test_ops.py 41.9 KB
Newer Older
1
from common_utils import set_rng_seed
2
3
4
import math
import unittest

5
import numpy as np
6

7
import torch
8
from functools import lru_cache
9
from torch import Tensor
10
from torch.autograd import gradcheck
11
from torch.nn.modules.utils import _pair
12
from torchvision import ops
13
from typing import Tuple
14
15


16
class OpTester(object):
17
18
19
20
    @classmethod
    def setUpClass(cls):
        cls.dtype = torch.float64

21
22
    def test_forward_cpu_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=True)
23

24
25
    def test_forward_cpu_non_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=False)
26

27
28
    def test_backward_cpu_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=True)
29

30
31
    def test_backward_cpu_non_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=False)
32

33
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
34
35
    def test_forward_cuda_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=True)
36

37
38
39
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_forward_cuda_non_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=False)
40

41
42
43
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_backward_cuda_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=True)
44
45

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
46
47
48
    def test_backward_cuda_non_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=False)

49
50
51
52
53
54
55
56
    def _test_forward(self, device, contiguous):
        pass

    def _test_backward(self, device, contiguous):
        pass


class RoIOpTester(OpTester):
57
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
58
59
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
60
61
62
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
63
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
64
65
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
66
67
68
69
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
70
                            dtype=rois_dtype, device=device)
71

72
        pool_h, pool_w = pool_size, pool_size
73
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs)
74
75
        # the following should be true whether we're running an autocast test or not.
        self.assertTrue(y.dtype == x.dtype)
76
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
77
                                sampling_ratio=-1, device=device, dtype=self.dtype, **kwargs)
78

79
80
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
        self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
81
82
83
84
85
86
87
88
89
90

    def _test_backward(self, device, contiguous):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
91

92
93
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
94

95
        script_func = self.get_script_fn(rois, pool_size)
96

97
98
        self.assertTrue(gradcheck(func, (x,)))
        self.assertTrue(gradcheck(script_func, (x,)))
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def test_boxes_shape(self):
        self._test_boxes_shape()

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

116
117
    def fn(*args, **kwargs):
        pass
118

119
120
    def get_script_fn(*args, **kwargs):
        pass
121

122
123
    def expected_fn(*args, **kwargs):
        pass
124

125
126
127
128
129
130
131
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for x_dtype in (torch.float, torch.half):
            for rois_dtype in (torch.float, torch.half):
                with torch.cuda.amp.autocast():
                    self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)

132

133
134
135
class RoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
136

137
    def get_script_fn(self, rois, pool_size):
138
        @torch.jit.script
139
        def script_fn(input, rois, pool_size):
140
            # type: (Tensor, Tensor, int) -> Tensor
141
142
            return ops.roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
143

144
145
146
147
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
148

149
150
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
151

152
153
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
154

155
156
157
158
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
159

160
161
162
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
163

164
165
166
167
168
169
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
170

171
172
173
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_pool)

174

175
176
177
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
178

179
    def get_script_fn(self, rois, pool_size):
180
        @torch.jit.script
181
        def script_fn(input, rois, pool_size):
182
            # type: (Tensor, Tensor, int) -> Tensor
183
184
            return ops.ps_roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
217

218
219
220
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_pool)

221

222
223
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
224

225
226
227
228
229
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
230

231
232
233
234
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
235

236
237
238
239
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
240

241
242
    wy_h = y - y_low
    wx_h = x - x_low
243
    wy_l = 1 - wy_h
244
    wx_l = 1 - wx_h
245

246
    val = 0
247
248
249
250
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
251
    return val
252
253


254
class RoIAlignTester(RoIOpTester, unittest.TestCase):
AhnDW's avatar
AhnDW committed
255
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
256
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
257
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
258

259
260
261
    def get_script_fn(self, rois, pool_size):
        @torch.jit.script
        def script_fn(input, rois, pool_size):
262
            # type: (Tensor, Tensor, int) -> Tensor
263
264
            return ops.roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
265

AhnDW's avatar
AhnDW committed
266
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
267
                    device=None, dtype=torch.float64):
268
269
        if device is None:
            device = torch.device("cpu")
270
271
272
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
273
274
        offset = 0.5 if aligned else 0.

275
276
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
277
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
298
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
299
300
301
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
302
303
        return out_data

304
305
306
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_align)

307
308
309
310
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None, **kwargs):
        for aligned in (True, False):
            super()._test_forward(device, contiguous, x_dtype, rois_dtype, aligned=aligned)

311

312
313
314
315
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
316

317
    def get_script_fn(self, rois, pool_size):
318
        @torch.jit.script
319
        def script_fn(input, rois, pool_size):
320
            # type: (Tensor, Tensor, int) -> Tensor
321
322
            return ops.ps_roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
323

324
325
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
326
327
        if device is None:
            device = torch.device("cpu")
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
        n_input_channels = in_data.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
356
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
357
358
359
360
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
361

362
363
364
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_align)

365

366
367
368
369
370
371
372
373
374
375
376
377
378
379
class MultiScaleRoIAlignTester(unittest.TestCase):
    def test_msroialign_repr(self):
        fmap_names = ['0']
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
        t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)

        # Check integrity of object __repr__ attribute
        expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
                           f"sampling_ratio={sampling_ratio})")
        self.assertEqual(t.__repr__(), expected_string)


380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
class NMSTester(unittest.TestCase):
    def reference_nms(self, boxes, scores, iou_threshold):
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

404
405
406
407
408
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
409
410
411
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
412
        boxes = torch.rand(N, 4) * 100
413
414
415
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
416
        iou_thresh += 1e-5
417
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
418
419
420
421
422
423
        scores = torch.rand(N)
        return boxes, scores

    def test_nms(self):
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
        for iou in [0.2, 0.5, 0.8]:
424
            boxes, scores = self._create_tensors_with_iou(1000, iou)
425
426
            keep_ref = self.reference_nms(boxes, scores, iou)
            keep = ops.nms(boxes, scores, iou)
427
            self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou))
428
429
430
431
        self.assertRaises(RuntimeError, ops.nms, torch.rand(4), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 5), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(3, 2), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(4), 0.5)
432
433

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
434
435
    def test_nms_cuda(self, dtype=torch.float64):
        tol = 1e-3 if dtype is torch.half else 1e-5
436
437
438
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

        for iou in [0.2, 0.5, 0.8]:
439
            boxes, scores = self._create_tensors_with_iou(1000, iou)
440
441
442
            r_cpu = ops.nms(boxes, scores, iou)
            r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

443
444
445
446
            is_eq = torch.allclose(r_cpu, r_cuda.cpu())
            if not is_eq:
                # if the indices are not the same, ensure that it's because the scores
                # are duplicate
447
                is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
448
            self.assertTrue(is_eq, err_msg.format(iou))
449

450
451
452
453
454
455
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self.test_nms_cuda(dtype=dtype)

456
457
458
459
460
461
462
463
464
465
466
467
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_nms_cuda_float16(self):
        boxes = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                              [285.1472, 188.7374, 1192.4984, 851.0669],
                              [279.2440, 197.9812, 1189.4746, 849.2019]]).cuda()
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).cuda()

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
        self.assertTrue(torch.all(torch.eq(keep32, keep16)))

468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
    def test_batched_nms_implementations(self):
        """Make sure that both implementations of batched_nms yield identical results"""

        num_boxes = 1000
        iou_threshold = .9

        boxes = torch.cat((torch.rand(num_boxes, 2), torch.rand(num_boxes, 2) + 10), dim=1)
        assert max(boxes[:, 0]) < min(boxes[:, 2])  # x1 < x2
        assert max(boxes[:, 1]) < min(boxes[:, 3])  # y1 < y2

        scores = torch.rand(num_boxes)
        idxs = torch.randint(0, 4, size=(num_boxes,))
        keep_vanilla = ops.boxes._batched_nms_vanilla(boxes, scores, idxs, iou_threshold)
        keep_trick = ops.boxes._batched_nms_coordinate_trick(boxes, scores, idxs, iou_threshold)

        err_msg = "The vanilla and the trick implementation yield different nms outputs."
        self.assertTrue(torch.allclose(keep_vanilla, keep_trick), err_msg)

        # Also make sure an empty tensor is returned if boxes is empty
        empty = torch.empty((0,), dtype=torch.int64)
        self.assertTrue(torch.allclose(empty, ops.batched_nms(empty, None, None, None)))

490

491
class DeformConvTester(OpTester, unittest.TestCase):
492
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
523
524
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
525
526
527
528

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

529
530
531
532
533
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

                                    out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
534
535
536
537
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

538
    @lru_cache(maxsize=None)
539
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

558
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
559
560

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
561
                             device=device, dtype=dtype, requires_grad=True)
562

563
564
565
        mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
                           device=device, dtype=dtype, requires_grad=True)

566
        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
567
                             device=device, dtype=dtype, requires_grad=True)
568

569
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
570
571
572
573

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
574
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
575
576
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

577
        return x, weight, offset, mask, bias, stride, pad, dilation
578

579
580
    def _test_forward(self, device, contiguous, dtype=None):
        dtype = self.dtype if dtype is None else dtype
581
        for batch_sz in [0, 33]:
582
            self._test_forward_with_batchsize(device, contiguous, batch_sz, dtype)
583

584
    def _test_forward_with_batchsize(self, device, contiguous, batch_sz, dtype):
585
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
586
587
588
589
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
590
        tol = 2e-3 if dtype is torch.half else 1e-5
591
592

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
593
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
594
        res = layer(x, offset, mask)
595
596
597

        weight = layer.weight.data
        bias = layer.bias.data
598
599
600
601
602
603
604
605
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
606

607
608
        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))
609

610
611
612
613
614
        # test for wrong sizes
        with self.assertRaises(RuntimeError):
            wrong_offset = torch.rand_like(offset[:, :2])
            res = layer(x, wrong_offset)

615
616
617
618
        with self.assertRaises(RuntimeError):
            wrong_mask = torch.rand_like(mask[:, :2])
            res = layer(x, offset, wrong_mask)

619
    def _test_backward(self, device, contiguous):
620
621
622
623
        for batch_sz in [0, 33]:
            self._test_backward_with_batchsize(device, contiguous, batch_sz)

    def _test_backward_with_batchsize(self, device, contiguous, batch_sz):
624
625
626
627
628
629
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
                                                                                    batch_sz, self.dtype)

        def func(x_, offset_, mask_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=mask_)
630

631
632
633
634
635
636
637
638
639
640
641
642
643
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5)

        def func_no_mask(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=None)

        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5)

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=mask_)
644

645
646
        gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
                  (x, offset, mask, weight, bias), nondet_tol=1e-5)
647
648

        @torch.jit.script
649
650
651
652
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=None)
653

654
        gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
655
656
                  (x, offset, weight, bias), nondet_tol=1e-5)

657
658
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_compare_cpu_cuda_grads(self):
659
660
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only
661
        for contiguous in [False, True]:
662
663
664
665
666
667
            # compare grads computed on CUDA with grads computed on CPU
            true_cpu_grads = None

            init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
            img = torch.randn(8, 9, 1000, 110)
            offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
668
            mask = torch.rand(8, 3 * 3, 1000, 110)
669
670
671
672

            if not contiguous:
                img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
                offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
673
                mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
674
675
676
677
678
679
                weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
            else:
                weight = init_weight

            for d in ["cpu", "cuda"]:

680
                out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
681
682
683
684
685
686
687
688
689
                out.mean().backward()
                if true_cpu_grads is None:
                    true_cpu_grads = init_weight.grad
                    self.assertTrue(true_cpu_grads is not None)
                else:
                    self.assertTrue(init_weight.grad is not None)
                    res_grads = init_weight.grad.to("cpu")
                    self.assertTrue(true_cpu_grads.allclose(res_grads))

690
691
692
693
694
695
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self._test_forward(torch.device("cuda"), False, dtype=dtype)

696

697
698
699
class FrozenBNTester(unittest.TestCase):
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
700
701
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
702
703

        # Check integrity of object __repr__ attribute
704
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
705
706
        self.assertEqual(t.__repr__(), expected_string)

707
708
709
710
711
712
713
714
715
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

716
        # Check that default eps is equal to the one of BN
717
718
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
719
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
        self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)

736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
class BoxConversionTester(unittest.TestCase):
    @staticmethod
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

    def test_check_roi_boxes_shape(self):
        # Ensure common sequences of tensors are supported
        for box_sequence in self._get_box_sequences():
            self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))

    def test_convert_boxes_to_roi_format(self):
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
        for box_sequence in self._get_box_sequences():
            if ref_tensor is None:
                ref_tensor = box_sequence
            else:
                self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
class BoxTester(unittest.TestCase):
    def test_bbox_same(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        box_same = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        self.assertEqual(exp_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, exp_xywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xywh_cxcywh(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        # This is wrong
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
        self.assertEqual(box_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(box_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, box_tensor)).item()

842
843
844
845
846
847
848
849
850
851
852
853
854
    def test_bbox_invalid(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        invalid_infmts = ["xwyh", "cxwyh"]
        invalid_outfmts = ["xwcx", "xhwcy"]
        for inv_infmt in invalid_infmts:
            for inv_outfmt in invalid_outfmts:
                self.assertRaises(ValueError, ops.box_convert, box_tensor, inv_infmt, inv_outfmt)

    def test_bbox_convert_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
855

856
857
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
858

859
860
861
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
        self.assertTrue((scripted_xywh - box_xywh).abs().max() < TOLERANCE)
862

863
864
865
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
        self.assertTrue((scripted_cxcywh - box_cxcywh).abs().max() < TOLERANCE)
866
867


Aditya Oke's avatar
Aditya Oke committed
868
869
class BoxAreaTester(unittest.TestCase):
    def test_box_area(self):
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
        def area_check(box, expected, tolerance=1e-4):
            out = ops.box_area(box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
            box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=dtype)
            expected = torch.tensor([10000, 0])
            area_check(box_tensor, expected)

        # Check for float32 and float64 boxes
        for dtype in [torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([604723.0806, 600965.4666, 592761.0085], dtype=torch.float64)
            area_check(box_tensor, expected, tolerance=0.05)

        # Check for float16 box
        box_tensor = torch.tensor([[285.25, 185.625, 1194.0, 851.5],
                                   [285.25, 188.75, 1192.0, 851.0],
                                   [279.25, 198.0, 1189.0, 849.0]], dtype=torch.float16)
        expected = torch.tensor([605113.875, 600495.1875, 592247.25])
        area_check(box_tensor, expected)
Aditya Oke's avatar
Aditya Oke committed
895
896
897
898


class BoxIouTester(unittest.TestCase):
    def test_iou(self):
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
        def iou_check(box, expected, tolerance=1e-4):
            out = ops.box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])
            iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-4)
Aditya Oke's avatar
Aditya Oke committed
917
918
919
920


class GenBoxIouTester(unittest.TestCase):
    def test_gen_iou(self):
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        def gen_iou_check(box, expected, tolerance=1e-4):
            out = ops.generalized_box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0]])
            gen_iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            gen_iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-3)
Aditya Oke's avatar
Aditya Oke committed
939
940


941
942
if __name__ == '__main__':
    unittest.main()