test_datasets.py 31.6 KB
Newer Older
1
import contextlib
Francisco Massa's avatar
Francisco Massa committed
2
import sys
3
import os
4
import unittest
Philip Meier's avatar
Philip Meier committed
5
from unittest import mock
6
import numpy as np
7
import PIL
8
from PIL import Image
9
from torch._utils_internal import get_file_path_2
10
import torchvision
11
from torchvision.datasets import utils
12
from common_utils import get_tmp_dir
Philip Meier's avatar
Philip Meier committed
13
from fakedata_generation import mnist_root, cifar_root, imagenet_root, \
14
    cityscapes_root, svhn_root, voc_root, ucf101_root, places365_root, widerface_root, stl10_root
15
import xml.etree.ElementTree as ET
Philip Meier's avatar
Philip Meier committed
16
17
from urllib.request import Request, urlopen
import itertools
18
19
20
21
import datasets_utils
import pathlib
import pickle
from torchvision import datasets
22
import torch
23
24


25
26
27
28
29
30
try:
    import scipy
    HAS_SCIPY = True
except ImportError:
    HAS_SCIPY = False

31
32
33
34
35
36
try:
    import av
    HAS_PYAV = True
except ImportError:
    HAS_PYAV = False

37

38
class DatasetTestcase(unittest.TestCase):
39
40
41
42
43
44
    def generic_classification_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, int))

45
46
47
48
49
50
    def generic_segmentation_dataset_test(self, dataset, num_images=1):
        self.assertEqual(len(dataset), num_images)
        img, target = dataset[0]
        self.assertTrue(isinstance(img, PIL.Image.Image))
        self.assertTrue(isinstance(target, PIL.Image.Image))

51
52

class Tester(DatasetTestcase):
53
    def test_imagefolder(self):
54
55
56
57
        # TODO: create the fake data on-the-fly
        FAKEDATA_DIR = get_file_path_2(
            os.path.dirname(os.path.abspath(__file__)), 'assets', 'fakedata')

58
        with get_tmp_dir(src=os.path.join(FAKEDATA_DIR, 'imagefolder')) as root:
59
            classes = sorted(['a', 'b'])
60
61
62
63
64
65
            class_a_image_files = [
                os.path.join(root, 'a', file) for file in ('a1.png', 'a2.png', 'a3.png')
            ]
            class_b_image_files = [
                os.path.join(root, 'b', file) for file in ('b1.png', 'b2.png', 'b3.png', 'b4.png')
            ]
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
            dataset = torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            # test if all classes are present
            self.assertEqual(classes, sorted(dataset.classes))

            # test if combination of classes and class_to_index functions correctly
            for cls in classes:
                self.assertEqual(cls, dataset.classes[dataset.class_to_idx[cls]])

            # test if all images were detected correctly
            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            # test if the datasets outputs all images correctly
            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

            # redo all tests with specified valid image files
88
89
            dataset = torchvision.datasets.ImageFolder(
                root, loader=lambda x: x, is_valid_file=lambda x: '3' in x)
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            self.assertEqual(classes, sorted(dataset.classes))

            class_a_idx = dataset.class_to_idx['a']
            class_b_idx = dataset.class_to_idx['b']
            imgs_a = [(img_file, class_a_idx) for img_file in class_a_image_files
                      if '3' in img_file]
            imgs_b = [(img_file, class_b_idx) for img_file in class_b_image_files
                      if '3' in img_file]
            imgs = sorted(imgs_a + imgs_b)
            self.assertEqual(imgs, dataset.imgs)

            outputs = sorted([dataset[i] for i in range(len(dataset))])
            self.assertEqual(imgs, outputs)

104
105
106
107
108
109
110
111
112
113
    def test_imagefolder_empty(self):
        with get_tmp_dir() as root:
            with self.assertRaises(RuntimeError):
                torchvision.datasets.ImageFolder(root, loader=lambda x: x)

            with self.assertRaises(RuntimeError):
                torchvision.datasets.ImageFolder(
                    root, loader=lambda x: x, is_valid_file=lambda x: False
                )

114
115
116
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_mnist(self, mock_download_extract):
        num_examples = 30
117
        with mnist_root(num_examples, "MNIST") as root:
118
            dataset = torchvision.datasets.MNIST(root, download=True)
119
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
120
            img, target = dataset[0]
121
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
122

123
124
125
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_kmnist(self, mock_download_extract):
        num_examples = 30
126
        with mnist_root(num_examples, "KMNIST") as root:
127
            dataset = torchvision.datasets.KMNIST(root, download=True)
128
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
129
            img, target = dataset[0]
130
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
131

132
133
134
    @mock.patch('torchvision.datasets.mnist.download_and_extract_archive')
    def test_fashionmnist(self, mock_download_extract):
        num_examples = 30
135
        with mnist_root(num_examples, "FashionMNIST") as root:
136
            dataset = torchvision.datasets.FashionMNIST(root, download=True)
137
            self.generic_classification_dataset_test(dataset, num_images=num_examples)
138
            img, target = dataset[0]
139
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
140

141
    @mock.patch('torchvision.datasets.imagenet._verify_archive')
142
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
143
    def test_imagenet(self, mock_verify):
144
        with imagenet_root() as root:
145
            dataset = torchvision.datasets.ImageNet(root, split='train')
146
            self.generic_classification_dataset_test(dataset)
147

148
            dataset = torchvision.datasets.ImageNet(root, split='val')
149
            self.generic_classification_dataset_test(dataset)
150

Josh Bradley's avatar
Josh Bradley committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    @mock.patch('torchvision.datasets.WIDERFace._check_integrity')
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
    def test_widerface(self, mock_check_integrity):
        mock_check_integrity.return_value = True
        with widerface_root() as root:
            dataset = torchvision.datasets.WIDERFace(root, split='train')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

            dataset = torchvision.datasets.WIDERFace(root, split='val')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

            dataset = torchvision.datasets.WIDERFace(root, split='test')
            self.assertEqual(len(dataset), 1)
            img, target = dataset[0]
            self.assertTrue(isinstance(img, PIL.Image.Image))

Philip Meier's avatar
Philip Meier committed
171
172
173
174
175
176
177
    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar10(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR10') as root:
            dataset = torchvision.datasets.CIFAR10(root, train=True, download=True)
178
            self.generic_classification_dataset_test(dataset, num_images=5)
Philip Meier's avatar
Philip Meier committed
179
            img, target = dataset[0]
180
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
181
182

            dataset = torchvision.datasets.CIFAR10(root, train=False, download=True)
183
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
184
            img, target = dataset[0]
185
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
186
187
188
189
190
191
192
193

    @mock.patch('torchvision.datasets.cifar.check_integrity')
    @mock.patch('torchvision.datasets.cifar.CIFAR10._check_integrity')
    def test_cifar100(self, mock_ext_check, mock_int_check):
        mock_ext_check.return_value = True
        mock_int_check.return_value = True
        with cifar_root('CIFAR100') as root:
            dataset = torchvision.datasets.CIFAR100(root, train=True, download=True)
194
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
195
            img, target = dataset[0]
196
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
197
198

            dataset = torchvision.datasets.CIFAR100(root, train=False, download=True)
199
            self.generic_classification_dataset_test(dataset)
Philip Meier's avatar
Philip Meier committed
200
            img, target = dataset[0]
201
            self.assertEqual(dataset.class_to_idx[dataset.classes[0]], target)
Philip Meier's avatar
Philip Meier committed
202

Francisco Massa's avatar
Francisco Massa committed
203
    @unittest.skipIf('win' in sys.platform, 'temporarily disabled on Windows')
204
205
206
207
208
209
210
211
212
213
214
215
    def test_cityscapes(self):
        with cityscapes_root() as root:

            for mode in ['coarse', 'fine']:

                if mode == 'coarse':
                    splits = ['train', 'train_extra', 'val']
                else:
                    splits = ['train', 'val', 'test']

                for split in splits:
                    for target_type in ['semantic', 'instance']:
216
217
                        dataset = torchvision.datasets.Cityscapes(
                            root, split=split, target_type=target_type, mode=mode)
218
219
                        self.generic_segmentation_dataset_test(dataset, num_images=2)

220
221
                    color_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type='color', mode=mode)
222
223
224
225
                    color_img, color_target = color_dataset[0]
                    self.assertTrue(isinstance(color_img, PIL.Image.Image))
                    self.assertTrue(np.array(color_target).shape[2] == 4)

226
227
                    polygon_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type='polygon', mode=mode)
228
229
230
231
232
233
234
235
                    polygon_img, polygon_target = polygon_dataset[0]
                    self.assertTrue(isinstance(polygon_img, PIL.Image.Image))
                    self.assertTrue(isinstance(polygon_target, dict))
                    self.assertTrue(isinstance(polygon_target['imgHeight'], int))
                    self.assertTrue(isinstance(polygon_target['objects'], list))

                    # Test multiple target types
                    targets_combo = ['semantic', 'polygon', 'color']
236
237
                    multiple_types_dataset = torchvision.datasets.Cityscapes(
                        root, split=split, target_type=targets_combo, mode=mode)
238
239
240
241
242
243
244
245
246
247
                    output = multiple_types_dataset[0]
                    self.assertTrue(isinstance(output, tuple))
                    self.assertTrue(len(output) == 2)
                    self.assertTrue(isinstance(output[0], PIL.Image.Image))
                    self.assertTrue(isinstance(output[1], tuple))
                    self.assertTrue(len(output[1]) == 3)
                    self.assertTrue(isinstance(output[1][0], PIL.Image.Image))  # semantic
                    self.assertTrue(isinstance(output[1][1], dict))  # polygon
                    self.assertTrue(isinstance(output[1][2], PIL.Image.Image))  # color

Philip Meier's avatar
Philip Meier committed
248
    @mock.patch('torchvision.datasets.SVHN._check_integrity')
249
    @unittest.skipIf(not HAS_SCIPY, "scipy unavailable")
Philip Meier's avatar
Philip Meier committed
250
251
252
253
254
255
256
257
258
259
260
261
    def test_svhn(self, mock_check):
        mock_check.return_value = True
        with svhn_root() as root:
            dataset = torchvision.datasets.SVHN(root, split="train")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="test")
            self.generic_classification_dataset_test(dataset, num_images=2)

            dataset = torchvision.datasets.SVHN(root, split="extra")
            self.generic_classification_dataset_test(dataset, num_images=2)

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    @mock.patch('torchvision.datasets.voc.download_extract')
    def test_voc_parse_xml(self, mock_download_extract):
        with voc_root() as root:
            dataset = torchvision.datasets.VOCDetection(root)

            single_object_xml = """<annotation>
              <object>
                <name>cat</name>
              </object>
            </annotation>"""
            multiple_object_xml = """<annotation>
              <object>
                <name>cat</name>
              </object>
              <object>
                <name>dog</name>
              </object>
            </annotation>"""
280
281

            single_object_parsed = dataset.parse_voc_xml(ET.fromstring(single_object_xml))
282
283
            multiple_object_parsed = dataset.parse_voc_xml(ET.fromstring(multiple_object_xml))

284
285
286
287
288
289
290
291
292
            self.assertEqual(single_object_parsed, {'annotation': {'object': [{'name': 'cat'}]}})
            self.assertEqual(multiple_object_parsed,
                             {'annotation': {
                                 'object': [{
                                     'name': 'cat'
                                 }, {
                                     'name': 'dog'
                                 }]
                             }})
293

294
295
    @unittest.skipIf(not HAS_PYAV, "PyAV unavailable")
    def test_ucf101(self):
296
        cached_meta_data = None
297
298
299
300
        with ucf101_root() as (root, ann_root):
            for split in {True, False}:
                for fold in range(1, 4):
                    for length in {10, 15, 20}:
301
302
303
304
                        dataset = torchvision.datasets.UCF101(root, ann_root, length, fold=fold, train=split,
                                                              num_workers=2, _precomputed_metadata=cached_meta_data)
                        if cached_meta_data is None:
                            cached_meta_data = dataset.metadata
305
306
307
308
309
310
311
312
313
314
315
316
                        self.assertGreater(len(dataset), 0)

                        video, audio, label = dataset[0]
                        self.assertEqual(video.size(), (length, 320, 240, 3))
                        self.assertEqual(audio.numel(), 0)
                        self.assertEqual(label, 0)

                        video, audio, label = dataset[len(dataset) - 1]
                        self.assertEqual(video.size(), (length, 320, 240, 3))
                        self.assertEqual(audio.numel(), 0)
                        self.assertEqual(label, 1)

Philip Meier's avatar
Philip Meier committed
317
    def test_places365(self):
Philip Meier's avatar
Philip Meier committed
318
        for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)):
Philip Meier's avatar
Philip Meier committed
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            with places365_root(split=split, small=small) as places365:
                root, data = places365

                dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)
                self.generic_classification_dataset_test(dataset, num_images=len(data["imgs"]))

    def test_places365_transforms(self):
        expected_image = "image"
        expected_target = "target"

        def transform(image):
            return expected_image

        def target_transform(target):
            return expected_target

        with places365_root() as places365:
            root, data = places365

            dataset = torchvision.datasets.Places365(
                root, transform=transform, target_transform=target_transform, download=True
            )
            actual_image, actual_target = dataset[0]

            self.assertEqual(actual_image, expected_image)
            self.assertEqual(actual_target, expected_target)

    def test_places365_devkit_download(self):
Philip Meier's avatar
Philip Meier committed
347
        for split in ("train-standard", "train-challenge", "val"):
Philip Meier's avatar
Philip Meier committed
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
            with self.subTest(split=split):
                with places365_root(split=split) as places365:
                    root, data = places365

                    dataset = torchvision.datasets.Places365(root, split=split, download=True)

                    with self.subTest("classes"):
                        self.assertSequenceEqual(dataset.classes, data["classes"])

                    with self.subTest("class_to_idx"):
                        self.assertDictEqual(dataset.class_to_idx, data["class_to_idx"])

                    with self.subTest("imgs"):
                        self.assertSequenceEqual(dataset.imgs, data["imgs"])

    def test_places365_devkit_no_download(self):
Philip Meier's avatar
Philip Meier committed
364
        for split in ("train-standard", "train-challenge", "val"):
Philip Meier's avatar
Philip Meier committed
365
            with self.subTest(split=split):
366
                with places365_root(split=split) as places365:
Philip Meier's avatar
Philip Meier committed
367
368
369
370
371
372
                    root, data = places365

                    with self.assertRaises(RuntimeError):
                        torchvision.datasets.Places365(root, split=split, download=False)

    def test_places365_images_download(self):
Philip Meier's avatar
Philip Meier committed
373
        for split, small in itertools.product(("train-standard", "train-challenge", "val"), (False, True)):
Philip Meier's avatar
Philip Meier committed
374
375
376
377
378
379
380
381
382
383
384
            with self.subTest(split=split, small=small):
                with places365_root(split=split, small=small) as places365:
                    root, data = places365

                    dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)

                    assert all(os.path.exists(item[0]) for item in dataset.imgs)

    def test_places365_images_download_preexisting(self):
        split = "train-standard"
        small = False
Philip Meier's avatar
Philip Meier committed
385
        images_dir = "data_large_standard"
Philip Meier's avatar
Philip Meier committed
386
387
388
389
390
391
392
393
394

        with places365_root(split=split, small=small) as places365:
            root, data = places365
            os.mkdir(os.path.join(root, images_dir))

            with self.assertRaises(RuntimeError):
                torchvision.datasets.Places365(root, split=split, small=small, download=True)

    def test_places365_repr_smoke(self):
395
        with places365_root() as places365:
Philip Meier's avatar
Philip Meier committed
396
397
398
399
400
            root, data = places365

            dataset = torchvision.datasets.Places365(root, download=True)
            self.assertIsInstance(repr(dataset), str)

401

402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
class STL10Tester(DatasetTestcase):
    @contextlib.contextmanager
    def mocked_root(self):
        with stl10_root() as (root, data):
            yield root, data

    @contextlib.contextmanager
    def mocked_dataset(self, pre_extract=False, download=True, **kwargs):
        with self.mocked_root() as (root, data):
            if pre_extract:
                utils.extract_archive(os.path.join(root, data["archive"]))
            dataset = torchvision.datasets.STL10(root, download=download, **kwargs)
            yield dataset, data

    def test_not_found(self):
        with self.assertRaises(RuntimeError):
            with self.mocked_dataset(download=False):
                pass

    def test_splits(self):
        for split in ('train', 'train+unlabeled', 'unlabeled', 'test'):
            with self.mocked_dataset(split=split) as (dataset, data):
                num_images = sum([data["num_images_in_split"][part] for part in split.split("+")])
                self.generic_classification_dataset_test(dataset, num_images=num_images)

    def test_folds(self):
        for fold in range(10):
            with self.mocked_dataset(split="train", folds=fold) as (dataset, data):
                num_images = data["num_images_in_folds"][fold]
                self.assertEqual(len(dataset), num_images)

    def test_invalid_folds1(self):
        with self.assertRaises(ValueError):
            with self.mocked_dataset(folds=10):
                pass

    def test_invalid_folds2(self):
        with self.assertRaises(ValueError):
            with self.mocked_dataset(folds="0"):
                pass

    def test_transforms(self):
        expected_image = "image"
        expected_target = "target"

        def transform(image):
            return expected_image

        def target_transform(target):
            return expected_target

        with self.mocked_dataset(transform=transform, target_transform=target_transform) as (dataset, _):
            actual_image, actual_target = dataset[0]

            self.assertEqual(actual_image, expected_image)
            self.assertEqual(actual_target, expected_target)

    def test_unlabeled(self):
        with self.mocked_dataset(split="unlabeled") as (dataset, _):
            labels = [dataset[idx][1] for idx in range(len(dataset))]
            self.assertTrue(all([label == -1 for label in labels]))

    @unittest.mock.patch("torchvision.datasets.stl10.download_and_extract_archive")
    def test_download_preexisting(self, mock):
        with self.mocked_dataset(pre_extract=True) as (dataset, data):
            mock.assert_not_called()

    def test_repr_smoke(self):
        with self.mocked_dataset() as (dataset, _):
            self.assertIsInstance(repr(dataset), str)


474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
class Caltech101TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Caltech101
    FEATURE_TYPES = (PIL.Image.Image, (int, np.ndarray, tuple))

    CONFIGS = datasets_utils.combinations_grid(target_type=("category", "annotation", ["category", "annotation"]))
    REQUIRED_PACKAGES = ("scipy",)

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "caltech101"
        images = root / "101_ObjectCategories"
        annotations = root / "Annotations"

        categories = (("Faces", "Faces_2"), ("helicopter", "helicopter"), ("ying_yang", "ying_yang"))
        num_images_per_category = 2

        for image_category, annotation_category in categories:
            datasets_utils.create_image_folder(
                root=images,
                name=image_category,
                file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )
            self._create_annotation_folder(
                root=annotations,
                name=annotation_category,
                file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
                num_examples=num_images_per_category,
            )

        # This is included in the original archive, but is removed by the dataset. Thus, an empty directory suffices.
        os.makedirs(images / "BACKGROUND_Google")

        return num_images_per_category * len(categories)

    def _create_annotation_folder(self, root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        os.makedirs(root)

        for idx in range(num_examples):
            self._create_annotation_file(root, file_name_fn(idx))

    def _create_annotation_file(self, root, name):
        mdict = dict(obj_contour=torch.rand((2, torch.randint(3, 6, size=())), dtype=torch.float64).numpy())
        datasets_utils.lazy_importer.scipy.io.savemat(str(pathlib.Path(root) / name), mdict)

    def test_combined_targets(self):
        target_types = ["category", "annotation"]

        individual_targets = []
        for target_type in target_types:
            with self.create_dataset(target_type=target_type) as (dataset, _):
                _, target = dataset[0]
                individual_targets.append(target)

        with self.create_dataset(target_type=target_types) as (dataset, _):
            _, combined_targets = dataset[0]

        actual = len(individual_targets)
        expected = len(combined_targets)
        self.assertEqual(
            actual,
            expected,
            f"The number of the returned combined targets does not match the the number targets if requested "
            f"individually: {actual} != {expected}",
        )

        for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
            with self.subTest(target_type=target_type):
                actual = type(combined_target)
                expected = type(individual_target)
                self.assertIs(
                    actual,
                    expected,
                    f"Type of the combined target does not match the type of the corresponding individual target: "
                    f"{actual} is not {expected}",
                )


552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
class Caltech256TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Caltech256

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / "caltech256" / "256_ObjectCategories"

        categories = ((1, "ak47"), (127, "laptop-101"), (257, "clutter"))
        num_images_per_category = 2

        for idx, category in categories:
            datasets_utils.create_image_folder(
                tmpdir,
                name=f"{idx:03d}.{category}",
                file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )

        return num_images_per_category * len(categories)


class CIFAR10TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CIFAR10
    CONFIGS = datasets_utils.combinations_grid(train=(True, False))

    _VERSION_CONFIG = dict(
        base_folder="cifar-10-batches-py",
        train_files=tuple(f"data_batch_{idx}" for idx in range(1, 6)),
        test_files=("test_batch",),
        labels_key="labels",
        meta_file="batches.meta",
        num_categories=10,
        categories_key="label_names",
    )

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / self._VERSION_CONFIG["base_folder"]
        os.makedirs(tmpdir)

        num_images_per_file = 1
        for name in itertools.chain(self._VERSION_CONFIG["train_files"], self._VERSION_CONFIG["test_files"]):
            self._create_batch_file(tmpdir, name, num_images_per_file)

        categories = self._create_meta_file(tmpdir)

        return dict(
            num_examples=num_images_per_file
            * len(self._VERSION_CONFIG["train_files"] if config["train"] else self._VERSION_CONFIG["test_files"]),
            categories=categories,
        )

    def _create_batch_file(self, root, name, num_images):
        data = datasets_utils.create_image_or_video_tensor((num_images, 32 * 32 * 3))
        labels = np.random.randint(0, self._VERSION_CONFIG["num_categories"], size=num_images).tolist()
        self._create_binary_file(root, name, {"data": data, self._VERSION_CONFIG["labels_key"]: labels})

    def _create_meta_file(self, root):
        categories = [
            f"{idx:0{len(str(self._VERSION_CONFIG['num_categories'] - 1))}d}"
            for idx in range(self._VERSION_CONFIG["num_categories"])
        ]
        self._create_binary_file(
            root, self._VERSION_CONFIG["meta_file"], {self._VERSION_CONFIG["categories_key"]: categories}
        )
        return categories

    def _create_binary_file(self, root, name, content):
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    def test_class_to_idx(self):
        with self.create_dataset() as (dataset, info):
            expected = {category: label for label, category in enumerate(info["categories"])}
            actual = dataset.class_to_idx
            self.assertEqual(actual, expected)


class CIFAR100(CIFAR10TestCase):
    DATASET_CLASS = datasets.CIFAR100

    _VERSION_CONFIG = dict(
        base_folder="cifar-100-python",
        train_files=("train",),
        test_files=("test",),
        labels_key="fine_labels",
        meta_file="meta",
        num_categories=100,
        categories_key="fine_label_names",
    )


Philip Meier's avatar
Philip Meier committed
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
class CelebATestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CelebA
    FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None)))

    CONFIGS = datasets_utils.combinations_grid(
        split=("train", "valid", "test", "all"),
        target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]),
    )
    REQUIRED_PACKAGES = ("pandas",)

    _SPLIT_TO_IDX = dict(train=0, valid=1, test=2)

    def inject_fake_data(self, tmpdir, config):
        base_folder = pathlib.Path(tmpdir) / "celeba"
        os.makedirs(base_folder)

        num_images, num_images_per_split = self._create_split_txt(base_folder)

        datasets_utils.create_image_folder(
            base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images
        )
        attr_names = self._create_attr_txt(base_folder, num_images)
        self._create_identity_txt(base_folder, num_images)
        self._create_bbox_txt(base_folder, num_images)
        self._create_landmarks_txt(base_folder, num_images)

        return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names)

    def _create_split_txt(self, root):
        num_images_per_split = dict(train=3, valid=2, test=1)

        data = [
            [self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images)
        ]
        self._create_txt(root, "list_eval_partition.txt", data)

        num_images_per_split["all"] = num_images = sum(num_images_per_split.values())
        return num_images, num_images_per_split

    def _create_attr_txt(self, root, num_images):
        header = ("5_o_Clock_Shadow", "Young")
        data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist()
        self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True)
        return header

    def _create_identity_txt(self, root, num_images):
        data = torch.randint(1, 4, size=(num_images, 1)).tolist()
        self._create_txt(root, "identity_CelebA.txt", data)

    def _create_bbox_txt(self, root, num_images):
        header = ("x_1", "y_1", "width", "height")
        data = torch.randint(10, size=(num_images, len(header))).tolist()
        self._create_txt(
            root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True
        )

    def _create_landmarks_txt(self, root, num_images):
        header = ("lefteye_x", "rightmouth_y")
        data = torch.randint(10, size=(num_images, len(header))).tolist()
        self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True)

    def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False):
        with open(pathlib.Path(root) / name, "w") as fh:
            if add_num_examples:
                fh.write(f"{len(data)}\n")

            if header:
                if add_image_id_to_header:
                    header = ("image_id", *header)
                fh.write(f"{' '.join(header)}\n")

            for idx, line in enumerate(data, 1):
                fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n")

    def test_combined_targets(self):
        target_types = ["attr", "identity", "bbox", "landmarks"]

        individual_targets = []
        for target_type in target_types:
            with self.create_dataset(target_type=target_type) as (dataset, _):
                _, target = dataset[0]
                individual_targets.append(target)

        with self.create_dataset(target_type=target_types) as (dataset, _):
            _, combined_targets = dataset[0]

        actual = len(individual_targets)
        expected = len(combined_targets)
        self.assertEqual(
            actual,
            expected,
            f"The number of the returned combined targets does not match the the number targets if requested "
            f"individually: {actual} != {expected}",
        )

        for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
            with self.subTest(target_type=target_type):
                actual = type(combined_target)
                expected = type(individual_target)
                self.assertIs(
                    actual,
                    expected,
                    f"Type of the combined target does not match the type of the corresponding individual target: "
                    f"{actual} is not {expected}",
                )

    def test_no_target(self):
        with self.create_dataset(target_type=[]) as (dataset, _):
            _, target = dataset[0]

        self.assertIsNone(target)

    def test_attr_names(self):
        with self.create_dataset() as (dataset, info):
            self.assertEqual(tuple(dataset.attr_names), info["attr_names"])


759
if __name__ == "__main__":
760
    unittest.main()