test_datasets.py 11.4 KB
Newer Older
Francisco Massa's avatar
Francisco Massa committed
1
import sys
2
import os
3
import unittest
4
import mock
5
import numpy as np
6
import PIL
7
from PIL import Image
8
from torch._utils_internal import get_file_path_2
9
10
import torchvision
from common_utils import get_tmp_dir
Philip Meier's avatar
Philip Meier committed
11
from fakedata_generation import mnist_root, cifar_root, imagenet_root, \
12
13
    cityscapes_root, svhn_root, voc_root
import xml.etree.ElementTree as ET
14
15


16
17
18
19
20
21
22
try:
    import scipy
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False


Philip Meier's avatar
Philip Meier committed
23
class Tester(unittest.TestCase):
24
25
26
27
28
29
    def generic_classification_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, int))

30
31
32
33
34
35
    def generic_segmentation_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, PIL.Image.Image))

36
    def test_imagefolder(self):
37
38
39
40
        # TODO: create the fake data on-the-fly
        FAKEDATA_DIR = get_file_path_2(
            os.path.dirname(os.path.abspath(__file__)), 'assets', 'fakedata')

41
        with get_tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
            classes = sorted(['a', 'b'])
            class_a_image_files = [os.path.join(root, 'a', file)
                                   for file in ('a1.png', 'a2.png', 'a3.png')]
            class_b_image_files = [os.path.join(root, 'b', file)
                                   for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')]
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            # test if all classes are present
            self.assertEqual(classes, sorted(dataset.classes))

            # test if combination of classes and class_to_index functions correctly
            for cls in classes:
                self.assertEqual(cls, dataset.classes[dataset.class_to_idx[cls]])

            # test if all images were detected correctly
            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            # test if the datasets outputs all images correctly
            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

            # redo all tests with specified valid image files
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x,
                                                       is_valid_file=lambda x: '3' in x)
            self.assertEqual(classes, sorted(dataset.classes))

            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files
                      if '3' in img_file]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files
                      if '3' in img_file]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

85
86
87
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_mnist(self, mock_download_extract):
        num_examples = 30
88
        with mnist_root(num_examples, "MNIST") as root:
89
            dataset = torchvision.datasets.MNIST(root, download=True)
90
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
91
            img, target = dataset[0]
92
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
93

94
95
96
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_kmnist(self, mock_download_extract):
        num_examples = 30
97
        with mnist_root(num_examples, "KMNIST") as root:
98
            dataset = torchvision.datasets.KMNIST(root, download=True)
99
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
100
            img, target = dataset[0]
101
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
102

103
104
105
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_fashionmnist(self, mock_download_extract):
        num_examples = 30
106
        with mnist_root(num_examples, "FashionMNIST") as root:
107
            dataset = torchvision.datasets.FashionMNIST(root, download=True)
108
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
109
            img, target = dataset[0]
110
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
111

112
    @mock.patch('torchvision.datasets.imagenet._verify_archive')
113
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
114
    def test_imagenet(self, mock_verify):
115
        with imagenet_root() as root:
116
            dataset = torchvision.datasets.ImageNet(root, split='train')
117
            self.generic_classification_dataset_test(dataset)
118

119
            dataset = torchvision.datasets.ImageNet(root, split='val')
120
            self.generic_classification_dataset_test(dataset)
121

Philip Meier's avatar
Philip Meier committed
122
123
124
125
126
127
128
    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar10(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR10') as root:
            dataset = torchvision.datasets.CIFAR10(root, train=True, download=True)
129
            self.generic_classification_dataset_test(dataset, num_images=5)
Philip Meier's avatar
Philip Meier committed
130
            img, target = dataset[0]
131
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
132
133

            dataset = torchvision.datasets.CIFAR10(root, train=False, download=True)
134
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
135
            img, target = dataset[0]
136
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
137
138
139
140
141
142
143
144

    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar100(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR100') as root:
            dataset = torchvision.datasets.CIFAR100(root, train=True, download=True)
145
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
146
            img, target = dataset[0]
147
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
148
149

            dataset = torchvision.datasets.CIFAR100(root, train=False, download=True)
150
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
151
            img, target = dataset[0]
152
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
153

Francisco Massa's avatar
Francisco Massa committed
154
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
    def test_cityscapes(self):
        with cityscapes_root() as root:

            for mode in ['coarse', 'fine']:

                if mode == 'coarse':
                    splits = ['train', 'train_extra', 'val']
                else:
                    splits = ['train', 'val', 'test']

                for split in splits:
                    for target_type in ['semantic', 'instance']:
                        dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                  target_type=target_type, mode=mode)
                        self.generic_segmentation_dataset_test(dataset, num_images=2)

                    color_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                    target_type='color', mode=mode)
                    color_img, color_target = color_dataset[0]
                    self.assertTrue(isinstance(color_img, PIL.Image.Image))
                    self.assertTrue(np.array(color_target).shape[2] == 4)

                    polygon_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                      target_type='polygon', mode=mode)
                    polygon_img, polygon_target = polygon_dataset[0]
                    self.assertTrue(isinstance(polygon_img, PIL.Image.Image))
                    self.assertTrue(isinstance(polygon_target, dict))
                    self.assertTrue(isinstance(polygon_target['imgHeight'], int))
                    self.assertTrue(isinstance(polygon_target['objects'], list))

                    # Test multiple target types
                    targets_combo = ['semantic', 'polygon', 'color']
                    multiple_types_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                             target_type=targets_combo,
                                                                             mode=mode)
                    output = multiple_types_dataset[0]
                    self.assertTrue(isinstance(output, tuple))
                    self.assertTrue(len(output) == 2)
                    self.assertTrue(isinstance(output[0], PIL.Image.Image))
                    self.assertTrue(isinstance(output[1], tuple))
                    self.assertTrue(len(output[1]) == 3)
                    self.assertTrue(isinstance(output[1][0], PIL.Image.Image))  # semantic
                    self.assertTrue(isinstance(output[1][1], dict))  # polygon
                    self.assertTrue(isinstance(output[1][2], PIL.Image.Image))  # color

Philip Meier's avatar
Philip Meier committed
200
    @mock.patch('torchvision.datasets.SVHN._check_integrity')
201
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
Philip Meier's avatar
Philip Meier committed
202
203
204
205
206
207
208
209
210
211
212
213
    def test_svhn(self, mock_check):
        mock_check.return_value = True
        with svhn_root() as root:
            dataset = torchvision.datasets.SVHN(root, split="train")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="test")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="extra")
            self.generic_classification_dataset_test(dataset, num_images=2)

214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
    @mock.patch('torchvision.datasets.voc.download_extract')
    def test_voc_parse_xml(self, mock_download_extract):
        with voc_root() as root:
            dataset = torchvision.datasets.VOCDetection(root)

            single_object_xml = """<annotation>
              <object>
                <name>cat</name>
              </object>
            </annotation>"""
            multiple_object_xml = """<annotation>
              <object>
                <name>cat</name>
              </object>
              <object>
                <name>dog</name>
              </object>
            </annotation>"""
            single_object_parsed = dataset.parse_voc_xml(ET.fromstring(single_object_xml
                ))
            multiple_object_parsed = dataset.parse_voc_xml(ET.fromstring(multiple_object_xml))

            self.assertEqual(single_object_parsed, {'annotation': {'object':[{'name': 'cat'}]}})
            self.assertEqual(multiple_object_parsed, {'annotation':
                {'object':[{'name': 'cat'}, {'name': 'dog'}]}})

240
241
242

if __name__ == '__main__':
    unittest.main()