test_ops.py 38.1 KB
Newer Older
1
from common_utils import set_rng_seed
2
3
4
import math
import unittest

5
import numpy as np
6

7
import torch
8
from functools import lru_cache
9
from torch import Tensor
10
from torch.autograd import gradcheck
11
from torch.nn.modules.utils import _pair
12
from torchvision import ops
13
from typing import Tuple
14
15


16
class OpTester(object):
17
18
19
20
    @classmethod
    def setUpClass(cls):
        cls.dtype = torch.float64

21
22
    def test_forward_cpu_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=True)
23

24
25
    def test_forward_cpu_non_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=False)
26

27
28
    def test_backward_cpu_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=True)
29

30
31
    def test_backward_cpu_non_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=False)
32

33
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
34
35
    def test_forward_cuda_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=True)
36

37
38
39
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_forward_cuda_non_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=False)
40

41
42
43
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_backward_cuda_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=True)
44
45

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
46
47
48
    def test_backward_cuda_non_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=False)

49
50
51
52
53
54
55
56
    def _test_forward(self, device, contiguous):
        pass

    def _test_backward(self, device, contiguous):
        pass


class RoIOpTester(OpTester):
57
58
59
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None):
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
60
61
62
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
63
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
64
65
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
66
67
68
69
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
70
                            dtype=rois_dtype, device=device)
71

72
73
        pool_h, pool_w = pool_size, pool_size
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1)
74
75
        # the following should be true whether we're running an autocast test or not.
        self.assertTrue(y.dtype == x.dtype)
76
77
78
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
                                sampling_ratio=-1, device=device, dtype=self.dtype)

79
80
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
        self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
81
82
83
84
85
86
87
88
89
90

    def _test_backward(self, device, contiguous):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
91

92
93
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
94

95
        script_func = self.get_script_fn(rois, pool_size)
96

97
98
        self.assertTrue(gradcheck(func, (x,)))
        self.assertTrue(gradcheck(script_func, (x,)))
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def test_boxes_shape(self):
        self._test_boxes_shape()

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

116
117
    def fn(*args, **kwargs):
        pass
118

119
120
    def get_script_fn(*args, **kwargs):
        pass
121

122
123
    def expected_fn(*args, **kwargs):
        pass
124

125
126
127
128
129
130
131
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for x_dtype in (torch.float, torch.half):
            for rois_dtype in (torch.float, torch.half):
                with torch.cuda.amp.autocast():
                    self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)

132

133
134
135
class RoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
136

137
    def get_script_fn(self, rois, pool_size):
138
        @torch.jit.script
139
        def script_fn(input, rois, pool_size):
140
            # type: (Tensor, Tensor, int) -> Tensor
141
142
            return ops.roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
143

144
145
146
147
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
148

149
150
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
151

152
153
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
154

155
156
157
158
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
159

160
161
162
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
163

164
165
166
167
168
169
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
170

171
172
173
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_pool)

174

175
176
177
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
178

179
    def get_script_fn(self, rois, pool_size):
180
        @torch.jit.script
181
        def script_fn(input, rois, pool_size):
182
            # type: (Tensor, Tensor, int) -> Tensor
183
184
            return ops.ps_roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
217

218
219
220
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_pool)

221

222
223
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
224

225
226
227
228
229
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
230

231
232
233
234
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
235

236
237
238
239
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
240

241
242
    wy_h = y - y_low
    wx_h = x - x_low
243
    wy_l = 1 - wy_h
244
    wx_l = 1 - wx_h
245

246
    val = 0
247
248
249
250
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
251
    return val
252
253


254
class RoIAlignTester(RoIOpTester, unittest.TestCase):
AhnDW's avatar
AhnDW committed
255
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
256
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
257
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
258

259
260
261
    def get_script_fn(self, rois, pool_size):
        @torch.jit.script
        def script_fn(input, rois, pool_size):
262
            # type: (Tensor, Tensor, int) -> Tensor
263
264
            return ops.roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
265

AhnDW's avatar
AhnDW committed
266
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
267
                    device=None, dtype=torch.float64):
268
269
        if device is None:
            device = torch.device("cpu")
270
271
272
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
273
274
        offset = 0.5 if aligned else 0.

275
276
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
277
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
298
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
299
300
301
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
302
303
        return out_data

304
305
306
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_align)

307

308
309
310
311
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
312

313
    def get_script_fn(self, rois, pool_size):
314
        @torch.jit.script
315
        def script_fn(input, rois, pool_size):
316
            # type: (Tensor, Tensor, int) -> Tensor
317
318
            return ops.ps_roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
319

320
321
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
322
323
        if device is None:
            device = torch.device("cpu")
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        n_input_channels = in_data.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
352
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
353
354
355
356
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
357

358
359
360
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_align)

361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
class MultiScaleRoIAlignTester(unittest.TestCase):
    def test_msroialign_repr(self):
        fmap_names = ['0']
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
        t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)

        # Check integrity of object __repr__ attribute
        expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
                           f"sampling_ratio={sampling_ratio})")
        self.assertEqual(t.__repr__(), expected_string)


376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
class NMSTester(unittest.TestCase):
    def reference_nms(self, boxes, scores, iou_threshold):
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

400
401
402
403
404
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
405
406
407
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
408
        boxes = torch.rand(N, 4) * 100
409
410
411
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
412
        iou_thresh += 1e-5
413
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
414
415
416
417
418
419
        scores = torch.rand(N)
        return boxes, scores

    def test_nms(self):
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
        for iou in [0.2, 0.5, 0.8]:
420
            boxes, scores = self._create_tensors_with_iou(1000, iou)
421
422
            keep_ref = self.reference_nms(boxes, scores, iou)
            keep = ops.nms(boxes, scores, iou)
423
            self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou))
424
425
426
427
        self.assertRaises(RuntimeError, ops.nms, torch.rand(4), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 5), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(3, 2), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(4), 0.5)
428
429

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
430
431
    def test_nms_cuda(self, dtype=torch.float64):
        tol = 1e-3 if dtype is torch.half else 1e-5
432
433
434
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

        for iou in [0.2, 0.5, 0.8]:
435
            boxes, scores = self._create_tensors_with_iou(1000, iou)
436
437
438
            r_cpu = ops.nms(boxes, scores, iou)
            r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

439
440
441
442
            is_eq = torch.allclose(r_cpu, r_cuda.cpu())
            if not is_eq:
                # if the indices are not the same, ensure that it's because the scores
                # are duplicate
443
                is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
444
            self.assertTrue(is_eq, err_msg.format(iou))
445

446
447
448
449
450
451
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self.test_nms_cuda(dtype=dtype)

452

453
class DeformConvTester(OpTester, unittest.TestCase):
454
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
485
486
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
487
488
489
490

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

491
492
493
494
495
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

                                    out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
496
497
498
499
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

500
    @lru_cache(maxsize=None)
501
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

520
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
521
522

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
523
                             device=device, dtype=dtype, requires_grad=True)
524

525
526
527
        mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
                           device=device, dtype=dtype, requires_grad=True)

528
        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
529
                             device=device, dtype=dtype, requires_grad=True)
530

531
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
532
533
534
535

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
536
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
537
538
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

539
        return x, weight, offset, mask, bias, stride, pad, dilation
540

541
542
    def _test_forward(self, device, contiguous, dtype=None):
        dtype = self.dtype if dtype is None else dtype
543
        for batch_sz in [0, 33]:
544
            self._test_forward_with_batchsize(device, contiguous, batch_sz, dtype)
545

546
    def _test_forward_with_batchsize(self, device, contiguous, batch_sz, dtype):
547
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
548
549
550
551
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
552
        tol = 1e-3 if dtype is torch.half else 1e-5
553
554

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
555
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
556
        res = layer(x, offset, mask)
557
558
559

        weight = layer.weight.data
        bias = layer.bias.data
560
561
562
563
564
565
566
567
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
568

569
570
        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))
571

572
573
574
575
576
        # test for wrong sizes
        with self.assertRaises(RuntimeError):
            wrong_offset = torch.rand_like(offset[:, :2])
            res = layer(x, wrong_offset)

577
578
579
580
        with self.assertRaises(RuntimeError):
            wrong_mask = torch.rand_like(mask[:, :2])
            res = layer(x, offset, wrong_mask)

581
    def _test_backward(self, device, contiguous):
582
583
584
585
        for batch_sz in [0, 33]:
            self._test_backward_with_batchsize(device, contiguous, batch_sz)

    def _test_backward_with_batchsize(self, device, contiguous, batch_sz):
586
587
588
589
590
591
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
                                                                                    batch_sz, self.dtype)

        def func(x_, offset_, mask_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=mask_)
592

593
594
595
596
597
598
599
600
601
602
603
604
605
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5)

        def func_no_mask(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=None)

        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5)

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=mask_)
606

607
608
        gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
                  (x, offset, mask, weight, bias), nondet_tol=1e-5)
609
610

        @torch.jit.script
611
612
613
614
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=None)
615

616
        gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
617
618
                  (x, offset, weight, bias), nondet_tol=1e-5)

619
620
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_compare_cpu_cuda_grads(self):
621
622
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only
623
        for contiguous in [False, True]:
624
625
626
627
628
629
            # compare grads computed on CUDA with grads computed on CPU
            true_cpu_grads = None

            init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
            img = torch.randn(8, 9, 1000, 110)
            offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
630
            mask = torch.rand(8, 3 * 3, 1000, 110)
631
632
633
634

            if not contiguous:
                img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
                offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
635
                mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
636
637
638
639
640
641
                weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
            else:
                weight = init_weight

            for d in ["cpu", "cuda"]:

642
                out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
643
644
645
646
647
648
649
650
651
                out.mean().backward()
                if true_cpu_grads is None:
                    true_cpu_grads = init_weight.grad
                    self.assertTrue(true_cpu_grads is not None)
                else:
                    self.assertTrue(init_weight.grad is not None)
                    res_grads = init_weight.grad.to("cpu")
                    self.assertTrue(true_cpu_grads.allclose(res_grads))

652
653
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
654
        set_rng_seed(0)
655
656
657
658
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self._test_forward(torch.device("cuda"), False, dtype=dtype)

659

660
661
662
class FrozenBNTester(unittest.TestCase):
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
663
664
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
665
666

        # Check integrity of object __repr__ attribute
667
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
668
669
        self.assertEqual(t.__repr__(), expected_string)

670
671
672
673
674
675
676
677
678
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

679
        # Check that default eps is equal to the one of BN
680
681
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
682
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
        self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)

699

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
class BoxConversionTester(unittest.TestCase):
    @staticmethod
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

    def test_check_roi_boxes_shape(self):
        # Ensure common sequences of tensors are supported
        for box_sequence in self._get_box_sequences():
            self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))

    def test_convert_boxes_to_roi_format(self):
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
        for box_sequence in self._get_box_sequences():
            if ref_tensor is None:
                ref_tensor = box_sequence
            else:
                self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
class BoxTester(unittest.TestCase):
    def test_bbox_same(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        box_same = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        self.assertEqual(exp_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, exp_xywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xywh_cxcywh(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        # This is wrong
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
        self.assertEqual(box_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(box_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, box_tensor)).item()

805
806
807
808
809
810
811
812
813
814
815
816
817
    def test_bbox_invalid(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        invalid_infmts = ["xwyh", "cxwyh"]
        invalid_outfmts = ["xwcx", "xhwcy"]
        for inv_infmt in invalid_infmts:
            for inv_outfmt in invalid_outfmts:
                self.assertRaises(ValueError, ops.box_convert, box_tensor, inv_infmt, inv_outfmt)

    def test_bbox_convert_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
818

819
820
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
821

822
823
824
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
        self.assertTrue((scripted_xywh - box_xywh).abs().max() < TOLERANCE)
825

826
827
828
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
        self.assertTrue((scripted_cxcywh - box_cxcywh).abs().max() < TOLERANCE)
829
830


Aditya Oke's avatar
Aditya Oke committed
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
class BoxAreaTester(unittest.TestCase):
    def test_box_area(self):
        # A bounding box of area 10000 and a degenerate case
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=torch.float)
        expected = torch.tensor([10000, 0])
        calc_area = ops.box_area(box_tensor)
        assert calc_area.size() == torch.Size([2])
        assert calc_area.dtype == box_tensor.dtype
        assert torch.all(torch.eq(calc_area, expected)).item() is True


class BoxIouTester(unittest.TestCase):
    def test_iou(self):
        # Boxes to test Iou
        boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
        boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

        # Expected IoU matrix for these boxes
        expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])

        out = ops.box_iou(boxes1, boxes2)

        # Check if all elements of tensor are as expected.
        assert out.size() == torch.Size([3, 3])
        tolerance = 1e-4
        assert ((out - expected).abs().max() < tolerance).item() is True


class GenBoxIouTester(unittest.TestCase):
    def test_gen_iou(self):
        # Test Generalized IoU
        boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
        boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

        # Expected gIoU matrix for these boxes
        expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611],
                                [-0.7778, -0.8611, 1.0]])

        out = ops.generalized_box_iou(boxes1, boxes2)

        # Check if all elements of tensor are as expected.
        assert out.size() == torch.Size([3, 3])
        tolerance = 1e-4
        assert ((out - expected).abs().max() < tolerance).item() is True


877
878
if __name__ == '__main__':
    unittest.main()