Unverified Commit fc69c225 authored by Philip Meier's avatar Philip Meier Committed by GitHub
Browse files

Places365 dataset (#2610)

* initial draft

* [dirty] progress

* remove inheritance from ImageFolder

* add tests

* lint

* fix type hints

* align getitem with other datasets

* remove unused import

* add docstring

* guard existing image folders from overwrite

* add missing entry in docstring

* make fixpath more legible

* add Places365 to docs
parent 3e0f5a6f
...@@ -166,6 +166,13 @@ PhotoTour ...@@ -166,6 +166,13 @@ PhotoTour
:members: __getitem__ :members: __getitem__
:special-members: :special-members:
Places365
~~~~~~~~~
.. autoclass:: Places365
:members: __getitem__
:special-members:
QMNIST QMNIST
~~~~~~ ~~~~~~
......
...@@ -10,6 +10,8 @@ import pickle ...@@ -10,6 +10,8 @@ import pickle
import random import random
from itertools import cycle from itertools import cycle
from torchvision.io.video import write_video from torchvision.io.video import write_video
import unittest.mock
import hashlib
@contextlib.contextmanager @contextlib.contextmanager
...@@ -312,3 +314,105 @@ def ucf101_root(): ...@@ -312,3 +314,105 @@ def ucf101_root():
for f in file_handles: for f in file_handles:
f.close() f.close()
yield (video_dir, annotations) yield (video_dir, annotations)
@contextlib.contextmanager
def places365_root(split="train-standard", small=False, extract_images=True):
CATEGORIES = (("/a/airfield", 0), ("/a/apartment_building/outdoor", 8), ("/b/badlands", 30))
FILE_LIST = [(f"{idx}.png", idx) for idx in tuple(zip(*CATEGORIES))[1]]
def compute_md5(file):
with open(file, "rb") as fh:
return hashlib.md5(fh.read()).hexdigest()
def make_txt(root, name, cls_or_image_seq):
file = os.path.join(root, name)
with open(file, "w") as fh:
for cls_or_image, idx in cls_or_image_seq:
fh.write(f"{cls_or_image} {idx}\n")
return name, compute_md5(file)
def make_categories_txt(root, name):
return make_txt(root, name, CATEGORIES)
def make_file_list_txt(root, name):
return make_txt(root, name, FILE_LIST)
def make_image(root, name, size):
PIL.Image.fromarray(np.zeros((*size, 3), dtype=np.uint8)).save(os.path.join(root, name))
def make_tar(root, name, files, remove_files=True):
archive = os.path.join(root, name)
files = [os.path.join(root, file) for file in files]
with tarfile.open(archive, "w") as fh:
for file in files:
fh.add(file, os.path.basename(file))
if remove_files:
for file in files:
os.remove(file)
return name, compute_md5(archive)
def mock_target(attr, partial="torchvision.datasets.places365.Places365"):
return f"{partial}.{attr}"
def mock_class_attribute(stack, attr, new):
mock = unittest.mock.patch(mock_target(attr), new_callable=unittest.mock.PropertyMock, return_value=new)
stack.enter_context(mock)
return mock
def split_to_variant(split):
return "challenge" if split == "train-challenge" else "standard"
def make_devkit_archive(stack, root, split):
variant = split_to_variant(split)
archive = f"filelist_places365-{variant}.tar"
files = []
meta = make_categories_txt(root, "categories_places365.txt")
mock_class_attribute(stack, "_CATEGORIES_META", meta)
files.append(meta[0])
meta = {
split: make_file_list_txt(root, f"places365_{split.replace('-', '_')}.txt")
for split in (f"train-{variant}", "val", "test")
}
mock_class_attribute(stack, "_FILE_LIST_META", meta)
files.extend([item[0] for item in meta.values()])
meta = {variant: make_tar(root, archive, files)}
mock_class_attribute(stack, "_DEVKIT_META", meta)
def make_images_archive(stack, root, split, small):
if split.startswith("train"):
images_dir = f"train_{'256' if small else 'large'}_places365{split_to_variant(split)}"
else:
images_dir = f"{split}_{'256' if small else 'large'}"
archive = f"{images_dir}.tar"
size = (256, 256) if small else (512, random.randint(512, 1024))
imgs = [item[0] for item in FILE_LIST]
for img in imgs:
make_image(root, img, size)
meta = {(split, small): make_tar(root, archive, imgs)}
mock_class_attribute(stack, "_IMAGES_META", meta)
return images_dir
with contextlib.ExitStack() as stack:
with get_tmp_dir() as root:
make_devkit_archive(stack, root, split)
class_to_idx = dict(CATEGORIES)
classes = list(class_to_idx.keys())
data = {"class_to_idx": class_to_idx, "classes": classes}
if extract_images:
images_dir = make_images_archive(stack, root, split, small)
data["imgs"] = [(os.path.join(root, images_dir, file), idx) for file, idx in FILE_LIST]
else:
stack.enter_context(unittest.mock.patch(mock_target("download_images")))
yield root, data
...@@ -9,8 +9,10 @@ from torch._utils_internal import get_file_path_2 ...@@ -9,8 +9,10 @@ from torch._utils_internal import get_file_path_2
import torchvision import torchvision
from common_utils import get_tmp_dir from common_utils import get_tmp_dir
from fakedata_generation import mnist_root, cifar_root, imagenet_root, \ from fakedata_generation import mnist_root, cifar_root, imagenet_root, \
cityscapes_root, svhn_root, voc_root, ucf101_root cityscapes_root, svhn_root, voc_root, ucf101_root, places365_root
import xml.etree.ElementTree as ET import xml.etree.ElementTree as ET
from urllib.request import Request, urlopen
import itertools
try: try:
...@@ -280,6 +282,104 @@ class Tester(unittest.TestCase): ...@@ -280,6 +282,104 @@ class Tester(unittest.TestCase):
self.assertEqual(audio.numel(), 0) self.assertEqual(audio.numel(), 0)
self.assertEqual(label, 1) self.assertEqual(label, 1)
def test_places365(self):
for split, small in itertools.product(("train-standard", "train-challenge", "val", "test"), (False, True)):
with places365_root(split=split, small=small) as places365:
root, data = places365
dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)
self.generic_classification_dataset_test(dataset, num_images=len(data["imgs"]))
def test_places365_transforms(self):
expected_image = "image"
expected_target = "target"
def transform(image):
return expected_image
def target_transform(target):
return expected_target
with places365_root() as places365:
root, data = places365
dataset = torchvision.datasets.Places365(
root, transform=transform, target_transform=target_transform, download=True
)
actual_image, actual_target = dataset[0]
self.assertEqual(actual_image, expected_image)
self.assertEqual(actual_target, expected_target)
@mock.patch("torchvision.datasets.utils.download_url")
def test_places365_downloadable(self, download_url):
for split, small in itertools.product(("train-standard", "train-challenge", "val", "test"), (False, True)):
with places365_root(split=split, small=small) as places365:
root, data = places365
torchvision.datasets.Places365(root, split=split, small=small, download=True)
urls = {call_args[0][0] for call_args in download_url.call_args_list}
for url in urls:
with self.subTest(url=url):
response = urlopen(Request(url, method="HEAD"))
assert response.code == 200, f"Server returned status code {response.code} for {url}."
def test_places365_devkit_download(self):
for split in ("train-standard", "train-challenge", "val", "test"):
with self.subTest(split=split):
with places365_root(split=split) as places365:
root, data = places365
dataset = torchvision.datasets.Places365(root, split=split, download=True)
with self.subTest("classes"):
self.assertSequenceEqual(dataset.classes, data["classes"])
with self.subTest("class_to_idx"):
self.assertDictEqual(dataset.class_to_idx, data["class_to_idx"])
with self.subTest("imgs"):
self.assertSequenceEqual(dataset.imgs, data["imgs"])
def test_places365_devkit_no_download(self):
for split in ("train-standard", "train-challenge", "val", "test"):
with self.subTest(split=split):
with places365_root(split=split, extract_images=False) as places365:
root, data = places365
with self.assertRaises(RuntimeError):
torchvision.datasets.Places365(root, split=split, download=False)
def test_places365_images_download(self):
for split, small in itertools.product(("train-standard", "train-challenge", "val", "test"), (False, True)):
with self.subTest(split=split, small=small):
with places365_root(split=split, small=small) as places365:
root, data = places365
dataset = torchvision.datasets.Places365(root, split=split, small=small, download=True)
assert all(os.path.exists(item[0]) for item in dataset.imgs)
def test_places365_images_download_preexisting(self):
split = "train-standard"
small = False
images_dir = "train_large_places365standard"
with places365_root(split=split, small=small) as places365:
root, data = places365
os.mkdir(os.path.join(root, images_dir))
with self.assertRaises(RuntimeError):
torchvision.datasets.Places365(root, split=split, small=small, download=True)
def test_places365_repr_smoke(self):
with places365_root(extract_images=False) as places365:
root, data = places365
dataset = torchvision.datasets.Places365(root, download=True)
self.assertIsInstance(repr(dataset), str)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()
...@@ -22,6 +22,7 @@ from .usps import USPS ...@@ -22,6 +22,7 @@ from .usps import USPS
from .kinetics import Kinetics400 from .kinetics import Kinetics400
from .hmdb51 import HMDB51 from .hmdb51 import HMDB51
from .ucf101 import UCF101 from .ucf101 import UCF101
from .places365 import Places365
__all__ = ('LSUN', 'LSUNClass', __all__ = ('LSUN', 'LSUNClass',
'ImageFolder', 'DatasetFolder', 'FakeData', 'ImageFolder', 'DatasetFolder', 'FakeData',
...@@ -31,4 +32,4 @@ __all__ = ('LSUN', 'LSUNClass', ...@@ -31,4 +32,4 @@ __all__ = ('LSUN', 'LSUNClass',
'Omniglot', 'SBU', 'Flickr8k', 'Flickr30k', 'Omniglot', 'SBU', 'Flickr8k', 'Flickr30k',
'VOCSegmentation', 'VOCDetection', 'Cityscapes', 'ImageNet', 'VOCSegmentation', 'VOCDetection', 'Cityscapes', 'ImageNet',
'Caltech101', 'Caltech256', 'CelebA', 'SBDataset', 'VisionDataset', 'Caltech101', 'Caltech256', 'CelebA', 'SBDataset', 'VisionDataset',
'USPS', 'Kinetics400', 'HMDB51', 'UCF101') 'USPS', 'Kinetics400', 'HMDB51', 'UCF101', 'Places365')
import os
from os import path
from typing import Any, Callable, Dict, List, Optional, Tuple
from urllib.parse import urljoin
from .folder import default_loader
from .utils import verify_str_arg, check_integrity, download_and_extract_archive
from .vision import VisionDataset
class Places365(VisionDataset):
r"""`Places365 <http://places2.csail.mit.edu/index.html>`_ classification dataset.
Args:
root (string): Root directory of the Places365 dataset.
split (string, optional): The dataset split. Can be one of ``train-standard`` (default), ``train-challendge``,
``val``, and ``test``.
small (bool, optional): If ``True``, uses the small images, i. e. resized to 256 x 256 pixels, instead of the
high resolution ones.
download (bool, optional): If ``True``, downloads the dataset components and places them in ``root``. Already
downloaded archives are not downloaded again.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
targets (list): The class_index value for each image in the dataset
Raises:
RuntimeError: If ``download is False`` and the meta files, i. e. the devkit, are not present or corrupted.
RuntimeError: If ``download is True`` and the image archive is already extracted.
"""
_SPLITS = ("train-standard", "train-challenge", "val", "test")
_BASE_URL = "http://data.csail.mit.edu/places/places365/"
# {variant: (archive, md5)}
_DEVKIT_META = {
"standard": ("filelist_places365-standard.tar", "35a0585fee1fa656440f3ab298f8479c"),
"challenge": ("filelist_places365-challenge.tar", "70a8307e459c3de41690a7c76c931734"),
}
# (file, md5)
_CATEGORIES_META = ("categories_places365.txt", "06c963b85866bd0649f97cb43dd16673")
# {split: (file, md5)}
_FILE_LIST_META = {
"train-standard": ("places365_train_standard.txt", "30f37515461640559006b8329efbed1a"),
"train-challenge": ("places365_train_challenge.txt", "b2931dc997b8c33c27e7329c073a6b57"),
"val": ("places365_val.txt", "e9f2fd57bfd9d07630173f4e8708e4b1"),
"test": ("places365_test.txt", "2fce8233fe493576d724142e45d93653"),
}
# {(split, small): (file, md5)}
_IMAGES_META = {
("train-standard", False): ("train_large_places365standard.tar", "67e186b496a84c929568076ed01a8aa1"),
("train-challenge", False): ("train_large_places365challenge.tar", "605f18e68e510c82b958664ea134545f"),
("val", False): ("val_large.tar", "9b71c4993ad89d2d8bcbdc4aef38042f"),
("test", False): ("test_large.tar", "41a4b6b724b1d2cd862fb3871ed59913"),
("train-standard", True): ("train_256_places365standard.tar", "53ca1c756c3d1e7809517cc47c5561c5"),
("train-challenge", True): ("train_256_places365challenge.tar", "741915038a5e3471ec7332404dfb64ef"),
("val", True): ("val_256.tar", "e27b17d8d44f4af9a78502beb927f808"),
("test", True): ("test_256.tar", "f532f6ad7b582262a2ec8009075e186b"),
}
def __init__(
self,
root: str,
split: str = "train-standard",
small: bool = False,
download: bool = False,
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
loader: Callable[[str], Any] = default_loader,
) -> None:
super().__init__(root, transform=transform, target_transform=target_transform)
self.split = self._verify_split(split)
self.small = small
self.loader = loader
self.classes, self.class_to_idx = self.load_categories(download)
self.imgs, self.targets = self.load_file_list(download)
if download:
self.download_images()
def __getitem__(self, index: int) -> Tuple[Any, Any]:
file, target = self.imgs[index]
image = self.loader(file)
if self.transforms is not None:
image, target = self.transforms(image, target)
return image, target
def __len__(self) -> int:
return len(self.imgs)
@property
def images_dir(self) -> str:
file, _ = self._IMAGES_META[(self.split, self.small)]
return path.join(self.root, path.splitext(file)[0])
def load_categories(self, download: bool = True) -> Tuple[List[str], Dict[str, int]]:
def process(line: str) -> Tuple[str, int]:
cls, idx = line.split()
return cls, int(idx)
file, md5 = self._CATEGORIES_META
file = path.join(self.root, file)
if not self._check_integrity(file, md5, download):
self.download_devkit()
with open(file, "r") as fh:
class_to_idx = dict(process(line) for line in fh)
return sorted(class_to_idx.keys()), class_to_idx
def load_file_list(self, download: bool = True) -> Tuple[List[Tuple[str, int]], List[int]]:
def fix_path(path: str) -> str:
if not path.startswith("/"):
return path
path = path[1:]
if os.sep == "/":
return path
return path.replace("/", os.sep)
def process(line: str) -> Tuple[str, int]:
image, idx = line.split()
return path.join(self.images_dir, fix_path(image)), int(idx)
file, md5 = self._FILE_LIST_META[self.split]
file = path.join(self.root, file)
if not self._check_integrity(file, md5, download):
self.download_devkit()
with open(file, "r") as fh:
images = [process(line) for line in fh]
_, targets = zip(*images)
return images, list(targets)
def download_devkit(self) -> None:
file, md5 = self._DEVKIT_META["challenge" if self.split == "train-challenge" else "standard"]
download_and_extract_archive(urljoin(self._BASE_URL, file), self.root, md5=md5)
def download_images(self) -> None:
if path.exists(self.images_dir):
raise RuntimeError(
f"The directory {self.images_dir} already exists. If you want to re-download or re-extract the images, "
f"delete the directory."
)
file, md5 = self._IMAGES_META[(self.split, self.small)]
download_and_extract_archive(urljoin(self._BASE_URL, file), self.root, extract_root=self.images_dir, md5=md5)
def extra_repr(self) -> str:
return "\n".join(("Split: {split}", "Small: {small}")).format(**self.__dict__)
def _verify_split(self, split: str) -> str:
return verify_str_arg(split, "split", self._SPLITS)
def _check_integrity(self, file: str, md5: str, download: bool) -> bool:
integrity = check_integrity(path.join(self.root, file), md5=md5)
if not integrity and not download:
raise RuntimeError(
f"The file {file} does not exist or is corrupted. You can set download=True to download it."
)
return integrity
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment