"third_party/parallel-hashmap/examples/basic.cc" did not exist on "e8309f27790ee465f7567a5e6800b30cfe31686d"
test_datasets.py 9.45 KB
Newer Older
1
import os
2
import unittest
3
import mock
4
import numpy as np
5
import PIL
6
from PIL import Image
7
from torch._utils_internal import get_file_path_2
8
9
import torchvision
from common_utils import get_tmp_dir
10
from fakedata_generation import mnist_root, cifar_root, imagenet_root, cityscapes_root
11
12


Philip Meier's avatar
Philip Meier committed
13
class Tester(unittest.TestCase):
14
15
16
17
18
19
    def generic_classification_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, int))

20
21
22
23
24
25
    def generic_segmentation_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, PIL.Image.Image))

26
    def test_imagefolder(self):
27
28
29
30
        # TODO: create the fake data on-the-fly
        FAKEDATA_DIR = get_file_path_2(
            os.path.dirname(os.path.abspath(__file__)), 'assets', 'fakedata')

31
        with get_tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
            classes = sorted(['a', 'b'])
            class_a_image_files = [os.path.join(root, 'a', file)
                                   for file in ('a1.png', 'a2.png', 'a3.png')]
            class_b_image_files = [os.path.join(root, 'b', file)
                                   for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')]
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            # test if all classes are present
            self.assertEqual(classes, sorted(dataset.classes))

            # test if combination of classes and class_to_index functions correctly
            for cls in classes:
                self.assertEqual(cls, dataset.classes[dataset.class_to_idx[cls]])

            # test if all images were detected correctly
            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            # test if the datasets outputs all images correctly
            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

            # redo all tests with specified valid image files
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x,
                                                       is_valid_file=lambda x: '3' in x)
            self.assertEqual(classes, sorted(dataset.classes))

            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files
                      if '3' in img_file]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files
                      if '3' in img_file]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

75
76
77
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_mnist(self, mock_download_extract):
        num_examples = 30
78
        with mnist_root(num_examples, "MNIST") as root:
79
            dataset = torchvision.datasets.MNIST(root, download=True)
80
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
81
            img, target = dataset[0]
82
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
83

84
85
86
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_kmnist(self, mock_download_extract):
        num_examples = 30
87
        with mnist_root(num_examples, "KMNIST") as root:
88
            dataset = torchvision.datasets.KMNIST(root, download=True)
89
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
90
            img, target = dataset[0]
91
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
92

93
94
95
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_fashionmnist(self, mock_download_extract):
        num_examples = 30
96
        with mnist_root(num_examples, "FashionMNIST") as root:
97
            dataset = torchvision.datasets.FashionMNIST(root, download=True)
98
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
99
            img, target = dataset[0]
100
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
101
102
103

    @mock.patch('torchvision.datasets.utils.download_url')
    def test_imagenet(self, mock_download):
104
        with imagenet_root() as root:
105
            dataset = torchvision.datasets.ImageNet(root, split='train', download=True)
106
            self.generic_classification_dataset_test(dataset)
107
108

            dataset = torchvision.datasets.ImageNet(root, split='val', download=True)
109
            self.generic_classification_dataset_test(dataset)
110

Philip Meier's avatar
Philip Meier committed
111
112
113
114
115
116
117
    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar10(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR10') as root:
            dataset = torchvision.datasets.CIFAR10(root, train=True, download=True)
118
            self.generic_classification_dataset_test(dataset, num_images=5)
Philip Meier's avatar
Philip Meier committed
119
            img, target = dataset[0]
120
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
121
122

            dataset = torchvision.datasets.CIFAR10(root, train=False, download=True)
123
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
124
            img, target = dataset[0]
125
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
126
127
128
129
130
131
132
133

    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar100(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR100') as root:
            dataset = torchvision.datasets.CIFAR100(root, train=True, download=True)
134
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
135
            img, target = dataset[0]
136
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
137
138

            dataset = torchvision.datasets.CIFAR100(root, train=False, download=True)
139
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
140
            img, target = dataset[0]
141
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
142

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
    def test_cityscapes(self):
        with cityscapes_root() as root:

            for mode in ['coarse', 'fine']:

                if mode == 'coarse':
                    splits = ['train', 'train_extra', 'val']
                else:
                    splits = ['train', 'val', 'test']

                for split in splits:
                    for target_type in ['semantic', 'instance']:
                        dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                  target_type=target_type, mode=mode)
                        self.generic_segmentation_dataset_test(dataset, num_images=2)

                    color_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                    target_type='color', mode=mode)
                    color_img, color_target = color_dataset[0]
                    self.assertTrue(isinstance(color_img, PIL.Image.Image))
                    self.assertTrue(np.array(color_target).shape[2] == 4)

                    polygon_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                      target_type='polygon', mode=mode)
                    polygon_img, polygon_target = polygon_dataset[0]
                    self.assertTrue(isinstance(polygon_img, PIL.Image.Image))
                    self.assertTrue(isinstance(polygon_target, dict))
                    self.assertTrue(isinstance(polygon_target['imgHeight'], int))
                    self.assertTrue(isinstance(polygon_target['objects'], list))

                    # Test multiple target types
                    targets_combo = ['semantic', 'polygon', 'color']
                    multiple_types_dataset = torchvision.datasets.Cityscapes(root, split=split,
                                                                             target_type=targets_combo,
                                                                             mode=mode)
                    output = multiple_types_dataset[0]
                    self.assertTrue(isinstance(output, tuple))
                    self.assertTrue(len(output) == 2)
                    self.assertTrue(isinstance(output[0], PIL.Image.Image))
                    self.assertTrue(isinstance(output[1], tuple))
                    self.assertTrue(len(output[1]) == 3)
                    self.assertTrue(isinstance(output[1][0], PIL.Image.Image))  # semantic
                    self.assertTrue(isinstance(output[1][1], dict))  # polygon
                    self.assertTrue(isinstance(output[1][2], PIL.Image.Image))  # color

188
189
190

if __name__ == '__main__':
    unittest.main()