test_ops.py 29.1 KB
Newer Older
1
2
3
import math
import unittest

4
import numpy as np
5

6
import torch
7
from torch import Tensor
8
from torch.autograd import gradcheck
9
10
from torch.jit.annotations import Tuple
from torch.nn.modules.utils import _pair
11
12
13
from torchvision import ops


14
class OpTester(object):
15
16
17
18
    @classmethod
    def setUpClass(cls):
        cls.dtype = torch.float64

19
20
    def test_forward_cpu_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=True)
21

22
23
    def test_forward_cpu_non_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=False)
24

25
26
    def test_backward_cpu_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=True)
27

28
29
    def test_backward_cpu_non_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=False)
30

31
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
32
33
    def test_forward_cuda_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=True)
34

35
36
37
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_forward_cuda_non_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=False)
38

39
40
41
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_backward_cuda_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=True)
42
43

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
44
45
46
    def test_backward_cuda_non_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=False)

47
48
49
50
51
52
53
54
    def _test_forward(self, device, contiguous):
        pass

    def _test_backward(self, device, contiguous):
        pass


class RoIOpTester(OpTester):
55
56
57
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None):
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
58
59
60
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
61
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
62
63
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
64
65
66
67
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
68
                            dtype=rois_dtype, device=device)
69

70
71
        pool_h, pool_w = pool_size, pool_size
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1)
72
73
        # the following should be true whether we're running an autocast test or not.
        self.assertTrue(y.dtype == x.dtype)
74
75
76
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
                                sampling_ratio=-1, device=device, dtype=self.dtype)

77
78
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
        self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
79
80
81
82
83
84
85
86
87
88

    def _test_backward(self, device, contiguous):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
89

90
91
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
92

93
        script_func = self.get_script_fn(rois, pool_size)
94

95
96
        self.assertTrue(gradcheck(func, (x,)))
        self.assertTrue(gradcheck(script_func, (x,)))
97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
    def test_boxes_shape(self):
        self._test_boxes_shape()

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

114
115
    def fn(*args, **kwargs):
        pass
116

117
118
    def get_script_fn(*args, **kwargs):
        pass
119

120
121
    def expected_fn(*args, **kwargs):
        pass
122
123


124
125
126
class RoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
127

128
    def get_script_fn(self, rois, pool_size):
129
        @torch.jit.script
130
        def script_fn(input, rois, pool_size):
131
            # type: (Tensor, Tensor, int) -> Tensor
132
133
            return ops.roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
134

135
136
137
138
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
139

140
141
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
142

143
144
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
145

146
147
148
149
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
150

151
152
153
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
154

155
156
157
158
159
160
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
161

162
163
164
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_pool)

165

166
167
168
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
169

170
    def get_script_fn(self, rois, pool_size):
171
        @torch.jit.script
172
        def script_fn(input, rois, pool_size):
173
            # type: (Tensor, Tensor, int) -> Tensor
174
175
            return ops.ps_roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
176

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
208

209
210
211
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_pool)

212

213
214
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
215

216
217
218
219
220
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
221

222
223
224
225
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
226

227
228
229
230
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
231

232
233
    wy_h = y - y_low
    wx_h = x - x_low
234
    wy_l = 1 - wy_h
235
    wx_l = 1 - wx_h
236

237
    val = 0
238
239
240
241
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
242
    return val
243
244


245
class RoIAlignTester(RoIOpTester, unittest.TestCase):
AhnDW's avatar
AhnDW committed
246
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
247
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
248
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
249

250
251
252
    def get_script_fn(self, rois, pool_size):
        @torch.jit.script
        def script_fn(input, rois, pool_size):
253
            # type: (Tensor, Tensor, int) -> Tensor
254
255
            return ops.roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
256

AhnDW's avatar
AhnDW committed
257
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
258
                    device=None, dtype=torch.float64):
259
260
        if device is None:
            device = torch.device("cpu")
261
262
263
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
264
265
        offset = 0.5 if aligned else 0.

266
267
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
268
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
289
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
290
291
292
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
293
294
        return out_data

295
296
297
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_align)

298
299
300
301
302
303
304
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_roi_align_autocast(self):
        for x_dtype in (torch.float, torch.half):
            for rois_dtype in (torch.float, torch.half):
                with torch.cuda.amp.autocast():
                    self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)

305

306
307
308
309
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
310

311
    def get_script_fn(self, rois, pool_size):
312
        @torch.jit.script
313
        def script_fn(input, rois, pool_size):
314
            # type: (Tensor, Tensor, int) -> Tensor
315
316
            return ops.ps_roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
317

318
319
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
320
321
        if device is None:
            device = torch.device("cpu")
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
        n_input_channels = in_data.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
350
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
351
352
353
354
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
355

356
357
358
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_align)

359

360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
class NMSTester(unittest.TestCase):
    def reference_nms(self, boxes, scores, iou_threshold):
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

384
385
386
387
388
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
389
390
391
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
392
        boxes = torch.rand(N, 4) * 100
393
394
395
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
396
        iou_thresh += 1e-5
397
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
398
399
400
401
402
403
        scores = torch.rand(N)
        return boxes, scores

    def test_nms(self):
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
        for iou in [0.2, 0.5, 0.8]:
404
            boxes, scores = self._create_tensors_with_iou(1000, iou)
405
406
            keep_ref = self.reference_nms(boxes, scores, iou)
            keep = ops.nms(boxes, scores, iou)
407
            self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou))
408
409
410
411
        self.assertRaises(RuntimeError, ops.nms, torch.rand(4), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 5), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(3, 2), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(4), 0.5)
412
413
414
415
416
417

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_nms_cuda(self):
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

        for iou in [0.2, 0.5, 0.8]:
418
            boxes, scores = self._create_tensors_with_iou(1000, iou)
419
420
421
            r_cpu = ops.nms(boxes, scores, iou)
            r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

422
423
424
425
426
427
            is_eq = torch.allclose(r_cpu, r_cuda.cpu())
            if not is_eq:
                # if the indices are not the same, ensure that it's because the scores
                # are duplicate
                is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()])
            self.assertTrue(is_eq, err_msg.format(iou))
428
429


eellison's avatar
eellison committed
430
431
432
433
434
435
436
437
438
class NewEmptyTensorTester(unittest.TestCase):
    def test_new_empty_tensor(self):
        input = torch.tensor([2., 2.], requires_grad=True)
        new_shape = [3, 3]
        out = torch.ops.torchvision._new_empty_tensor_op(input, new_shape)
        assert out.size() == torch.Size([3, 3])
        assert out.dtype == input.dtype


439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
class DeformConvTester(OpTester, unittest.TestCase):
    def expected_fn(self, x, weight, offset, bias, stride=1, padding=0, dilation=1):
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
                                    offset_idx = 2 * (offset_grp * (weight_h * weight_w) + di * weight_w + dj)

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

                                    out[b, c_out, i, j] += (weight[c_out, c, di, dj] *
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

    def get_fn_args(self, device, contiguous):
482
        batch_sz = 33
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=self.dtype, requires_grad=True)

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
                             device=device, dtype=self.dtype, requires_grad=True)

        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
                             device=device, dtype=self.dtype, requires_grad=True)

        bias = torch.randn(n_out_channels, device=device, dtype=self.dtype, requires_grad=True)

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

        return x, weight, offset, bias, stride, pad, dilation

    def _test_forward(self, device, contiguous):
        x, _, offset, _, stride, padding, dilation = self.get_fn_args(device, contiguous)
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
526
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=x.dtype)
527
528
529
530
531
532
533
534
        res = layer(x, offset)

        weight = layer.weight.data
        bias = layer.bias.data
        expected = self.expected_fn(x, weight, offset, bias, stride=stride, padding=padding, dilation=dilation)

        self.assertTrue(torch.allclose(res, expected), '\nres:\n{}\nexpected:\n{}'.format(res, expected))

535
536
537
538
539
        # test for wrong sizes
        with self.assertRaises(RuntimeError):
            wrong_offset = torch.rand_like(offset[:, :2])
            res = layer(x, wrong_offset)

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
    def _test_backward(self, device, contiguous):
        x, weight, offset, bias, stride, padding, dilation = self.get_fn_args(device, contiguous)

        def func(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride, padding=padding, dilation=dilation)

        gradcheck(func, (x, offset, weight, bias), nondet_tol=1e-5)

        @torch.jit.script
        def script_func(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type: (Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int]) -> Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_, padding=pad_, dilation=dilation_)

        gradcheck(lambda z, off, wei, bi: script_func(z, off, wei, bi, stride, padding, dilation),
                  (x, offset, weight, bias), nondet_tol=1e-5)

556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only
        if "cuda" in device.type:
            # compare grads computed on CUDA with grads computed on CPU
            true_cpu_grads = None

            init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
            img = torch.randn(8, 9, 1000, 110)
            offset = torch.rand(8, 2 * 3 * 3, 1000, 110)

            if not contiguous:
                img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
                offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
                weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
            else:
                weight = init_weight

            for d in ["cpu", "cuda"]:

                out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1)
                out.mean().backward()
                if true_cpu_grads is None:
                    true_cpu_grads = init_weight.grad
                    self.assertTrue(true_cpu_grads is not None)
                else:
                    self.assertTrue(init_weight.grad is not None)
                    res_grads = init_weight.grad.to("cpu")
                    self.assertTrue(true_cpu_grads.allclose(res_grads))

585

586
587
588
589
590
591
592
593
594
class FrozenBNTester(unittest.TestCase):
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
        t = ops.misc.FrozenBatchNorm2d(num_features)

        # Check integrity of object __repr__ attribute
        expected_string = f"FrozenBatchNorm2d({num_features})"
        self.assertEqual(t.__repr__(), expected_string)

595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

        # Check that default eps is zero for backward-compatibility
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=0).eval()
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
        self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)

624

625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
class BoxConversionTester(unittest.TestCase):
    @staticmethod
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

    def test_check_roi_boxes_shape(self):
        # Ensure common sequences of tensors are supported
        for box_sequence in self._get_box_sequences():
            self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))

    def test_convert_boxes_to_roi_format(self):
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
        for box_sequence in self._get_box_sequences():
            if ref_tensor is None:
                ref_tensor = box_sequence
            else:
                self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


Aditya Oke's avatar
Aditya Oke committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
class BoxAreaTester(unittest.TestCase):
    def test_box_area(self):
        # A bounding box of area 10000 and a degenerate case
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=torch.float)
        expected = torch.tensor([10000, 0])
        calc_area = ops.box_area(box_tensor)
        assert calc_area.size() == torch.Size([2])
        assert calc_area.dtype == box_tensor.dtype
        assert torch.all(torch.eq(calc_area, expected)).item() is True


class BoxIouTester(unittest.TestCase):
    def test_iou(self):
        # Boxes to test Iou
        boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
        boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

        # Expected IoU matrix for these boxes
        expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])

        out = ops.box_iou(boxes1, boxes2)

        # Check if all elements of tensor are as expected.
        assert out.size() == torch.Size([3, 3])
        tolerance = 1e-4
        assert ((out - expected).abs().max() < tolerance).item() is True


class GenBoxIouTester(unittest.TestCase):
    def test_gen_iou(self):
        # Test Generalized IoU
        boxes1 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)
        boxes2 = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=torch.float)

        # Expected gIoU matrix for these boxes
        expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611],
                                [-0.7778, -0.8611, 1.0]])

        out = ops.generalized_box_iou(boxes1, boxes2)

        # Check if all elements of tensor are as expected.
        assert out.size() == torch.Size([3, 3])
        tolerance = 1e-4
        assert ((out - expected).abs().max() < tolerance).item() is True


696
697
if __name__ == '__main__':
    unittest.main()