.n_frames, image.height, image.width), dtype=dtype)
            masks = _create_masks(image, masks)
            masks_box_check(masks, expected)


1303
class TestStochasticDepth:
1304
    @pytest.mark.parametrize("seed", range(10))
1305
1306
    @pytest.mark.parametrize("p", [0.2, 0.5, 0.8])
    @pytest.mark.parametrize("mode", ["batch", "row"])
1307
1308
    def test_stochastic_depth_random(self, seed, mode, p):
        torch.manual_seed(seed)
1309
1310
1311
        stats = pytest.importorskip("scipy.stats")
        batch_size = 5
        x = torch.ones(size=(batch_size, 3, 4, 4))
1312
        layer = ops.StochasticDepth(p=p, mode=mode)
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
        layer.__repr__()

        trials = 250
        num_samples = 0
        counts = 0
        for _ in range(trials):
            out = layer(x)
            non_zero_count = out.sum(dim=(1, 2, 3)).nonzero().size(0)
            if mode == "batch":
                if non_zero_count == 0:
                    counts += 1
                num_samples += 1
            elif mode == "row":
                counts += batch_size - non_zero_count
                num_samples += batch_size

        p_value = stats.binom_test(counts, num_samples, p=p)
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
        assert p_value > 0.01

    @pytest.mark.parametrize("seed", range(10))
    @pytest.mark.parametrize("p", (0, 1))
    @pytest.mark.parametrize("mode", ["batch", "row"])
    def test_stochastic_depth(self, seed, mode, p):
        torch.manual_seed(seed)
        batch_size = 5
        x = torch.ones(size=(batch_size, 3, 4, 4))
        layer = ops.StochasticDepth(p=p, mode=mode)

        out = layer(x)
        if p == 0:
            assert out.equal(x)
        elif p == 1:
            assert out.equal(torch.zeros_like(x))
1346

1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    def make_obj(self, p, mode, wrap=False):
        obj = ops.StochasticDepth(p, mode)
        return StochasticDepthWrapper(obj) if wrap else obj

    @pytest.mark.parametrize("p", (0, 1))
    @pytest.mark.parametrize("mode", ["batch", "row"])
    def test_is_leaf_node(self, p, mode):
        op_obj = self.make_obj(p, mode, wrap=True)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs

1361

1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
class TestUtils:
    @pytest.mark.parametrize("norm_layer", [None, nn.BatchNorm2d, nn.LayerNorm])
    def test_split_normalization_params(self, norm_layer):
        model = models.mobilenet_v3_large(norm_layer=norm_layer)
        params = ops._utils.split_normalization_params(model, None if norm_layer is None else [norm_layer])

        assert len(params[0]) == 92
        assert len(params[1]) == 82


1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
class TestDropBlock:
    @pytest.mark.parametrize("seed", range(10))
    @pytest.mark.parametrize("dim", [2, 3])
    @pytest.mark.parametrize("p", [0, 0.5])
    @pytest.mark.parametrize("block_size", [5, 11])
    @pytest.mark.parametrize("inplace", [True, False])
    def test_drop_block(self, seed, dim, p, block_size, inplace):
        torch.manual_seed(seed)
        batch_size = 5
        channels = 3
        height = 11
        width = height
        depth = height
        if dim == 2:
            x = torch.ones(size=(batch_size, channels, height, width))
            layer = ops.DropBlock2d(p=p, block_size=block_size, inplace=inplace)
            feature_size = height * width
        elif dim == 3:
            x = torch.ones(size=(batch_size, channels, depth, height, width))
            layer = ops.DropBlock3d(p=p, block_size=block_size, inplace=inplace)
            feature_size = depth * height * width
        layer.__repr__()

        out = layer(x)
        if p == 0:
            assert out.equal(x)
        if block_size == height:
            for b, c in product(range(batch_size), range(channels)):
                assert out[b, c].count_nonzero() in (0, feature_size)

    @pytest.mark.parametrize("seed", range(10))
    @pytest.mark.parametrize("dim", [2, 3])
    @pytest.mark.parametrize("p", [0.1, 0.2])
    @pytest.mark.parametrize("block_size", [3])
    @pytest.mark.parametrize("inplace", [False])
    def test_drop_block_random(self, seed, dim, p, block_size, inplace):
        torch.manual_seed(seed)
        batch_size = 5
        channels = 3
        height = 11
        width = height
        depth = height
        if dim == 2:
            x = torch.ones(size=(batch_size, channels, height, width))
            layer = ops.DropBlock2d(p=p, block_size=block_size, inplace=inplace)
        elif dim == 3:
            x = torch.ones(size=(batch_size, channels, depth, height, width))
            layer = ops.DropBlock3d(p=p, block_size=block_size, inplace=inplace)

        trials = 250
        num_samples = 0
        counts = 0
        cell_numel = torch.tensor(x.shape).prod()
        for _ in range(trials):
            with torch.no_grad():
                out = layer(x)
            non_zero_count = out.nonzero().size(0)
            counts += cell_numel - non_zero_count
            num_samples += cell_numel

        assert abs(p - counts / num_samples) / p < 0.15

    def make_obj(self, dim, p, block_size, inplace, wrap=False):
        if dim == 2:
            obj = ops.DropBlock2d(p, block_size, inplace)
        elif dim == 3:
            obj = ops.DropBlock3d(p, block_size, inplace)
        return DropBlockWrapper(obj) if wrap else obj

    @pytest.mark.parametrize("dim", (2, 3))
    @pytest.mark.parametrize("p", [0, 1])
    @pytest.mark.parametrize("block_size", [5, 7])
    @pytest.mark.parametrize("inplace", [True, False])
    def test_is_leaf_node(self, dim, p, block_size, inplace):
        op_obj = self.make_obj(dim, p, block_size, inplace, wrap=True)
        graph_node_names = get_graph_node_names(op_obj)

        assert len(graph_node_names) == 2
        assert len(graph_node_names[0]) == len(graph_node_names[1])
        assert len(graph_node_names[0]) == 1 + op_obj.n_inputs


1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
class TestFocalLoss:
    def _generate_diverse_input_target_pair(self, shape=(5, 2), **kwargs):
        def logit(p: Tensor) -> Tensor:
            return torch.log(p / (1 - p))

        def generate_tensor_with_range_type(shape, range_type, **kwargs):
            if range_type != "random_binary":
                low, high = {
                    "small": (0.0, 0.2),
                    "big": (0.8, 1.0),
                    "zeros": (0.0, 0.0),
                    "ones": (1.0, 1.0),
                    "random": (0.0, 1.0),
                }[range_type]
                return torch.testing.make_tensor(shape, low=low, high=high, **kwargs)
            else:
                return torch.randint(0, 2, shape, **kwargs)

        # This function will return inputs and targets with shape: (shape[0]*9, shape[1])
        inputs = []
        targets = []
        for input_range_type, target_range_type in [
            ("small", "zeros"),
            ("small", "ones"),
            ("small", "random_binary"),
            ("big", "zeros"),
            ("big", "ones"),
            ("big", "random_binary"),
            ("random", "zeros"),
            ("random", "ones"),
            ("random", "random_binary"),
        ]:
            inputs.append(logit(generate_tensor_with_range_type(shape, input_range_type, **kwargs)))
            targets.append(generate_tensor_with_range_type(shape, target_range_type, **kwargs))

        return torch.cat(inputs), torch.cat(targets)

    @pytest.mark.parametrize("alpha", [-1.0, 0.0, 0.58, 1.0])
    @pytest.mark.parametrize("gamma", [0, 2])
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    @pytest.mark.parametrize("seed", [0, 1])
    def test_correct_ratio(self, alpha, gamma, device, dtype, seed) -> None:
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        # For testing the ratio with manual calculation, we require the reduction to be "none"
        reduction = "none"
        torch.random.manual_seed(seed)
        inputs, targets = self._generate_diverse_input_target_pair(dtype=dtype, device=device)
        focal_loss = ops.sigmoid_focal_loss(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)
        ce_loss = F.binary_cross_entropy_with_logits(inputs, targets, reduction=reduction)

        assert torch.all(
            focal_loss <= ce_loss
        ), "focal loss must be less or equal to cross entropy loss with same input"

        loss_ratio = (focal_loss / ce_loss).squeeze()
        prob = torch.sigmoid(inputs)
        p_t = prob * targets + (1 - prob) * (1 - targets)
        correct_ratio = (1.0 - p_t) ** gamma
        if alpha >= 0:
            alpha_t = alpha * targets + (1 - alpha) * (1 - targets)
            correct_ratio = correct_ratio * alpha_t

        tol = 1e-3 if dtype is torch.half else 1e-5
        torch.testing.assert_close(correct_ratio, loss_ratio, rtol=tol, atol=tol)

    @pytest.mark.parametrize("reduction", ["mean", "sum"])
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    @pytest.mark.parametrize("seed", [2, 3])
    def test_equal_ce_loss(self, reduction, device, dtype, seed) -> None:
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        # focal loss should be equal ce_loss if alpha=-1 and gamma=0
        alpha = -1
        gamma = 0
        torch.random.manual_seed(seed)
        inputs, targets = self._generate_diverse_input_target_pair(dtype=dtype, device=device)
        inputs_fl = inputs.clone().requires_grad_()
        targets_fl = targets.clone()
        inputs_ce = inputs.clone().requires_grad_()
        targets_ce = targets.clone()
        focal_loss = ops.sigmoid_focal_loss(inputs_fl, targets_fl, gamma=gamma, alpha=alpha, reduction=reduction)
        ce_loss = F.binary_cross_entropy_with_logits(inputs_ce, targets_ce, reduction=reduction)

        tol = 1e-3 if dtype is torch.half else 1e-5
        torch.testing.assert_close(focal_loss, ce_loss, rtol=tol, atol=tol)

        focal_loss.backward()
        ce_loss.backward()
        torch.testing.assert_close(inputs_fl.grad, inputs_ce.grad, rtol=tol, atol=tol)

    @pytest.mark.parametrize("alpha", [-1.0, 0.0, 0.58, 1.0])
    @pytest.mark.parametrize("gamma", [0, 2])
    @pytest.mark.parametrize("reduction", ["none", "mean", "sum"])
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    @pytest.mark.parametrize("seed", [4, 5])
    def test_jit(self, alpha, gamma, reduction, device, dtype, seed) -> None:
        if device == "cpu" and dtype is torch.half:
            pytest.skip("Currently torch.half is not fully supported on cpu")
        script_fn = torch.jit.script(ops.sigmoid_focal_loss)
        torch.random.manual_seed(seed)
        inputs, targets = self._generate_diverse_input_target_pair(dtype=dtype, device=device)
        focal_loss = ops.sigmoid_focal_loss(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)
        if device == "cpu":
            scripted_focal_loss = script_fn(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)
        else:
            with torch.jit.fuser("fuser2"):
                # Use fuser2 to prevent a bug on fuser: https://github.com/pytorch/pytorch/issues/75476
                # We may remove this condition once the bug is resolved
                scripted_focal_loss = script_fn(inputs, targets, gamma=gamma, alpha=alpha, reduction=reduction)

        tol = 1e-3 if dtype is torch.half else 1e-5
        torch.testing.assert_close(focal_loss, scripted_focal_loss, rtol=tol, atol=tol)


YosuaMichael's avatar
YosuaMichael committed
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
class TestGeneralizedBoxIouLoss:
    # We refer to original test: https://github.com/facebookresearch/fvcore/blob/main/tests/test_giou_loss.py
    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_giou_loss(self, dtype, device) -> None:
        box1 = torch.tensor([-1, -1, 1, 1], dtype=dtype, device=device)
        box2 = torch.tensor([0, 0, 1, 1], dtype=dtype, device=device)
        box3 = torch.tensor([0, 1, 1, 2], dtype=dtype, device=device)
        box4 = torch.tensor([1, 1, 2, 2], dtype=dtype, device=device)
        box1s = torch.stack([box2, box2], dim=0)
        box2s = torch.stack([box3, box4], dim=0)

        def assert_giou_loss(box1, box2, expected_loss, reduction="none"):
            tol = 1e-3 if dtype is torch.half else 1e-5
            computed_loss = ops.generalized_box_iou_loss(box1, box2, reduction=reduction)
            expected_loss = torch.tensor(expected_loss, device=device)
            torch.testing.assert_close(computed_loss, expected_loss, rtol=tol, atol=tol)

        # Identical boxes should have loss of 0
        assert_giou_loss(box1, box1, 0.0)

        # quarter size box inside other box = IoU of 0.25
        assert_giou_loss(box1, box2, 0.75)

        # Two side by side boxes, area=union
        # IoU=0 and GIoU=0 (loss 1.0)
        assert_giou_loss(box2, box3, 1.0)

        # Two diagonally adjacent boxes, area=2*union
        # IoU=0 and GIoU=-0.5 (loss 1.5)
        assert_giou_loss(box2, box4, 1.5)

        # Test batched loss and reductions
        assert_giou_loss(box1s, box2s, 2.5, reduction="sum")
        assert_giou_loss(box1s, box2s, 1.25, reduction="mean")

    @pytest.mark.parametrize("device", cpu_and_gpu())
    @pytest.mark.parametrize("dtype", [torch.float32, torch.half])
    def test_empty_inputs(self, dtype, device) -> None:
        box1 = torch.randn([0, 4], dtype=dtype).requires_grad_()
        box2 = torch.randn([0, 4], dtype=dtype).requires_grad_()

        loss = ops.generalized_box_iou_loss(box1, box2, reduction="mean")
        loss.backward()

        tol = 1e-3 if dtype is torch.half else 1e-5
        torch.testing.assert_close(loss, torch.tensor(0.0), rtol=tol, atol=tol)
        assert box1.grad is not None, "box1.grad should not be None after backward is called"
        assert box2.grad is not None, "box2.grad should not be None after backward is called"

        loss = ops.generalized_box_iou_loss(box1, box2, reduction="none")
        assert loss.numel() == 0, "giou_loss for two empty box should be empty"


1626
if __name__ == "__main__":
1627
    pytest.main([__file__])