test_ops.py 40.6 KB
Newer Older
1
from common_utils import set_rng_seed
2
3
4
import math
import unittest

5
import numpy as np
6

7
import torch
8
from functools import lru_cache
9
from torch import Tensor
10
from torch.autograd import gradcheck
11
from torch.nn.modules.utils import _pair
12
from torchvision import ops
13
from typing import Tuple
14
15


16
class OpTester(object):
17
18
19
20
    @classmethod
    def setUpClass(cls):
        cls.dtype = torch.float64

21
22
    def test_forward_cpu_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=True)
23

24
25
    def test_forward_cpu_non_contiguous(self):
        self._test_forward(device=torch.device('cpu'), contiguous=False)
26

27
28
    def test_backward_cpu_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=True)
29

30
31
    def test_backward_cpu_non_contiguous(self):
        self._test_backward(device=torch.device('cpu'), contiguous=False)
32

33
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
34
35
    def test_forward_cuda_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=True)
36

37
38
39
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_forward_cuda_non_contiguous(self):
        self._test_forward(device=torch.device('cuda'), contiguous=False)
40

41
42
43
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_backward_cuda_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=True)
44
45

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
46
47
48
    def test_backward_cuda_non_contiguous(self):
        self._test_backward(device=torch.device('cuda'), contiguous=False)

49
50
51
52
53
54
55
56
    def _test_forward(self, device, contiguous):
        pass

    def _test_backward(self, device, contiguous):
        pass


class RoIOpTester(OpTester):
57
58
59
    def _test_forward(self, device, contiguous, x_dtype=None, rois_dtype=None):
        x_dtype = self.dtype if x_dtype is None else x_dtype
        rois_dtype = self.dtype if rois_dtype is None else rois_dtype
60
61
62
        pool_size = 5
        # n_channels % (pool_size ** 2) == 0 required for PS opeartions.
        n_channels = 2 * (pool_size ** 2)
63
        x = torch.rand(2, n_channels, 10, 10, dtype=x_dtype, device=device)
64
65
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
66
67
68
69
        rois = torch.tensor([[0, 0, 0, 9, 9],  # format is (xyxy)
                             [0, 0, 5, 4, 9],
                             [0, 5, 5, 9, 9],
                             [1, 0, 0, 9, 9]],
70
                            dtype=rois_dtype, device=device)
71

72
73
        pool_h, pool_w = pool_size, pool_size
        y = self.fn(x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1)
74
75
        # the following should be true whether we're running an autocast test or not.
        self.assertTrue(y.dtype == x.dtype)
76
77
78
        gt_y = self.expected_fn(x, rois, pool_h, pool_w, spatial_scale=1,
                                sampling_ratio=-1, device=device, dtype=self.dtype)

79
80
        tol = 1e-3 if (x_dtype is torch.half or rois_dtype is torch.half) else 1e-5
        self.assertTrue(torch.allclose(gt_y.to(y.dtype), y, rtol=tol, atol=tol))
81
82
83
84
85
86
87
88
89
90

    def _test_backward(self, device, contiguous):
        pool_size = 2
        x = torch.rand(1, 2 * (pool_size ** 2), 5, 5, dtype=self.dtype, device=device, requires_grad=True)
        if not contiguous:
            x = x.permute(0, 1, 3, 2)
        rois = torch.tensor([[0, 0, 0, 4, 4],  # format is (xyxy)
                             [0, 0, 2, 3, 4],
                             [0, 2, 2, 4, 4]],
                            dtype=self.dtype, device=device)
91

92
93
        def func(z):
            return self.fn(z, rois, pool_size, pool_size, spatial_scale=1, sampling_ratio=1)
94

95
        script_func = self.get_script_fn(rois, pool_size)
96

97
98
        self.assertTrue(gradcheck(func, (x,)))
        self.assertTrue(gradcheck(script_func, (x,)))
99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
    def test_boxes_shape(self):
        self._test_boxes_shape()

    def _helper_boxes_shape(self, func):
        # test boxes as Tensor[N, 5]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3, 3]], dtype=a.dtype)
            func(a, boxes, output_size=(2, 2))

        # test boxes as List[Tensor[N, 4]]
        with self.assertRaises(AssertionError):
            a = torch.linspace(1, 8 * 8, 8 * 8).reshape(1, 1, 8, 8)
            boxes = torch.tensor([[0, 0, 3]], dtype=a.dtype)
            ops.roi_pool(a, [boxes], output_size=(2, 2))

116
117
    def fn(*args, **kwargs):
        pass
118

119
120
    def get_script_fn(*args, **kwargs):
        pass
121

122
123
    def expected_fn(*args, **kwargs):
        pass
124

125
126
127
128
129
130
131
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for x_dtype in (torch.float, torch.half):
            for rois_dtype in (torch.float, torch.half):
                with torch.cuda.amp.autocast():
                    self._test_forward(torch.device("cuda"), contiguous=False, x_dtype=x_dtype, rois_dtype=rois_dtype)

132

133
134
135
class RoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.RoIPool((pool_h, pool_w), spatial_scale)(x, rois)
136

137
    def get_script_fn(self, rois, pool_size):
138
        @torch.jit.script
139
        def script_fn(input, rois, pool_size):
140
            # type: (Tensor, Tensor, int) -> Tensor
141
142
            return ops.roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
143

144
145
146
147
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
148

149
150
        n_channels = x.size(1)
        y = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)
151

152
153
        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))
154

155
156
157
158
        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]
159

160
161
162
            roi_h, roi_w = roi_x.shape[-2:]
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w
163

164
165
166
167
168
169
            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        y[roi_idx, :, i, j] = bin_x.reshape(n_channels, -1).max(dim=1)[0]
        return y
170

171
172
173
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_pool)

174

175
176
177
class PSRoIPoolTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIPool((pool_h, pool_w), 1)(x, rois)
178

179
    def get_script_fn(self, rois, pool_size):
180
        @torch.jit.script
181
        def script_fn(input, rois, pool_size):
182
            # type: (Tensor, Tensor, int) -> Tensor
183
184
            return ops.ps_roi_pool(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
    def expected_fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1,
                    device=None, dtype=torch.float64):
        if device is None:
            device = torch.device("cpu")
        n_input_channels = x.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        y = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        def get_slice(k, block):
            return slice(int(np.floor(k * block)), int(np.ceil((k + 1) * block)))

        for roi_idx, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (int(round(x.item() * spatial_scale)) for x in roi[1:])
            roi_x = x[batch_idx, :, i_begin:i_end + 1, j_begin:j_end + 1]

            roi_height = max(i_end - i_begin, 1)
            roi_width = max(j_end - j_begin, 1)
            bin_h, bin_w = roi_height / float(pool_h), roi_width / float(pool_w)

            for i in range(0, pool_h):
                for j in range(0, pool_w):
                    bin_x = roi_x[:, get_slice(i, bin_h), get_slice(j, bin_w)]
                    if bin_x.numel() > 0:
                        area = bin_x.size(-2) * bin_x.size(-1)
                        for c_out in range(0, n_output_channels):
                            c_in = c_out * (pool_h * pool_w) + pool_w * i + j
                            t = torch.sum(bin_x[c_in, :, :])
                            y[roi_idx, c_out, i, j] = t / area
        return y
217

218
219
220
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_pool)

221

222
223
def bilinear_interpolate(data, y, x, snap_border=False):
    height, width = data.shape
224

225
226
227
228
229
    if snap_border:
        if -1 < y <= 0:
            y = 0
        elif height - 1 <= y < height:
            y = height - 1
230

231
232
233
234
        if -1 < x <= 0:
            x = 0
        elif width - 1 <= x < width:
            x = width - 1
235

236
237
238
239
    y_low = int(math.floor(y))
    x_low = int(math.floor(x))
    y_high = y_low + 1
    x_high = x_low + 1
240

241
242
    wy_h = y - y_low
    wx_h = x - x_low
243
    wy_l = 1 - wy_h
244
    wx_l = 1 - wx_h
245

246
    val = 0
247
248
249
250
    for wx, xp in zip((wx_l, wx_h), (x_low, x_high)):
        for wy, yp in zip((wy_l, wy_h), (y_low, y_high)):
            if 0 <= yp < height and 0 <= xp < width:
                val += wx * wy * data[yp, xp]
251
    return val
252
253


254
class RoIAlignTester(RoIOpTester, unittest.TestCase):
AhnDW's avatar
AhnDW committed
255
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False, **kwargs):
256
        return ops.RoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
AhnDW's avatar
AhnDW committed
257
                            sampling_ratio=sampling_ratio, aligned=aligned)(x, rois)
258

259
260
261
    def get_script_fn(self, rois, pool_size):
        @torch.jit.script
        def script_fn(input, rois, pool_size):
262
            # type: (Tensor, Tensor, int) -> Tensor
263
264
            return ops.roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
265

AhnDW's avatar
AhnDW committed
266
    def expected_fn(self, in_data, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, aligned=False,
267
                    device=None, dtype=torch.float64):
268
269
        if device is None:
            device = torch.device("cpu")
270
271
272
        n_channels = in_data.size(1)
        out_data = torch.zeros(rois.size(0), n_channels, pool_h, pool_w, dtype=dtype, device=device)

AhnDW's avatar
AhnDW committed
273
274
        offset = 0.5 if aligned else 0.

275
276
        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
AhnDW's avatar
AhnDW committed
277
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - offset for x in roi[1:])
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))

                    for channel in range(0, n_channels):

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
298
                                val += bilinear_interpolate(in_data[batch_idx, channel, :, :], y, x, snap_border=True)
299
300
301
                        val /= grid_h * grid_w

                        out_data[r, channel, i, j] = val
302
303
        return out_data

304
305
306
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.roi_align)

307

308
309
310
311
class PSRoIAlignTester(RoIOpTester, unittest.TestCase):
    def fn(self, x, rois, pool_h, pool_w, spatial_scale=1, sampling_ratio=-1, **kwargs):
        return ops.PSRoIAlign((pool_h, pool_w), spatial_scale=spatial_scale,
                              sampling_ratio=sampling_ratio)(x, rois)
312

313
    def get_script_fn(self, rois, pool_size):
314
        @torch.jit.script
315
        def script_fn(input, rois, pool_size):
316
            # type: (Tensor, Tensor, int) -> Tensor
317
318
            return ops.ps_roi_align(input, rois, pool_size, 1.0)[0]
        return lambda x: script_fn(x, rois, pool_size)
319

320
321
    def expected_fn(self, in_data, rois, pool_h, pool_w, device, spatial_scale=1,
                    sampling_ratio=-1, dtype=torch.float64):
322
323
        if device is None:
            device = torch.device("cpu")
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
        n_input_channels = in_data.size(1)
        self.assertEqual(n_input_channels % (pool_h * pool_w), 0, "input channels must be divisible by ph * pw")
        n_output_channels = int(n_input_channels / (pool_h * pool_w))
        out_data = torch.zeros(rois.size(0), n_output_channels, pool_h, pool_w, dtype=dtype, device=device)

        for r, roi in enumerate(rois):
            batch_idx = int(roi[0])
            j_begin, i_begin, j_end, i_end = (x.item() * spatial_scale - 0.5 for x in roi[1:])

            roi_h = i_end - i_begin
            roi_w = j_end - j_begin
            bin_h = roi_h / pool_h
            bin_w = roi_w / pool_w

            for i in range(0, pool_h):
                start_h = i_begin + i * bin_h
                grid_h = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_h))
                for j in range(0, pool_w):
                    start_w = j_begin + j * bin_w
                    grid_w = sampling_ratio if sampling_ratio > 0 else int(np.ceil(bin_w))
                    for c_out in range(0, n_output_channels):
                        c_in = c_out * (pool_h * pool_w) + pool_w * i + j

                        val = 0
                        for iy in range(0, grid_h):
                            y = start_h + (iy + 0.5) * bin_h / grid_h
                            for ix in range(0, grid_w):
                                x = start_w + (ix + 0.5) * bin_w / grid_w
352
                                val += bilinear_interpolate(in_data[batch_idx, c_in, :, :], y, x, snap_border=True)
353
354
355
356
                        val /= grid_h * grid_w

                        out_data[r, c_out, i, j] = val
        return out_data
357

358
359
360
    def _test_boxes_shape(self):
        self._helper_boxes_shape(ops.ps_roi_align)

361

362
363
364
365
366
367
368
369
370
371
372
373
374
375
class MultiScaleRoIAlignTester(unittest.TestCase):
    def test_msroialign_repr(self):
        fmap_names = ['0']
        output_size = (7, 7)
        sampling_ratio = 2
        # Pass mock feature map names
        t = ops.poolers.MultiScaleRoIAlign(fmap_names, output_size, sampling_ratio)

        # Check integrity of object __repr__ attribute
        expected_string = (f"MultiScaleRoIAlign(featmap_names={fmap_names}, output_size={output_size}, "
                           f"sampling_ratio={sampling_ratio})")
        self.assertEqual(t.__repr__(), expected_string)


376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
class NMSTester(unittest.TestCase):
    def reference_nms(self, boxes, scores, iou_threshold):
        """
        Args:
            box_scores (N, 5): boxes in corner-form and probabilities.
            iou_threshold: intersection over union threshold.
        Returns:
             picked: a list of indexes of the kept boxes
        """
        picked = []
        _, indexes = scores.sort(descending=True)
        while len(indexes) > 0:
            current = indexes[0]
            picked.append(current.item())
            if len(indexes) == 1:
                break
            current_box = boxes[current, :]
            indexes = indexes[1:]
            rest_boxes = boxes[indexes, :]
            iou = ops.box_iou(rest_boxes, current_box.unsqueeze(0)).squeeze(1)
            indexes = indexes[iou <= iou_threshold]

        return torch.as_tensor(picked)

400
401
402
403
404
    def _create_tensors_with_iou(self, N, iou_thresh):
        # force last box to have a pre-defined iou with the first box
        # let b0 be [x0, y0, x1, y1], and b1 be [x0, y0, x1 + d, y1],
        # then, in order to satisfy ops.iou(b0, b1) == iou_thresh,
        # we need to have d = (x1 - x0) * (1 - iou_thresh) / iou_thresh
405
406
407
        # Adjust the threshold upward a bit with the intent of creating
        # at least one box that exceeds (barely) the threshold and so
        # should be suppressed.
408
        boxes = torch.rand(N, 4) * 100
409
410
411
        boxes[:, 2:] += boxes[:, :2]
        boxes[-1, :] = boxes[0, :]
        x0, y0, x1, y1 = boxes[-1].tolist()
412
        iou_thresh += 1e-5
413
        boxes[-1, 2] += (x1 - x0) * (1 - iou_thresh) / iou_thresh
414
415
416
417
418
419
        scores = torch.rand(N)
        return boxes, scores

    def test_nms(self):
        err_msg = 'NMS incompatible between CPU and reference implementation for IoU={}'
        for iou in [0.2, 0.5, 0.8]:
420
            boxes, scores = self._create_tensors_with_iou(1000, iou)
421
422
            keep_ref = self.reference_nms(boxes, scores, iou)
            keep = ops.nms(boxes, scores, iou)
423
            self.assertTrue(torch.allclose(keep, keep_ref), err_msg.format(iou))
424
425
426
427
        self.assertRaises(RuntimeError, ops.nms, torch.rand(4), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 5), torch.rand(3), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(3, 2), 0.5)
        self.assertRaises(RuntimeError, ops.nms, torch.rand(3, 4), torch.rand(4), 0.5)
428
429

    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
430
431
    def test_nms_cuda(self, dtype=torch.float64):
        tol = 1e-3 if dtype is torch.half else 1e-5
432
433
434
        err_msg = 'NMS incompatible between CPU and CUDA for IoU={}'

        for iou in [0.2, 0.5, 0.8]:
435
            boxes, scores = self._create_tensors_with_iou(1000, iou)
436
437
438
            r_cpu = ops.nms(boxes, scores, iou)
            r_cuda = ops.nms(boxes.cuda(), scores.cuda(), iou)

439
440
441
442
            is_eq = torch.allclose(r_cpu, r_cuda.cpu())
            if not is_eq:
                # if the indices are not the same, ensure that it's because the scores
                # are duplicate
443
                is_eq = torch.allclose(scores[r_cpu], scores[r_cuda.cpu()], rtol=tol, atol=tol)
444
            self.assertTrue(is_eq, err_msg.format(iou))
445

446
447
448
449
450
451
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self.test_nms_cuda(dtype=dtype)

452
453
454
455
456
457
458
459
460
461
462
463
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_nms_cuda_float16(self):
        boxes = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                              [285.1472, 188.7374, 1192.4984, 851.0669],
                              [279.2440, 197.9812, 1189.4746, 849.2019]]).cuda()
        scores = torch.tensor([0.6370, 0.7569, 0.3966]).cuda()

        iou_thres = 0.2
        keep32 = ops.nms(boxes, scores, iou_thres)
        keep16 = ops.nms(boxes.to(torch.float16), scores.to(torch.float16), iou_thres)
        self.assertTrue(torch.all(torch.eq(keep32, keep16)))

464

465
class DeformConvTester(OpTester, unittest.TestCase):
466
    def expected_fn(self, x, weight, offset, mask, bias, stride=1, padding=0, dilation=1):
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
        stride_h, stride_w = _pair(stride)
        pad_h, pad_w = _pair(padding)
        dil_h, dil_w = _pair(dilation)
        weight_h, weight_w = weight.shape[-2:]

        n_batches, n_in_channels, in_h, in_w = x.shape
        n_out_channels = weight.shape[0]

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

        n_offset_grps = offset.shape[1] // (2 * weight_h * weight_w)
        in_c_per_offset_grp = n_in_channels // n_offset_grps

        n_weight_grps = n_in_channels // weight.shape[1]
        in_c_per_weight_grp = weight.shape[1]
        out_c_per_weight_grp = n_out_channels // n_weight_grps

        out = torch.zeros(n_batches, n_out_channels, out_h, out_w, device=x.device, dtype=x.dtype)
        for b in range(n_batches):
            for c_out in range(n_out_channels):
                for i in range(out_h):
                    for j in range(out_w):
                        for di in range(weight_h):
                            for dj in range(weight_w):
                                for c in range(in_c_per_weight_grp):
                                    weight_grp = c_out // out_c_per_weight_grp
                                    c_in = weight_grp * in_c_per_weight_grp + c

                                    offset_grp = c_in // in_c_per_offset_grp
497
498
                                    mask_idx = offset_grp * (weight_h * weight_w) + di * weight_w + dj
                                    offset_idx = 2 * mask_idx
499
500
501
502

                                    pi = stride_h * i - pad_h + dil_h * di + offset[b, offset_idx, i, j]
                                    pj = stride_w * j - pad_w + dil_w * dj + offset[b, offset_idx + 1, i, j]

503
504
505
506
507
                                    mask_value = 1.0
                                    if mask is not None:
                                        mask_value = mask[b, mask_idx, i, j]

                                    out[b, c_out, i, j] += (mask_value * weight[c_out, c, di, dj] *
508
509
510
511
                                                            bilinear_interpolate(x[b, c_in, :, :], pi, pj))
        out += bias.view(1, n_out_channels, 1, 1)
        return out

512
    @lru_cache(maxsize=None)
513
    def get_fn_args(self, device, contiguous, batch_sz, dtype):
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
        n_in_channels = 6
        n_out_channels = 2
        n_weight_grps = 2
        n_offset_grps = 3

        stride = (2, 1)
        pad = (1, 0)
        dilation = (2, 1)

        stride_h, stride_w = stride
        pad_h, pad_w = pad
        dil_h, dil_w = dilation
        weight_h, weight_w = (3, 2)
        in_h, in_w = (5, 4)

        out_h = (in_h + 2 * pad_h - (dil_h * (weight_h - 1) + 1)) // stride_h + 1
        out_w = (in_w + 2 * pad_w - (dil_w * (weight_w - 1) + 1)) // stride_w + 1

532
        x = torch.rand(batch_sz, n_in_channels, in_h, in_w, device=device, dtype=dtype, requires_grad=True)
533
534

        offset = torch.randn(batch_sz, n_offset_grps * 2 * weight_h * weight_w, out_h, out_w,
535
                             device=device, dtype=dtype, requires_grad=True)
536

537
538
539
        mask = torch.randn(batch_sz, n_offset_grps * weight_h * weight_w, out_h, out_w,
                           device=device, dtype=dtype, requires_grad=True)

540
        weight = torch.randn(n_out_channels, n_in_channels // n_weight_grps, weight_h, weight_w,
541
                             device=device, dtype=dtype, requires_grad=True)
542

543
        bias = torch.randn(n_out_channels, device=device, dtype=dtype, requires_grad=True)
544
545
546
547

        if not contiguous:
            x = x.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
            offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
548
            mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
549
550
            weight = weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)

551
        return x, weight, offset, mask, bias, stride, pad, dilation
552

553
554
    def _test_forward(self, device, contiguous, dtype=None):
        dtype = self.dtype if dtype is None else dtype
555
        for batch_sz in [0, 33]:
556
            self._test_forward_with_batchsize(device, contiguous, batch_sz, dtype)
557

558
    def _test_forward_with_batchsize(self, device, contiguous, batch_sz, dtype):
559
        x, _, offset, mask, _, stride, padding, dilation = self.get_fn_args(device, contiguous, batch_sz, dtype)
560
561
562
563
        in_channels = 6
        out_channels = 2
        kernel_size = (3, 2)
        groups = 2
Nicolas Hug's avatar
Nicolas Hug committed
564
        tol = 2e-3 if dtype is torch.half else 1e-5
565
566

        layer = ops.DeformConv2d(in_channels, out_channels, kernel_size, stride=stride, padding=padding,
567
                                 dilation=dilation, groups=groups).to(device=x.device, dtype=dtype)
568
        res = layer(x, offset, mask)
569
570
571

        weight = layer.weight.data
        bias = layer.bias.data
572
573
574
575
576
577
578
579
        expected = self.expected_fn(x, weight, offset, mask, bias, stride=stride, padding=padding, dilation=dilation)

        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))

        # no modulation test
        res = layer(x, offset)
        expected = self.expected_fn(x, weight, offset, None, bias, stride=stride, padding=padding, dilation=dilation)
580

581
582
        self.assertTrue(torch.allclose(res.to(expected.dtype), expected, rtol=tol, atol=tol),
                        '\nres:\n{}\nexpected:\n{}'.format(res, expected))
583

584
585
586
587
588
        # test for wrong sizes
        with self.assertRaises(RuntimeError):
            wrong_offset = torch.rand_like(offset[:, :2])
            res = layer(x, wrong_offset)

589
590
591
592
        with self.assertRaises(RuntimeError):
            wrong_mask = torch.rand_like(mask[:, :2])
            res = layer(x, offset, wrong_mask)

593
    def _test_backward(self, device, contiguous):
594
595
596
597
        for batch_sz in [0, 33]:
            self._test_backward_with_batchsize(device, contiguous, batch_sz)

    def _test_backward_with_batchsize(self, device, contiguous, batch_sz):
598
599
600
601
602
603
        x, weight, offset, mask, bias, stride, padding, dilation = self.get_fn_args(device, contiguous,
                                                                                    batch_sz, self.dtype)

        def func(x_, offset_, mask_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=mask_)
604

605
606
607
608
609
610
611
612
613
614
615
616
617
        gradcheck(func, (x, offset, mask, weight, bias), nondet_tol=1e-5)

        def func_no_mask(x_, offset_, weight_, bias_):
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride,
                                     padding=padding, dilation=dilation, mask=None)

        gradcheck(func_no_mask, (x, offset, weight, bias), nondet_tol=1e-5)

        @torch.jit.script
        def script_func(x_, offset_, mask_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=mask_)
618

619
620
        gradcheck(lambda z, off, msk, wei, bi: script_func(z, off, msk, wei, bi, stride, padding, dilation),
                  (x, offset, mask, weight, bias), nondet_tol=1e-5)
621
622

        @torch.jit.script
623
624
625
626
        def script_func_no_mask(x_, offset_, weight_, bias_, stride_, pad_, dilation_):
            # type:(Tensor, Tensor, Tensor, Tensor, Tuple[int, int], Tuple[int, int], Tuple[int, int])->Tensor
            return ops.deform_conv2d(x_, offset_, weight_, bias_, stride=stride_,
                                     padding=pad_, dilation=dilation_, mask=None)
627

628
        gradcheck(lambda z, off, wei, bi: script_func_no_mask(z, off, wei, bi, stride, padding, dilation),
629
630
                  (x, offset, weight, bias), nondet_tol=1e-5)

631
632
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_compare_cpu_cuda_grads(self):
633
634
        # Test from https://github.com/pytorch/vision/issues/2598
        # Run on CUDA only
635
        for contiguous in [False, True]:
636
637
638
639
640
641
            # compare grads computed on CUDA with grads computed on CPU
            true_cpu_grads = None

            init_weight = torch.randn(9, 9, 3, 3, requires_grad=True)
            img = torch.randn(8, 9, 1000, 110)
            offset = torch.rand(8, 2 * 3 * 3, 1000, 110)
642
            mask = torch.rand(8, 3 * 3, 1000, 110)
643
644
645
646

            if not contiguous:
                img = img.permute(0, 1, 3, 2).contiguous().permute(0, 1, 3, 2)
                offset = offset.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
647
                mask = mask.permute(1, 3, 0, 2).contiguous().permute(2, 0, 3, 1)
648
649
650
651
652
653
                weight = init_weight.permute(3, 2, 0, 1).contiguous().permute(2, 3, 1, 0)
            else:
                weight = init_weight

            for d in ["cpu", "cuda"]:

654
                out = ops.deform_conv2d(img.to(d), offset.to(d), weight.to(d), padding=1, mask=mask.to(d))
655
656
657
658
659
660
661
662
663
                out.mean().backward()
                if true_cpu_grads is None:
                    true_cpu_grads = init_weight.grad
                    self.assertTrue(true_cpu_grads is not None)
                else:
                    self.assertTrue(init_weight.grad is not None)
                    res_grads = init_weight.grad.to("cpu")
                    self.assertTrue(true_cpu_grads.allclose(res_grads))

664
665
666
667
668
669
    @unittest.skipIf(not torch.cuda.is_available(), "CUDA unavailable")
    def test_autocast(self):
        for dtype in (torch.float, torch.half):
            with torch.cuda.amp.autocast():
                self._test_forward(torch.device("cuda"), False, dtype=dtype)

670

671
672
673
class FrozenBNTester(unittest.TestCase):
    def test_frozenbatchnorm2d_repr(self):
        num_features = 32
674
675
        eps = 1e-5
        t = ops.misc.FrozenBatchNorm2d(num_features, eps=eps)
676
677

        # Check integrity of object __repr__ attribute
678
        expected_string = f"FrozenBatchNorm2d({num_features}, eps={eps})"
679
680
        self.assertEqual(t.__repr__(), expected_string)

681
682
683
684
685
686
687
688
689
    def test_frozenbatchnorm2d_eps(self):
        sample_size = (4, 32, 28, 28)
        x = torch.rand(sample_size)
        state_dict = dict(weight=torch.rand(sample_size[1]),
                          bias=torch.rand(sample_size[1]),
                          running_mean=torch.rand(sample_size[1]),
                          running_var=torch.rand(sample_size[1]),
                          num_batches_tracked=torch.tensor(100))

690
        # Check that default eps is equal to the one of BN
691
692
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1])
        fbn.load_state_dict(state_dict, strict=False)
693
        bn = torch.nn.BatchNorm2d(sample_size[1]).eval()
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
        bn.load_state_dict(state_dict)
        # Difference is expected to fall in an acceptable range
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

        # Check computation for eps > 0
        fbn = ops.misc.FrozenBatchNorm2d(sample_size[1], eps=1e-5)
        fbn.load_state_dict(state_dict, strict=False)
        bn = torch.nn.BatchNorm2d(sample_size[1], eps=1e-5).eval()
        bn.load_state_dict(state_dict)
        self.assertTrue(torch.allclose(fbn(x), bn(x), atol=1e-6))

    def test_frozenbatchnorm2d_n_arg(self):
        """Ensure a warning is thrown when passing `n` kwarg
        (remove this when support of `n` is dropped)"""
        self.assertWarns(DeprecationWarning, ops.misc.FrozenBatchNorm2d, 32, eps=1e-5, n=32)

710

711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
class BoxConversionTester(unittest.TestCase):
    @staticmethod
    def _get_box_sequences():
        # Define here the argument type of `boxes` supported by region pooling operations
        box_tensor = torch.tensor([[0, 0, 0, 100, 100], [1, 0, 0, 100, 100]], dtype=torch.float)
        box_list = [torch.tensor([[0, 0, 100, 100]], dtype=torch.float),
                    torch.tensor([[0, 0, 100, 100]], dtype=torch.float)]
        box_tuple = tuple(box_list)
        return box_tensor, box_list, box_tuple

    def test_check_roi_boxes_shape(self):
        # Ensure common sequences of tensors are supported
        for box_sequence in self._get_box_sequences():
            self.assertIsNone(ops._utils.check_roi_boxes_shape(box_sequence))

    def test_convert_boxes_to_roi_format(self):
        # Ensure common sequences of tensors yield the same result
        ref_tensor = None
        for box_sequence in self._get_box_sequences():
            if ref_tensor is None:
                ref_tensor = box_sequence
            else:
                self.assertTrue(torch.equal(ref_tensor, ops._utils.convert_boxes_to_roi_format(box_sequence)))


736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
class BoxTester(unittest.TestCase):
    def test_bbox_same(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        exp_xyxy = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)

        box_same = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xyxy")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="xywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

        box_same = ops.box_convert(box_tensor, in_fmt="cxcywh", out_fmt="cxcywh")
        self.assertEqual(exp_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_same, exp_xyxy)).item()

    def test_bbox_xyxy_xywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_xywh = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        self.assertEqual(exp_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, exp_xywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_xywh, in_fmt="xywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xyxy_cxcywh(self):
        # Simple test convert boxes to xywh and back. Make sure they are same.
        # box_tensor is in x1 y1 x2 y2 format.
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xyxy = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xyxy")
        self.assertEqual(box_xyxy.size(), torch.Size([4, 4]))
        self.assertEqual(box_xyxy.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xyxy, box_tensor)).item()

    def test_bbox_xywh_cxcywh(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        # This is wrong
        exp_cxcywh = torch.tensor([[50, 50, 100, 100], [0, 0, 0, 0],
                                  [20, 25, 20, 20], [58, 65, 70, 60]], dtype=torch.float)

        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xywh", out_fmt="cxcywh")
        self.assertEqual(exp_cxcywh.size(), torch.Size([4, 4]))
        self.assertEqual(exp_cxcywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_cxcywh, exp_cxcywh)).item()

        # Reverse conversion
        box_xywh = ops.box_convert(box_cxcywh, in_fmt="cxcywh", out_fmt="xywh")
        self.assertEqual(box_xywh.size(), torch.Size([4, 4]))
        self.assertEqual(box_xywh.dtype, box_tensor.dtype)
        assert torch.all(torch.eq(box_xywh, box_tensor)).item()

816
817
818
819
820
821
822
823
824
825
826
827
828
    def test_bbox_invalid(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 20, 20], [23, 35, 70, 60]], dtype=torch.float)

        invalid_infmts = ["xwyh", "cxwyh"]
        invalid_outfmts = ["xwcx", "xhwcy"]
        for inv_infmt in invalid_infmts:
            for inv_outfmt in invalid_outfmts:
                self.assertRaises(ValueError, ops.box_convert, box_tensor, inv_infmt, inv_outfmt)

    def test_bbox_convert_jit(self):
        box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0],
                                  [10, 15, 30, 35], [23, 35, 93, 95]], dtype=torch.float)
829

830
831
        scripted_fn = torch.jit.script(ops.box_convert)
        TOLERANCE = 1e-3
832

833
834
835
        box_xywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="xywh")
        scripted_xywh = scripted_fn(box_tensor, 'xyxy', 'xywh')
        self.assertTrue((scripted_xywh - box_xywh).abs().max() < TOLERANCE)
836

837
838
839
        box_cxcywh = ops.box_convert(box_tensor, in_fmt="xyxy", out_fmt="cxcywh")
        scripted_cxcywh = scripted_fn(box_tensor, 'xyxy', 'cxcywh')
        self.assertTrue((scripted_cxcywh - box_cxcywh).abs().max() < TOLERANCE)
840
841


Aditya Oke's avatar
Aditya Oke committed
842
843
class BoxAreaTester(unittest.TestCase):
    def test_box_area(self):
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
        def area_check(box, expected, tolerance=1e-4):
            out = ops.box_area(box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int8, torch.int16, torch.int32, torch.int64]:
            box_tensor = torch.tensor([[0, 0, 100, 100], [0, 0, 0, 0]], dtype=dtype)
            expected = torch.tensor([10000, 0])
            area_check(box_tensor, expected)

        # Check for float32 and float64 boxes
        for dtype in [torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([604723.0806, 600965.4666, 592761.0085], dtype=torch.float64)
            area_check(box_tensor, expected, tolerance=0.05)

        # Check for float16 box
        box_tensor = torch.tensor([[285.25, 185.625, 1194.0, 851.5],
                                   [285.25, 188.75, 1192.0, 851.0],
                                   [279.25, 198.0, 1189.0, 849.0]], dtype=torch.float16)
        expected = torch.tensor([605113.875, 600495.1875, 592247.25])
        area_check(box_tensor, expected)
Aditya Oke's avatar
Aditya Oke committed
869
870
871
872


class BoxIouTester(unittest.TestCase):
    def test_iou(self):
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        def iou_check(box, expected, tolerance=1e-4):
            out = ops.box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, 0.0], [0.25, 1.0, 0.0], [0.0, 0.0, 1.0]])
            iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-4)
Aditya Oke's avatar
Aditya Oke committed
891
892
893
894


class GenBoxIouTester(unittest.TestCase):
    def test_gen_iou(self):
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
        def gen_iou_check(box, expected, tolerance=1e-4):
            out = ops.generalized_box_iou(box, box)
            assert out.size() == expected.size()
            assert ((out - expected).abs().max() < tolerance).item()

        # Check for int boxes
        for dtype in [torch.int16, torch.int32, torch.int64]:
            box = torch.tensor([[0, 0, 100, 100], [0, 0, 50, 50], [200, 200, 300, 300]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.25, -0.7778], [0.25, 1.0, -0.8611], [-0.7778, -0.8611, 1.0]])
            gen_iou_check(box, expected)

        # Check for float boxes
        for dtype in [torch.float16, torch.float32, torch.float64]:
            box_tensor = torch.tensor([[285.3538, 185.5758, 1193.5110, 851.4551],
                                       [285.1472, 188.7374, 1192.4984, 851.0669],
                                       [279.2440, 197.9812, 1189.4746, 849.2019]], dtype=dtype)
            expected = torch.tensor([[1.0, 0.9933, 0.9673], [0.9933, 1.0, 0.9737], [0.9673, 0.9737, 1.0]])
            gen_iou_check(box_tensor, expected, tolerance=0.002 if dtype == torch.float16 else 1e-3)
Aditya Oke's avatar
Aditya Oke committed
913
914


915
916
if __name__ == '__main__':
    unittest.main()