Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
OpenDAS
vision
Commits
7b7cfdd4
Unverified
Commit
7b7cfdd4
authored
Feb 22, 2021
by
Philip Meier
Committed by
GitHub
Feb 22, 2021
Browse files
add tests for CelebA (#3413)
Co-authored-by:
Francisco Massa
<
fvsmassa@gmail.com
>
parent
7f59e8ce
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
with
117 additions
and
0 deletions
+117
-0
test/test_datasets.py
test/test_datasets.py
+117
-0
No files found.
test/test_datasets.py
View file @
7b7cfdd4
...
@@ -639,5 +639,122 @@ class CIFAR100(CIFAR10TestCase):
...
@@ -639,5 +639,122 @@ class CIFAR100(CIFAR10TestCase):
)
)
class
CelebATestCase
(
datasets_utils
.
ImageDatasetTestCase
):
DATASET_CLASS
=
datasets
.
CelebA
FEATURE_TYPES
=
(
PIL
.
Image
.
Image
,
(
torch
.
Tensor
,
int
,
tuple
,
type
(
None
)))
CONFIGS
=
datasets_utils
.
combinations_grid
(
split
=
(
"train"
,
"valid"
,
"test"
,
"all"
),
target_type
=
(
"attr"
,
"identity"
,
"bbox"
,
"landmarks"
,
[
"attr"
,
"identity"
]),
)
REQUIRED_PACKAGES
=
(
"pandas"
,)
_SPLIT_TO_IDX
=
dict
(
train
=
0
,
valid
=
1
,
test
=
2
)
def
inject_fake_data
(
self
,
tmpdir
,
config
):
base_folder
=
pathlib
.
Path
(
tmpdir
)
/
"celeba"
os
.
makedirs
(
base_folder
)
num_images
,
num_images_per_split
=
self
.
_create_split_txt
(
base_folder
)
datasets_utils
.
create_image_folder
(
base_folder
,
"img_align_celeba"
,
lambda
idx
:
f
"
{
idx
+
1
:
06
d
}
.jpg"
,
num_images
)
attr_names
=
self
.
_create_attr_txt
(
base_folder
,
num_images
)
self
.
_create_identity_txt
(
base_folder
,
num_images
)
self
.
_create_bbox_txt
(
base_folder
,
num_images
)
self
.
_create_landmarks_txt
(
base_folder
,
num_images
)
return
dict
(
num_examples
=
num_images_per_split
[
config
[
"split"
]],
attr_names
=
attr_names
)
def
_create_split_txt
(
self
,
root
):
num_images_per_split
=
dict
(
train
=
3
,
valid
=
2
,
test
=
1
)
data
=
[
[
self
.
_SPLIT_TO_IDX
[
split
]]
for
split
,
num_images
in
num_images_per_split
.
items
()
for
_
in
range
(
num_images
)
]
self
.
_create_txt
(
root
,
"list_eval_partition.txt"
,
data
)
num_images_per_split
[
"all"
]
=
num_images
=
sum
(
num_images_per_split
.
values
())
return
num_images
,
num_images_per_split
def
_create_attr_txt
(
self
,
root
,
num_images
):
header
=
(
"5_o_Clock_Shadow"
,
"Young"
)
data
=
torch
.
rand
((
num_images
,
len
(
header
))).
ge
(
0.5
).
int
().
mul
(
2
).
sub
(
1
).
tolist
()
self
.
_create_txt
(
root
,
"list_attr_celeba.txt"
,
data
,
header
=
header
,
add_num_examples
=
True
)
return
header
def
_create_identity_txt
(
self
,
root
,
num_images
):
data
=
torch
.
randint
(
1
,
4
,
size
=
(
num_images
,
1
)).
tolist
()
self
.
_create_txt
(
root
,
"identity_CelebA.txt"
,
data
)
def
_create_bbox_txt
(
self
,
root
,
num_images
):
header
=
(
"x_1"
,
"y_1"
,
"width"
,
"height"
)
data
=
torch
.
randint
(
10
,
size
=
(
num_images
,
len
(
header
))).
tolist
()
self
.
_create_txt
(
root
,
"list_bbox_celeba.txt"
,
data
,
header
=
header
,
add_num_examples
=
True
,
add_image_id_to_header
=
True
)
def
_create_landmarks_txt
(
self
,
root
,
num_images
):
header
=
(
"lefteye_x"
,
"rightmouth_y"
)
data
=
torch
.
randint
(
10
,
size
=
(
num_images
,
len
(
header
))).
tolist
()
self
.
_create_txt
(
root
,
"list_landmarks_align_celeba.txt"
,
data
,
header
=
header
,
add_num_examples
=
True
)
def
_create_txt
(
self
,
root
,
name
,
data
,
header
=
None
,
add_num_examples
=
False
,
add_image_id_to_header
=
False
):
with
open
(
pathlib
.
Path
(
root
)
/
name
,
"w"
)
as
fh
:
if
add_num_examples
:
fh
.
write
(
f
"
{
len
(
data
)
}
\n
"
)
if
header
:
if
add_image_id_to_header
:
header
=
(
"image_id"
,
*
header
)
fh
.
write
(
f
"
{
' '
.
join
(
header
)
}
\n
"
)
for
idx
,
line
in
enumerate
(
data
,
1
):
fh
.
write
(
f
"
{
' '
.
join
((
f
'
{
idx
:
06
d
}
.
jpg
', *[str(value) for value in line]))
}
\n
"
)
def
test_combined_targets
(
self
):
target_types
=
[
"attr"
,
"identity"
,
"bbox"
,
"landmarks"
]
individual_targets
=
[]
for
target_type
in
target_types
:
with
self
.
create_dataset
(
target_type
=
target_type
)
as
(
dataset
,
_
):
_
,
target
=
dataset
[
0
]
individual_targets
.
append
(
target
)
with
self
.
create_dataset
(
target_type
=
target_types
)
as
(
dataset
,
_
):
_
,
combined_targets
=
dataset
[
0
]
actual
=
len
(
individual_targets
)
expected
=
len
(
combined_targets
)
self
.
assertEqual
(
actual
,
expected
,
f
"The number of the returned combined targets does not match the the number targets if requested "
f
"individually:
{
actual
}
!=
{
expected
}
"
,
)
for
target_type
,
combined_target
,
individual_target
in
zip
(
target_types
,
combined_targets
,
individual_targets
):
with
self
.
subTest
(
target_type
=
target_type
):
actual
=
type
(
combined_target
)
expected
=
type
(
individual_target
)
self
.
assertIs
(
actual
,
expected
,
f
"Type of the combined target does not match the type of the corresponding individual target: "
f
"
{
actual
}
is not
{
expected
}
"
,
)
def
test_no_target
(
self
):
with
self
.
create_dataset
(
target_type
=
[])
as
(
dataset
,
_
):
_
,
target
=
dataset
[
0
]
self
.
assertIsNone
(
target
)
def
test_attr_names
(
self
):
with
self
.
create_dataset
()
as
(
dataset
,
info
):
self
.
assertEqual
(
tuple
(
dataset
.
attr_names
),
info
[
"attr_names"
])
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
unittest
.
main
()
unittest
.
main
()
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment