test_datasets.py 49.1 KB
Newer Older
1
import contextlib
Francisco Massa's avatar
Francisco Massa committed
2
import sys
3
import os
4
import unittest
Philip Meier's avatar
Philip Meier committed
5
from unittest import mock
6
import numpy as np
7
import PIL
8
from PIL import Image
9
from torch._utils_internal import get_file_path_2
10
import torchvision
11
from torchvision.datasets import utils
12
from common_utils import get_tmp_dir
13
from fakedata_generation import mnist_root, imagenet_root, \
Philip Meier's avatar
Philip Meier committed
14
    cityscapes_root, svhn_root, places365_root, widerface_root, stl10_root
15
import xml.etree.ElementTree as ET
Philip Meier's avatar
Philip Meier committed
16
17
from urllib.request import Request, urlopen
import itertools
18
19
20
21
import datasets_utils
import pathlib
import pickle
from torchvision import datasets
22
import torch
23
import shutil
Philip Meier's avatar
Philip Meier committed
24
import json
Philip Meier's avatar
Philip Meier committed
25
import random
26
import bz2
27
import torch.nn.functional as F
Philip Meier's avatar
Philip Meier committed
28
29
import string
import io
30
31


32
33
34
35
36
37
try:
    import scipy
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False

38
39
40
41
42
43
try:
    import av
    HAS_PYAV = True
except ImportError:
    HAS_PYAV = False

44

45
class DatasetTestcase(unittest.TestCase):
46
47
48
49
50
51
    def generic_classification_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, int))

52
53
54
55
56
57
    def generic_segmentation_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, PIL.Image.Image))

58
59

class Tester(DatasetTestcase):
60
    def test_imagefolder(self):
61
62
63
64
        # TODO: create the fake data on-the-fly
        FAKEDATA_DIR = get_file_path_2(
            os.path.dirname(os.path.abspath(__file__)), 'assets', 'fakedata')

65
        with get_tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
66
            classes = sorted(['a', 'b'])
67
68
69
70
71
72
            class_a_image_files = [
                os.path.join(root, 'a', file) for file in ('a1.png', 'a2.png', 'a3.png')
            ]
            class_b_image_files = [
                os.path.join(root, 'b', file) for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')
            ]
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            # test if all classes are present
            self.assertEqual(classes, sorted(dataset.classes))

            # test if combination of classes and class_to_index functions correctly
            for cls in classes:
                self.assertEqual(cls, dataset.classes[dataset.class_to_idx[cls]])

            # test if all images were detected correctly
            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            # test if the datasets outputs all images correctly
            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

            # redo all tests with specified valid image files
95
96
            dataset = torchvision.datasets.ImageFolder(
                root, loader=lambda x: x, is_valid_file=lambda x: '3' in x)
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            self.assertEqual(classes, sorted(dataset.classes))

            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files
                      if '3' in img_file]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files
                      if '3' in img_file]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

111
112
113
114
115
116
117
118
119
120
    def test_imagefolder_empty(self):
        with get_tmp_dir() as root:
            with self.assertRaises(RuntimeError):
                torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            with self.assertRaises(RuntimeError):
                torchvision.datasets.ImageFolder(
                    root, loader=lambda x: x, is_valid_file=lambda x: False
                )

121
122
123
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_mnist(self, mock_download_extract):
        num_examples = 30
124
        with mnist_root(num_examples, "MNIST") as root:
125
            dataset = torchvision.datasets.MNIST(root, download=True)
126
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
127
            img, target = dataset[0]
128
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
129

130
131
132
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_kmnist(self, mock_download_extract):
        num_examples = 30
133
        with mnist_root(num_examples, "KMNIST") as root:
134
            dataset = torchvision.datasets.KMNIST(root, download=True)
135
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
136
            img, target = dataset[0]
137
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
138

139
140
141
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_fashionmnist(self, mock_download_extract):
        num_examples = 30
142
        with mnist_root(num_examples, "FashionMNIST") as root:
143
            dataset = torchvision.datasets.FashionMNIST(root, download=True)
144
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
145
            img, target = dataset[0]
146
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
147

148
    @mock.patch('torchvision.datasets.imagenet._verify_archive')
149
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
150
    def test_imagenet(self, mock_verify):
151
        with imagenet_root() as root:
152
            dataset = torchvision.datasets.ImageNet(root, split='train')
153
            self.generic_classification_dataset_test(dataset)
154

155
            dataset = torchvision.datasets.ImageNet(root, split='val')
156
            self.generic_classification_dataset_test(dataset)
157

Josh Bradley's avatar
Josh Bradley committed
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    @mock.patch('torchvision.datasets.WIDERFace._check_integrity')
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
    def test_widerface(self, mock_check_integrity):
        mock_check_integrity.return_value = True
        with widerface_root() as root:
            dataset = torchvision.datasets.WIDERFace(root, split='train')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

            dataset = torchvision.datasets.WIDERFace(root, split='val')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

            dataset = torchvision.datasets.WIDERFace(root, split='test')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

Francisco Massa's avatar
Francisco Massa committed
178
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
179
180
181
182
183
184
185
186
187
188
189
190
    def test_cityscapes(self):
        with cityscapes_root() as root:

            for mode in ['coarse', 'fine']:

                if mode == 'coarse':
                    splits = ['train', 'train_extra', 'val']
                else:
                    splits = ['train', 'val', 'test']

                for split in splits:
                    for target_type in ['semantic', 'instance']:
191
192
                        dataset = torchvision.datasets.Cityscapes(
                            root, split=split, target_type=target_type, mode=mode)
193
194
                        self.generic_segmentation_dataset_test(dataset, num_images=2)

195
196
                    color_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type='color', mode=mode)
197
198
199
200
                    color_img, color_target = color_dataset[0]
                    self.assertTrue(isinstance(color_img, PIL.Image.Image))
                    self.assertTrue(np.array(color_target).shape[2] == 4)

201
202
                    polygon_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type='polygon', mode=mode)
203
204
205
206
207
208
209
210
                    polygon_img, polygon_target = polygon_dataset[0]
                    self.assertTrue(isinstance(polygon_img, PIL.Image.Image))
                    self.assertTrue(isinstance(polygon_target, dict))
                    self.assertTrue(isinstance(polygon_target['imgHeight'], int))
                    self.assertTrue(isinstance(polygon_target['objects'], list))

                    # Test multiple target types
                    targets_combo = ['semantic', 'polygon', 'color']
211
212
                    multiple_types_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type=targets_combo, mode=mode)
213
214
215
216
217
218
219
220
221
222
                    output = multiple_types_dataset[0]
                    self.assertTrue(isinstance(output, tuple))
                    self.assertTrue(len(output) == 2)
                    self.assertTrue(isinstance(output[0], PIL.Image.Image))
                    self.assertTrue(isinstance(output[1], tuple))
                    self.assertTrue(len(output[1]) == 3)
                    self.assertTrue(isinstance(output[1][0], PIL.Image.Image))  # semantic
                    self.assertTrue(isinstance(output[1][1], dict))  # polygon
                    self.assertTrue(isinstance(output[1][2], PIL.Image.Image))  # color

Philip Meier's avatar
Philip Meier committed
223
    @mock.patch('torchvision.datasets.SVHN._check_integrity')
224
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
Philip Meier's avatar
Philip Meier committed
225
226
227
228
229
230
231
232
233
234
235
236
    def test_svhn(self, mock_check):
        mock_check.return_value = True
        with svhn_root() as root:
            dataset = torchvision.datasets.SVHN(root, split="train")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="test")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="extra")
            self.generic_classification_dataset_test(dataset, num_images=2)

Philip Meier's avatar
Philip Meier committed
237
    def test_places365(self):
Philip Meier's avatar
Philip Meier committed
238
        for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)):
Philip Meier's avatar
Philip Meier committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
            with places365_root(split=split, small=small) as places365:
                root, data = places365

                dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)
                self.generic_classification_dataset_test(dataset, num_images=len(data["imgs"]))

    def test_places365_transforms(self):
        expected_image = "image"
        expected_target = "target"

        def transform(image):
            return expected_image

        def target_transform(target):
            return expected_target

        with places365_root() as places365:
            root, data = places365

            dataset = torchvision.datasets.Places365(
                root, transform=transform, target_transform=target_transform, download=True
            )
            actual_image, actual_target = dataset[0]

            self.assertEqual(actual_image, expected_image)
            self.assertEqual(actual_target, expected_target)

    def test_places365_devkit_download(self):
Philip Meier's avatar
Philip Meier committed
267
        for split in ("train-standard", "train-challenge", "val"):
Philip Meier's avatar
Philip Meier committed
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
            with self.subTest(split=split):
                with places365_root(split=split) as places365:
                    root, data = places365

                    dataset = torchvision.datasets.Places365(root, split=split, download=True)

                    with self.subTest("classes"):
                        self.assertSequenceEqual(dataset.classes, data["classes"])

                    with self.subTest("class_to_idx"):
                        self.assertDictEqual(dataset.class_to_idx, data["class_to_idx"])

                    with self.subTest("imgs"):
                        self.assertSequenceEqual(dataset.imgs, data["imgs"])

    def test_places365_devkit_no_download(self):
Philip Meier's avatar
Philip Meier committed
284
        for split in ("train-standard", "train-challenge", "val"):
Philip Meier's avatar
Philip Meier committed
285
            with self.subTest(split=split):
286
                with places365_root(split=split) as places365:
Philip Meier's avatar
Philip Meier committed
287
288
289
290
291
292
                    root, data = places365

                    with self.assertRaises(RuntimeError):
                        torchvision.datasets.Places365(root, split=split, download=False)

    def test_places365_images_download(self):
Philip Meier's avatar
Philip Meier committed
293
        for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)):
Philip Meier's avatar
Philip Meier committed
294
295
296
297
298
299
300
301
302
303
304
            with self.subTest(split=split, small=small):
                with places365_root(split=split, small=small) as places365:
                    root, data = places365

                    dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)

                    assert all(os.path.exists(item[0]) for item in dataset.imgs)

    def test_places365_images_download_preexisting(self):
        split = "train-standard"
        small = False
Philip Meier's avatar
Philip Meier committed
305
        images_dir = "data_large_standard"
Philip Meier's avatar
Philip Meier committed
306
307
308
309
310
311
312
313
314

        with places365_root(split=split, small=small) as places365:
            root, data = places365
            os.mkdir(os.path.join(root, images_dir))

            with self.assertRaises(RuntimeError):
                torchvision.datasets.Places365(root, split=split, small=small, download=True)

    def test_places365_repr_smoke(self):
315
        with places365_root() as places365:
Philip Meier's avatar
Philip Meier committed
316
317
318
319
320
            root, data = places365

            dataset = torchvision.datasets.Places365(root, download=True)
            self.assertIsInstance(repr(dataset), str)

321

322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
class STL10Tester(DatasetTestcase):
    @contextlib.contextmanager
    def mocked_root(self):
        with stl10_root() as (root, data):
            yield root, data

    @contextlib.contextmanager
    def mocked_dataset(self, pre_extract=False, download=True, **kwargs):
        with self.mocked_root() as (root, data):
            if pre_extract:
                utils.extract_archive(os.path.join(root, data["archive"]))
            dataset = torchvision.datasets.STL10(root, download=download, **kwargs)
            yield dataset, data

    def test_not_found(self):
        with self.assertRaises(RuntimeError):
            with self.mocked_dataset(download=False):
                pass

    def test_splits(self):
        for split in ('train', 'train+unlabeled', 'unlabeled', 'test'):
            with self.mocked_dataset(split=split) as (dataset, data):
                num_images = sum([data["num_images_in_split"][part] for part in split.split("+")])
                self.generic_classification_dataset_test(dataset, num_images=num_images)

    def test_folds(self):
        for fold in range(10):
            with self.mocked_dataset(split="train", folds=fold) as (dataset, data):
                num_images = data["num_images_in_folds"][fold]
                self.assertEqual(len(dataset), num_images)

    def test_invalid_folds1(self):
        with self.assertRaises(ValueError):
            with self.mocked_dataset(folds=10):
                pass

    def test_invalid_folds2(self):
        with self.assertRaises(ValueError):
            with self.mocked_dataset(folds="0"):
                pass

    def test_transforms(self):
        expected_image = "image"
        expected_target = "target"

        def transform(image):
            return expected_image

        def target_transform(target):
            return expected_target

        with self.mocked_dataset(transform=transform, target_transform=target_transform) as (dataset, _):
            actual_image, actual_target = dataset[0]

            self.assertEqual(actual_image, expected_image)
            self.assertEqual(actual_target, expected_target)

    def test_unlabeled(self):
        with self.mocked_dataset(split="unlabeled") as (dataset, _):
            labels = [dataset[idx][1] for idx in range(len(dataset))]
            self.assertTrue(all([label == -1 for label in labels]))

    @unittest.mock.patch("torchvision.datasets.stl10.download_and_extract_archive")
    def test_download_preexisting(self, mock):
        with self.mocked_dataset(pre_extract=True) as (dataset, data):
            mock.assert_not_called()

    def test_repr_smoke(self):
        with self.mocked_dataset() as (dataset, _):
            self.assertIsInstance(repr(dataset), str)


394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
class Caltech101TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Caltech101
    FEATURE_TYPES = (PIL.Image.Image, (int, np.ndarray, tuple))

    CONFIGS = datasets_utils.combinations_grid(target_type=("category", "annotation", ["category", "annotation"]))
    REQUIRED_PACKAGES = ("scipy",)

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "caltech101"
        images = root / "101_ObjectCategories"
        annotations = root / "Annotations"

        categories = (("Faces", "Faces_2"), ("helicopter", "helicopter"), ("ying_yang", "ying_yang"))
        num_images_per_category = 2

        for image_category, annotation_category in categories:
            datasets_utils.create_image_folder(
                root=images,
                name=image_category,
                file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )
            self._create_annotation_folder(
                root=annotations,
                name=annotation_category,
                file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
                num_examples=num_images_per_category,
            )

        # This is included in the original archive, but is removed by the dataset. Thus, an empty directory suffices.
        os.makedirs(images / "BACKGROUND_Google")

        return num_images_per_category * len(categories)

    def _create_annotation_folder(self, root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        os.makedirs(root)

        for idx in range(num_examples):
            self._create_annotation_file(root, file_name_fn(idx))

    def _create_annotation_file(self, root, name):
        mdict = dict(obj_contour=torch.rand((2, torch.randint(3, 6, size=())), dtype=torch.float64).numpy())
        datasets_utils.lazy_importer.scipy.io.savemat(str(pathlib.Path(root) / name), mdict)

    def test_combined_targets(self):
        target_types = ["category", "annotation"]

        individual_targets = []
        for target_type in target_types:
            with self.create_dataset(target_type=target_type) as (dataset, _):
                _, target = dataset[0]
                individual_targets.append(target)

        with self.create_dataset(target_type=target_types) as (dataset, _):
            _, combined_targets = dataset[0]

        actual = len(individual_targets)
        expected = len(combined_targets)
        self.assertEqual(
            actual,
            expected,
            f"The number of the returned combined targets does not match the the number targets if requested "
            f"individually: {actual} != {expected}",
        )

        for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
            with self.subTest(target_type=target_type):
                actual = type(combined_target)
                expected = type(individual_target)
                self.assertIs(
                    actual,
                    expected,
                    f"Type of the combined target does not match the type of the corresponding individual target: "
                    f"{actual} is not {expected}",
                )


472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
class Caltech256TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Caltech256

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / "caltech256" / "256_ObjectCategories"

        categories = ((1, "ak47"), (127, "laptop-101"), (257, "clutter"))
        num_images_per_category = 2

        for idx, category in categories:
            datasets_utils.create_image_folder(
                tmpdir,
                name=f"{idx:03d}.{category}",
                file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )

        return num_images_per_category * len(categories)


class CIFAR10TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CIFAR10
    CONFIGS = datasets_utils.combinations_grid(train=(True, False))

    _VERSION_CONFIG = dict(
        base_folder="cifar-10-batches-py",
        train_files=tuple(f"data_batch_{idx}" for idx in range(1, 6)),
        test_files=("test_batch",),
        labels_key="labels",
        meta_file="batches.meta",
        num_categories=10,
        categories_key="label_names",
    )

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / self._VERSION_CONFIG["base_folder"]
        os.makedirs(tmpdir)

        num_images_per_file = 1
        for name in itertools.chain(self._VERSION_CONFIG["train_files"], self._VERSION_CONFIG["test_files"]):
            self._create_batch_file(tmpdir, name, num_images_per_file)

        categories = self._create_meta_file(tmpdir)

        return dict(
            num_examples=num_images_per_file
            * len(self._VERSION_CONFIG["train_files"] if config["train"] else self._VERSION_CONFIG["test_files"]),
            categories=categories,
        )

    def _create_batch_file(self, root, name, num_images):
        data = datasets_utils.create_image_or_video_tensor((num_images, 32 * 32 * 3))
        labels = np.random.randint(0, self._VERSION_CONFIG["num_categories"], size=num_images).tolist()
        self._create_binary_file(root, name, {"data": data, self._VERSION_CONFIG["labels_key"]: labels})

    def _create_meta_file(self, root):
        categories = [
            f"{idx:0{len(str(self._VERSION_CONFIG['num_categories'] - 1))}d}"
            for idx in range(self._VERSION_CONFIG["num_categories"])
        ]
        self._create_binary_file(
            root, self._VERSION_CONFIG["meta_file"], {self._VERSION_CONFIG["categories_key"]: categories}
        )
        return categories

    def _create_binary_file(self, root, name, content):
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    def test_class_to_idx(self):
        with self.create_dataset() as (dataset, info):
            expected = {category: label for label, category in enumerate(info["categories"])}
            actual = dataset.class_to_idx
            self.assertEqual(actual, expected)


class CIFAR100(CIFAR10TestCase):
    DATASET_CLASS = datasets.CIFAR100

    _VERSION_CONFIG = dict(
        base_folder="cifar-100-python",
        train_files=("train",),
        test_files=("test",),
        labels_key="fine_labels",
        meta_file="meta",
        num_categories=100,
        categories_key="fine_label_names",
    )


Philip Meier's avatar
Philip Meier committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
class CelebATestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CelebA
    FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None)))

    CONFIGS = datasets_utils.combinations_grid(
        split=("train", "valid", "test", "all"),
        target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]),
    )
    REQUIRED_PACKAGES = ("pandas",)

    _SPLIT_TO_IDX = dict(train=0, valid=1, test=2)

    def inject_fake_data(self, tmpdir, config):
        base_folder = pathlib.Path(tmpdir) / "celeba"
        os.makedirs(base_folder)

        num_images, num_images_per_split = self._create_split_txt(base_folder)

        datasets_utils.create_image_folder(
            base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images
        )
        attr_names = self._create_attr_txt(base_folder, num_images)
        self._create_identity_txt(base_folder, num_images)
        self._create_bbox_txt(base_folder, num_images)
        self._create_landmarks_txt(base_folder, num_images)

        return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names)

    def _create_split_txt(self, root):
        num_images_per_split = dict(train=3, valid=2, test=1)

        data = [
            [self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images)
        ]
        self._create_txt(root, "list_eval_partition.txt", data)

        num_images_per_split["all"] = num_images = sum(num_images_per_split.values())
        return num_images, num_images_per_split

    def _create_attr_txt(self, root, num_images):
        header = ("5_o_Clock_Shadow", "Young")
        data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist()
        self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True)
        return header

    def _create_identity_txt(self, root, num_images):
        data = torch.randint(1, 4, size=(num_images, 1)).tolist()
        self._create_txt(root, "identity_CelebA.txt", data)

    def _create_bbox_txt(self, root, num_images):
        header = ("x_1", "y_1", "width", "height")
        data = torch.randint(10, size=(num_images, len(header))).tolist()
        self._create_txt(
            root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True
        )

    def _create_landmarks_txt(self, root, num_images):
        header = ("lefteye_x", "rightmouth_y")
        data = torch.randint(10, size=(num_images, len(header))).tolist()
        self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True)

    def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False):
        with open(pathlib.Path(root) / name, "w") as fh:
            if add_num_examples:
                fh.write(f"{len(data)}\n")

            if header:
                if add_image_id_to_header:
                    header = ("image_id", *header)
                fh.write(f"{' '.join(header)}\n")

            for idx, line in enumerate(data, 1):
                fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n")

    def test_combined_targets(self):
        target_types = ["attr", "identity", "bbox", "landmarks"]

        individual_targets = []
        for target_type in target_types:
            with self.create_dataset(target_type=target_type) as (dataset, _):
                _, target = dataset[0]
                individual_targets.append(target)

        with self.create_dataset(target_type=target_types) as (dataset, _):
            _, combined_targets = dataset[0]

        actual = len(individual_targets)
        expected = len(combined_targets)
        self.assertEqual(
            actual,
            expected,
            f"The number of the returned combined targets does not match the the number targets if requested "
            f"individually: {actual} != {expected}",
        )

        for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
            with self.subTest(target_type=target_type):
                actual = type(combined_target)
                expected = type(individual_target)
                self.assertIs(
                    actual,
                    expected,
                    f"Type of the combined target does not match the type of the corresponding individual target: "
                    f"{actual} is not {expected}",
                )

    def test_no_target(self):
        with self.create_dataset(target_type=[]) as (dataset, _):
            _, target = dataset[0]

        self.assertIsNone(target)

    def test_attr_names(self):
        with self.create_dataset() as (dataset, info):
            self.assertEqual(tuple(dataset.attr_names), info["attr_names"])


679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
class VOCSegmentationTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.VOCSegmentation
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image)

    CONFIGS = (
        *datasets_utils.combinations_grid(
            year=[f"20{year:02d}" for year in range(7, 13)], image_set=("train", "val", "trainval")
        ),
        dict(year="2007", image_set="test"),
        dict(year="2007-test", image_set="test"),
    )

    def inject_fake_data(self, tmpdir, config):
        year, is_test_set = (
            ("2007", True)
            if config["year"] == "2007-test" or config["image_set"] == "test"
            else (config["year"], False)
        )
        image_set = config["image_set"]

        base_dir = pathlib.Path(tmpdir)
        if year == "2011":
            base_dir /= "TrainVal"
        base_dir = base_dir / "VOCdevkit" / f"VOC{year}"
        os.makedirs(base_dir)

        num_images, num_images_per_image_set = self._create_image_set_files(base_dir, "ImageSets", is_test_set)
        datasets_utils.create_image_folder(base_dir, "JPEGImages", lambda idx: f"{idx:06d}.jpg", num_images)

        datasets_utils.create_image_folder(base_dir, "SegmentationClass", lambda idx: f"{idx:06d}.png", num_images)
        annotation = self._create_annotation_files(base_dir, "Annotations", num_images)

        return dict(num_examples=num_images_per_image_set[image_set], annotation=annotation)

    def _create_image_set_files(self, root, name, is_test_set):
        root = pathlib.Path(root) / name
        src = pathlib.Path(root) / "Main"
        os.makedirs(src, exist_ok=True)

        idcs = dict(train=(0, 1, 2), val=(3, 4), test=(5,))
        idcs["trainval"] = (*idcs["train"], *idcs["val"])

        for image_set in ("test",) if is_test_set else ("train", "val", "trainval"):
            self._create_image_set_file(src, image_set, idcs[image_set])

        shutil.copytree(src, root / "Segmentation")

        num_images = max(itertools.chain(*idcs.values())) + 1
        num_images_per_image_set = dict([(image_set, len(idcs_)) for image_set, idcs_ in idcs.items()])
        return num_images, num_images_per_image_set

    def _create_image_set_file(self, root, image_set, idcs):
        with open(pathlib.Path(root) / f"{image_set}.txt", "w") as fh:
            fh.writelines([f"{idx:06d}\n" for idx in idcs])

    def _create_annotation_files(self, root, name, num_images):
        root = pathlib.Path(root) / name
        os.makedirs(root)

        for idx in range(num_images):
            annotation = self._create_annotation_file(root, f"{idx:06d}.xml")

        return annotation

    def _create_annotation_file(self, root, name):
        def add_child(parent, name, text=None):
            child = ET.SubElement(parent, name)
            child.text = text
            return child

        def add_name(obj, name="dog"):
            add_child(obj, "name", name)
            return name

        def add_bndbox(obj, bndbox=None):
            if bndbox is None:
                bndbox = {"xmin": "1", "xmax": "2", "ymin": "3", "ymax": "4"}

            obj = add_child(obj, "bndbox")
            for name, text in bndbox.items():
                add_child(obj, name, text)

            return bndbox

        annotation = ET.Element("annotation")
        obj = add_child(annotation, "object")
        data = dict(name=add_name(obj), bndbox=add_bndbox(obj))

        with open(pathlib.Path(root) / name, "wb") as fh:
            fh.write(ET.tostring(annotation))

        return data


class VOCDetectionTestCase(VOCSegmentationTestCase):
    DATASET_CLASS = datasets.VOCDetection
    FEATURE_TYPES = (PIL.Image.Image, dict)

    def test_annotations(self):
        with self.create_dataset() as (dataset, info):
            _, target = dataset[0]

            self.assertIn("annotation", target)
            annotation = target["annotation"]

            self.assertIn("object", annotation)
            objects = annotation["object"]

            self.assertEqual(len(objects), 1)
            object = objects[0]

            self.assertEqual(object, info["annotation"])


Philip Meier's avatar
Philip Meier committed
793
794
795
796
797
798
class CocoDetectionTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CocoDetection
    FEATURE_TYPES = (PIL.Image.Image, list)

    REQUIRED_PACKAGES = ("pycocotools",)

799
800
801
802
803
804
805
806
807
808
    _IMAGE_FOLDER = "images"
    _ANNOTATIONS_FOLDER = "annotations"
    _ANNOTATIONS_FILE = "annotations.json"

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._IMAGE_FOLDER
        annotation_file = tmpdir / self._ANNOTATIONS_FOLDER / self._ANNOTATIONS_FILE
        return root, annotation_file

Philip Meier's avatar
Philip Meier committed
809
810
811
812
813
814
815
    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

        num_images = 3
        num_annotations_per_image = 2

        files = datasets_utils.create_image_folder(
816
            tmpdir, name=self._IMAGE_FOLDER, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_images
Philip Meier's avatar
Philip Meier committed
817
        )
818
        file_names = [file.relative_to(tmpdir / self._IMAGE_FOLDER) for file in files]
Philip Meier's avatar
Philip Meier committed
819

820
        annotation_folder = tmpdir / self._ANNOTATIONS_FOLDER
Philip Meier's avatar
Philip Meier committed
821
        os.makedirs(annotation_folder)
822
823
824
        info = self._create_annotation_file(
            annotation_folder, self._ANNOTATIONS_FILE, file_names, num_annotations_per_image
        )
Philip Meier's avatar
Philip Meier committed
825
826

        info["num_examples"] = num_images
827
        return info
Philip Meier's avatar
Philip Meier committed
828

829
    def _create_annotation_file(self, root, name, file_names, num_annotations_per_image):
Philip Meier's avatar
Philip Meier committed
830
831
832
833
        image_ids = [int(file_name.stem) for file_name in file_names]
        images = [dict(file_name=str(file_name), id=id) for file_name, id in zip(file_names, image_ids)]

        annotations, info = self._create_annotations(image_ids, num_annotations_per_image)
834
        self._create_json(root, name, dict(images=images, annotations=annotations))
Philip Meier's avatar
Philip Meier committed
835

836
        return info
Philip Meier's avatar
Philip Meier committed
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868

    def _create_annotations(self, image_ids, num_annotations_per_image):
        annotations = datasets_utils.combinations_grid(
            image_id=image_ids, bbox=([1.0, 2.0, 3.0, 4.0],) * num_annotations_per_image
        )
        for id, annotation in enumerate(annotations):
            annotation["id"] = id
        return annotations, dict()

    def _create_json(self, root, name, content):
        file = pathlib.Path(root) / name
        with open(file, "w") as fh:
            json.dump(content, fh)
        return file


class CocoCaptionsTestCase(CocoDetectionTestCase):
    DATASET_CLASS = datasets.CocoCaptions

    def _create_annotations(self, image_ids, num_annotations_per_image):
        captions = [str(idx) for idx in range(num_annotations_per_image)]
        annotations = datasets_utils.combinations_grid(image_id=image_ids, caption=captions)
        for id, annotation in enumerate(annotations):
            annotation["id"] = id
        return annotations, dict(captions=captions)

    def test_captions(self):
        with self.create_dataset() as (dataset, info):
            _, captions = dataset[0]
            self.assertEqual(tuple(captions), tuple(info["captions"]))


Philip Meier's avatar
Philip Meier committed
869
870
871
872
873
class UCF101TestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.UCF101

    CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False))

874
875
876
877
878
879
880
881
882
    _VIDEO_FOLDER = "videos"
    _ANNOTATIONS_FOLDER = "annotations"

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._VIDEO_FOLDER
        annotation_path = tmpdir / self._ANNOTATIONS_FOLDER
        return root, annotation_path

Philip Meier's avatar
Philip Meier committed
883
884
885
    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

886
        video_folder = tmpdir / self._VIDEO_FOLDER
Philip Meier's avatar
Philip Meier committed
887
888
889
        os.makedirs(video_folder)
        video_files = self._create_videos(video_folder)

890
        annotations_folder = tmpdir / self._ANNOTATIONS_FOLDER
Philip Meier's avatar
Philip Meier committed
891
892
893
        os.makedirs(annotations_folder)
        num_examples = self._create_annotation_files(annotations_folder, video_files, config["fold"], config["train"])

894
        return num_examples
Philip Meier's avatar
Philip Meier committed
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928

    def _create_videos(self, root, num_examples_per_class=3):
        def file_name_fn(cls, idx, clips_per_group=2):
            return f"v_{cls}_g{(idx // clips_per_group) + 1:02d}_c{(idx % clips_per_group) + 1:02d}.avi"

        video_files = [
            datasets_utils.create_video_folder(root, cls, lambda idx: file_name_fn(cls, idx), num_examples_per_class)
            for cls in ("ApplyEyeMakeup", "YoYo")
        ]
        return [path.relative_to(root) for path in itertools.chain(*video_files)]

    def _create_annotation_files(self, root, video_files, fold, train):
        current_videos = random.sample(video_files, random.randrange(1, len(video_files) - 1))
        current_annotation = self._annotation_file_name(fold, train)
        self._create_annotation_file(root, current_annotation, current_videos)

        other_videos = set(video_files) - set(current_videos)
        other_annotations = [
            self._annotation_file_name(fold, train) for fold, train in itertools.product((1, 2, 3), (True, False))
        ]
        other_annotations.remove(current_annotation)
        for name in other_annotations:
            self._create_annotation_file(root, name, other_videos)

        return len(current_videos)

    def _annotation_file_name(self, fold, train):
        return f"{'train' if train else 'test'}list{fold:02d}.txt"

    def _create_annotation_file(self, root, name, video_files):
        with open(pathlib.Path(root) / name, "w") as fh:
            fh.writelines(f"{file}\n" for file in sorted(video_files))


Philip Meier's avatar
Philip Meier committed
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
class LSUNTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.LSUN

    REQUIRED_PACKAGES = ("lmdb",)
    CONFIGS = datasets_utils.combinations_grid(
        classes=("train", "test", "val", ["bedroom_train", "church_outdoor_train"])
    )

    _CATEGORIES = (
        "bedroom",
        "bridge",
        "church_outdoor",
        "classroom",
        "conference_room",
        "dining_room",
        "kitchen",
        "living_room",
        "restaurant",
        "tower",
    )

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir)

        num_images = 0
        for cls in self._parse_classes(config["classes"]):
            num_images += self._create_lmdb(root, cls)

        return num_images

    @contextlib.contextmanager
    def create_dataset(
        self,
        *args, **kwargs
    ):
        with super().create_dataset(*args, **kwargs) as output:
            yield output
            # Currently datasets.LSUN caches the keys in the current directory rather than in the root directory. Thus,
            # this creates a number of unique _cache_* files in the current directory that will not be removed together
            # with the temporary directory
            for file in os.listdir(os.getcwd()):
                if file.startswith("_cache_"):
                    os.remove(file)

    def _parse_classes(self, classes):
        if not isinstance(classes, str):
            return classes

        split = classes
        if split == "test":
            return [split]

        return [f"{category}_{split}" for category in self._CATEGORIES]

    def _create_lmdb(self, root, cls):
        lmdb = datasets_utils.lazy_importer.lmdb
        hexdigits_lowercase = string.digits + string.ascii_lowercase[:6]

        folder = f"{cls}_lmdb"

        num_images = torch.randint(1, 4, size=()).item()
        format = "webp"
        files = datasets_utils.create_image_folder(root, folder, lambda idx: f"{idx}.{format}", num_images)

        with lmdb.open(str(root / folder)) as env, env.begin(write=True) as txn:
            for file in files:
                key = "".join(random.choice(hexdigits_lowercase) for _ in range(40)).encode()

                buffer = io.BytesIO()
                Image.open(file).save(buffer, format)
                buffer.seek(0)
                value = buffer.read()

                txn.put(key, value)

                os.remove(file)

        return num_images

1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
    def test_not_found_or_corrupted(self):
        # LSUN does not raise built-in exception, but a custom one. It is expressive enough to not 'cast' it to
        # RuntimeError or FileNotFoundError that are normally checked by this test.
        with self.assertRaises(datasets_utils.lazy_importer.lmdb.Error):
            super().test_not_found_or_corrupted()


class Kinetics400TestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.Kinetics400

    def inject_fake_data(self, tmpdir, config):
        classes = ("Abseiling", "Zumba")
        num_videos_per_class = 2

        digits = string.ascii_letters + string.digits + "-_"
        for cls in classes:
            datasets_utils.create_video_folder(
                tmpdir,
                cls,
                lambda _: f"{datasets_utils.create_random_string(11, digits)}.avi",
                num_videos_per_class,
            )

        return num_videos_per_class * len(classes)

    def test_not_found_or_corrupted(self):
        self.skipTest("Dataset currently does not handle the case of no found videos.")

Philip Meier's avatar
Philip Meier committed
1036

1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
class HMDB51TestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.HMDB51

    CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False))

    _VIDEO_FOLDER = "videos"
    _SPLITS_FOLDER = "splits"
    _CLASSES = ("brush_hair", "wave")

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._VIDEO_FOLDER
        annotation_path = tmpdir / self._SPLITS_FOLDER
        return root, annotation_path

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

        video_folder = tmpdir / self._VIDEO_FOLDER
        os.makedirs(video_folder)
        video_files = self._create_videos(video_folder)

        splits_folder = tmpdir / self._SPLITS_FOLDER
        os.makedirs(splits_folder)
        num_examples = self._create_split_files(splits_folder, video_files, config["fold"], config["train"])

        return num_examples

    def _create_videos(self, root, num_examples_per_class=3):
        def file_name_fn(cls, idx, clips_per_group=2):
            return f"{cls}_{(idx // clips_per_group) + 1:d}_{(idx % clips_per_group) + 1:d}.avi"

        return [
            (
                cls,
                datasets_utils.create_video_folder(
                    root,
                    cls,
                    lambda idx: file_name_fn(cls, idx),
                    num_examples_per_class,
                ),
            )
            for cls in self._CLASSES
        ]

    def _create_split_files(self, root, video_files, fold, train):
        num_videos = num_train_videos = 0

        for cls, videos in video_files:
            num_videos += len(videos)

            train_videos = set(random.sample(videos, random.randrange(1, len(videos) - 1)))
            num_train_videos += len(train_videos)

            with open(pathlib.Path(root) / f"{cls}_test_split{fold}.txt", "w") as fh:
                fh.writelines(f"{file.name} {1 if file in train_videos else 2}\n" for file in videos)

        return num_train_videos if train else (num_videos - num_train_videos)


1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
class OmniglotTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Omniglot

    CONFIGS = datasets_utils.combinations_grid(background=(True, False))

    def inject_fake_data(self, tmpdir, config):
        target_folder = (
            pathlib.Path(tmpdir) / "omniglot-py" / f"images_{'background' if config['background'] else 'evaluation'}"
        )
        os.makedirs(target_folder)

        num_images = 0
        for name in ("Alphabet_of_the_Magi", "Tifinagh"):
            num_images += self._create_alphabet_folder(target_folder, name)

        return num_images

    def _create_alphabet_folder(self, root, name):
        num_images_total = 0
        for idx in range(torch.randint(1, 4, size=()).item()):
            num_images = torch.randint(1, 4, size=()).item()
            num_images_total += num_images

            datasets_utils.create_image_folder(
                root / name, f"character{idx:02d}", lambda image_idx: f"{image_idx:02d}.png", num_images
            )

        return num_images_total


1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
class SBUTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SBU
    FEATURE_TYPES = (PIL.Image.Image, str)

    def inject_fake_data(self, tmpdir, config):
        num_images = 3

        dataset_folder = pathlib.Path(tmpdir) / "dataset"
        images = datasets_utils.create_image_folder(tmpdir, "dataset", self._create_file_name, num_images)

        self._create_urls_txt(dataset_folder, images)
        self._create_captions_txt(dataset_folder, num_images)

        return num_images

    def _create_file_name(self, idx):
        part1 = datasets_utils.create_random_string(10, string.digits)
        part2 = datasets_utils.create_random_string(10, string.ascii_lowercase, string.digits[:6])
        return f"{part1}_{part2}.jpg"

    def _create_urls_txt(self, root, images):
        with open(root / "SBU_captioned_photo_dataset_urls.txt", "w") as fh:
            for image in images:
                fh.write(
                    f"http://static.flickr.com/{datasets_utils.create_random_string(4, string.digits)}/{image.name}\n"
                )

    def _create_captions_txt(self, root, num_images):
        with open(root / "SBU_captioned_photo_dataset_captions.txt", "w") as fh:
            for _ in range(num_images):
                fh.write(f"{datasets_utils.create_random_string(10)}\n")


1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
class SEMEIONTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SEMEION

    def inject_fake_data(self, tmpdir, config):
        num_images = 3

        images = torch.rand(num_images, 256)
        labels = F.one_hot(torch.randint(10, size=(num_images,)))
        with open(pathlib.Path(tmpdir) / "semeion.data", "w") as fh:
            for image, one_hot_labels in zip(images, labels):
                image_columns = " ".join([f"{pixel.item():.4f}" for pixel in image])
                labels_columns = " ".join([str(label.item()) for label in one_hot_labels])
                fh.write(f"{image_columns} {labels_columns}\n")

        return num_images


1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
class USPSTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.USPS

    CONFIGS = datasets_utils.combinations_grid(train=(True, False))

    def inject_fake_data(self, tmpdir, config):
        num_images = 2 if config["train"] else 1

        images = torch.rand(num_images, 256) * 2 - 1
        labels = torch.randint(1, 11, size=(num_images,))

        with bz2.open(pathlib.Path(tmpdir) / f"usps{'.t' if not config['train'] else ''}.bz2", "w") as fh:
            for image, label in zip(images, labels):
                line = " ".join((str(label.item()), *[f"{idx}:{pixel:.6f}" for idx, pixel in enumerate(image, 1)]))
                fh.write(f"{line}\n".encode())

        return num_images


Philip Meier's avatar
Philip Meier committed
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
class SBDatasetTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SBDataset
    FEATURE_TYPES = (PIL.Image.Image, (np.ndarray, PIL.Image.Image))

    REQUIRED_PACKAGES = ("scipy.io", "scipy.sparse")

    CONFIGS = datasets_utils.combinations_grid(
        image_set=("train", "val", "train_noval"), mode=("boundaries", "segmentation")
    )

    _NUM_CLASSES = 20

    def inject_fake_data(self, tmpdir, config):
        num_images, num_images_per_image_set = self._create_split_files(tmpdir)

        sizes = self._create_target_folder(tmpdir, "cls", num_images)

        datasets_utils.create_image_folder(
            tmpdir, "img", lambda idx: f"{self._file_stem(idx)}.jpg", num_images, size=lambda idx: sizes[idx]
        )

        return num_images_per_image_set[config["image_set"]]

    def _create_split_files(self, root):
        root = pathlib.Path(root)

        splits = dict(train=(0, 1, 2), train_noval=(0, 2), val=(3,))

        for split, idcs in splits.items():
            self._create_split_file(root, split, idcs)

        num_images = max(itertools.chain(*splits.values())) + 1
        num_images_per_split = dict([(split, len(idcs)) for split, idcs in splits.items()])
        return num_images, num_images_per_split

    def _create_split_file(self, root, name, idcs):
        with open(root / f"{name}.txt", "w") as fh:
            fh.writelines(f"{self._file_stem(idx)}\n" for idx in idcs)

    def _create_target_folder(self, root, name, num_images):
        io = datasets_utils.lazy_importer.scipy.io

        target_folder = pathlib.Path(root) / name
        os.makedirs(target_folder)

        sizes = [torch.randint(1, 4, size=(2,)).tolist() for _ in range(num_images)]
        for idx, size in enumerate(sizes):
            content = dict(
                GTcls=dict(Boundaries=self._create_boundaries(size), Segmentation=self._create_segmentation(size))
            )
            io.savemat(target_folder / f"{self._file_stem(idx)}.mat", content)

        return sizes

    def _create_boundaries(self, size):
        sparse = datasets_utils.lazy_importer.scipy.sparse
        return [
            [sparse.csc_matrix(torch.randint(0, 2, size=size, dtype=torch.uint8).numpy())]
            for _ in range(self._NUM_CLASSES)
        ]

    def _create_segmentation(self, size):
        return torch.randint(0, self._NUM_CLASSES + 1, size=size, dtype=torch.uint8).numpy()

    def _file_stem(self, idx):
        return f"2008_{idx:06d}"


1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
class FakeDataTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.FakeData
    FEATURE_TYPES = (PIL.Image.Image, torch.Tensor)

    def dataset_args(self, tmpdir, config):
        return ()

    def inject_fake_data(self, tmpdir, config):
        return config["size"]

    def test_not_found_or_corrupted(self):
        self.skipTest("The data is generated at creation and thus cannot be non-existent or corrupted.")


1278
if __name__ == "__main__":
1279
    unittest.main()