resnet.py 35.3 KB
Newer Older
1
from functools import partial
2
3
from typing import Type, Any, Callable, Union, List, Optional

4
import torch
5
import torch.nn as nn
6
7
from torch import Tensor

8
from ..transforms._presets import ImageClassification
9
from ..utils import _log_api_usage_once
10
11
12
from ._api import WeightsEnum, Weights
from ._meta import _IMAGENET_CATEGORIES
from ._utils import handle_legacy_interface, _ovewrite_named_param
13
14


15
16
__all__ = [
    "ResNet",
17
18
19
20
21
22
23
    "ResNet18_Weights",
    "ResNet34_Weights",
    "ResNet50_Weights",
    "ResNet101_Weights",
    "ResNet152_Weights",
    "ResNeXt50_32X4D_Weights",
    "ResNeXt101_32X8D_Weights",
24
    "ResNeXt101_64X4D_Weights",
25
26
    "Wide_ResNet50_2_Weights",
    "Wide_ResNet101_2_Weights",
27
28
29
30
31
32
33
    "resnet18",
    "resnet34",
    "resnet50",
    "resnet101",
    "resnet152",
    "resnext50_32x4d",
    "resnext101_32x8d",
34
    "resnext101_64x4d",
35
36
37
    "wide_resnet50_2",
    "wide_resnet101_2",
]
38
39


40
def conv3x3(in_planes: int, out_planes: int, stride: int = 1, groups: int = 1, dilation: int = 1) -> nn.Conv2d:
41
    """3x3 convolution with padding"""
42
43
44
45
46
47
48
49
50
51
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )
52
53


54
def conv1x1(in_planes: int, out_planes: int, stride: int = 1) -> nn.Conv2d:
55
56
57
58
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
59
class BasicBlock(nn.Module):
60
61
62
63
64
65
66
67
68
69
70
    expansion: int = 1

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
71
        norm_layer: Optional[Callable[..., nn.Module]] = None,
72
    ) -> None:
73
        super().__init__()
74
75
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
76
        if groups != 1 or base_width != 64:
77
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
78
79
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
80
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
81
        self.conv1 = conv3x3(inplanes, planes, stride)
82
        self.bn1 = norm_layer(planes)
83
84
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
85
        self.bn2 = norm_layer(planes)
86
87
88
        self.downsample = downsample
        self.stride = stride

89
    def forward(self, x: Tensor) -> Tensor:
90
        identity = x
91
92
93
94
95
96
97
98
99

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
100
            identity = self.downsample(x)
101

102
        out += identity
103
104
105
106
107
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
108
class Bottleneck(nn.Module):
109
110
111
112
113
114
    # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
    # while original implementation places the stride at the first 1x1 convolution(self.conv1)
    # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
    # This variant is also known as ResNet V1.5 and improves accuracy according to
    # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.

115
116
117
118
119
120
121
122
123
124
125
    expansion: int = 4

    def __init__(
        self,
        inplanes: int,
        planes: int,
        stride: int = 1,
        downsample: Optional[nn.Module] = None,
        groups: int = 1,
        base_width: int = 64,
        dilation: int = 1,
126
        norm_layer: Optional[Callable[..., nn.Module]] = None,
127
    ) -> None:
128
        super().__init__()
129
130
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
131
        width = int(planes * (base_width / 64.0)) * groups
132
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
133
134
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
135
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
136
137
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
138
        self.bn3 = norm_layer(planes * self.expansion)
139
140
141
142
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

143
    def forward(self, x: Tensor) -> Tensor:
144
        identity = x
145
146
147
148
149
150
151
152
153
154
155
156
157

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
158
            identity = self.downsample(x)
159

160
        out += identity
161
162
163
164
165
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
166
class ResNet(nn.Module):
167
168
169
170
171
172
173
174
175
    def __init__(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        layers: List[int],
        num_classes: int = 1000,
        zero_init_residual: bool = False,
        groups: int = 1,
        width_per_group: int = 64,
        replace_stride_with_dilation: Optional[List[bool]] = None,
176
        norm_layer: Optional[Callable[..., nn.Module]] = None,
177
    ) -> None:
178
        super().__init__()
Kai Zhang's avatar
Kai Zhang committed
179
        _log_api_usage_once(self)
180
181
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
182
        self._norm_layer = norm_layer
183
184

        self.inplanes = 64
185
186
187
188
189
190
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
191
192
            raise ValueError(
                "replace_stride_with_dilation should be None "
193
                f"or a 3-element tuple, got {replace_stride_with_dilation}"
194
            )
195
196
        self.groups = groups
        self.base_width = width_per_group
197
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False)
198
        self.bn1 = norm_layer(self.inplanes)
199
200
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
201
        self.layer1 = self._make_layer(block, 64, layers[0])
202
203
204
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
205
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
206
        self.fc = nn.Linear(512 * block.expansion, num_classes)
207
208
209

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
210
                nn.init.kaiming_normal_(m.weight, mode="fan_out", nonlinearity="relu")
211
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
212
213
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
214

215
216
217
218
219
220
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
221
                    nn.init.constant_(m.bn3.weight, 0)  # type: ignore[arg-type]
222
                elif isinstance(m, BasicBlock):
223
                    nn.init.constant_(m.bn2.weight, 0)  # type: ignore[arg-type]
224

225
226
227
228
229
230
231
232
    def _make_layer(
        self,
        block: Type[Union[BasicBlock, Bottleneck]],
        planes: int,
        blocks: int,
        stride: int = 1,
        dilate: bool = False,
    ) -> nn.Sequential:
233
        norm_layer = self._norm_layer
234
        downsample = None
235
236
237
238
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
239
240
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
241
                conv1x1(self.inplanes, planes * block.expansion, stride),
242
                norm_layer(planes * block.expansion),
243
244
245
            )

        layers = []
246
247
248
249
250
        layers.append(
            block(
                self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer
            )
        )
251
        self.inplanes = planes * block.expansion
252
        for _ in range(1, blocks):
253
254
255
256
257
258
259
260
261
262
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                    norm_layer=norm_layer,
                )
            )
263
264
265

        return nn.Sequential(*layers)

266
    def _forward_impl(self, x: Tensor) -> Tensor:
267
        # See note [TorchScript super()]
268
269
270
271
272
273
274
275
276
277
278
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
279
        x = torch.flatten(x, 1)
280
281
282
283
        x = self.fc(x)

        return x

284
    def forward(self, x: Tensor) -> Tensor:
285
        return self._forward_impl(x)
286

287

288
289
290
def _resnet(
    block: Type[Union[BasicBlock, Bottleneck]],
    layers: List[int],
291
    weights: Optional[WeightsEnum],
292
    progress: bool,
293
    **kwargs: Any,
294
) -> ResNet:
295
296
297
    if weights is not None:
        _ovewrite_named_param(kwargs, "num_classes", len(weights.meta["categories"]))

298
    model = ResNet(block, layers, **kwargs)
299
300
301
302

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

303
304
305
    return model


306
307
308
309
310
311
312
313
314
315
316
317
318
319
_COMMON_META = {
    "min_size": (1, 1),
    "categories": _IMAGENET_CATEGORIES,
}


class ResNet18_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet18-f37072fd.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 11689512,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
320
321
322
323
            "metrics": {
                "acc@1": 69.758,
                "acc@5": 89.078,
            },
324
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
325
326
327
328
329
330
331
332
333
334
335
336
337
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet34_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet34-b627a593.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 21797672,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
338
339
340
341
            "metrics": {
                "acc@1": 73.314,
                "acc@5": 91.420,
            },
342
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
343
344
345
346
347
348
349
350
351
352
353
354
355
        },
    )
    DEFAULT = IMAGENET1K_V1


class ResNet50_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet50-0676ba61.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
356
357
358
359
            "metrics": {
                "acc@1": 76.130,
                "acc@5": 92.862,
            },
360
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
361
362
363
364
365
366
367
368
369
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet50-11ad3fa6.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25557032,
            "recipe": "https://github.com/pytorch/vision/issues/3995#issuecomment-1013906621",
370
371
372
373
            "metrics": {
                "acc@1": 80.858,
                "acc@5": 95.434,
            },
374
            "_docs": """
375
376
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
377
            """,
378
379
380
381
382
383
384
385
386
387
388
389
390
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet101_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet101-63fe2227.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
391
392
393
394
            "metrics": {
                "acc@1": 77.374,
                "acc@5": 93.546,
            },
395
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
396
397
398
399
400
401
402
403
404
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet101-cd907fc2.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 44549160,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
405
406
407
408
            "metrics": {
                "acc@1": 81.886,
                "acc@5": 95.780,
            },
409
410
411
412
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
413
414
415
416
417
418
419
420
421
422
423
424
425
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNet152_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnet152-394f9c45.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnet",
426
427
428
429
            "metrics": {
                "acc@1": 78.312,
                "acc@5": 94.046,
            },
430
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
431
432
433
434
435
436
437
438
439
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnet152-f82ba261.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 60192808,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
440
441
442
443
            "metrics": {
                "acc@1": 82.284,
                "acc@5": 96.002,
            },
444
445
446
447
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
448
449
450
451
452
453
454
455
456
457
458
459
460
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt50_32X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
461
462
463
464
            "metrics": {
                "acc@1": 77.618,
                "acc@5": 93.698,
            },
465
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
466
467
468
469
470
471
472
473
474
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext50_32x4d-1a0047aa.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 25028904,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
475
476
477
478
            "metrics": {
                "acc@1": 81.198,
                "acc@5": 95.340,
            },
479
480
481
482
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
483
484
485
486
487
488
489
490
491
492
493
494
495
        },
    )
    DEFAULT = IMAGENET1K_V2


class ResNeXt101_32X8D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/classification#resnext",
496
497
498
499
            "metrics": {
                "acc@1": 79.312,
                "acc@5": 94.526,
            },
500
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
501
502
503
504
505
506
507
508
509
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/resnext101_32x8d-110c445d.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 88791336,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
510
511
512
513
            "metrics": {
                "acc@1": 82.834,
                "acc@5": 96.228,
            },
514
515
516
517
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
518
519
520
521
522
        },
    )
    DEFAULT = IMAGENET1K_V2


523
524
525
526
527
528
529
530
531
532
533
534
class ResNeXt101_64X4D_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/resnext101_64x4d-173b62eb.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 83455272,
            "recipe": "https://github.com/pytorch/vision/pull/5935",
            "metrics": {
                "acc@1": 83.246,
                "acc@5": 96.454,
            },
535
536
537
538
            "_docs": """
                These weights were trained from scratch by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
539
540
541
542
543
        },
    )
    DEFAULT = IMAGENET1K_V1


544
545
546
547
548
549
550
551
class Wide_ResNet50_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
552
553
554
555
            "metrics": {
                "acc@1": 78.468,
                "acc@5": 94.086,
            },
556
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
557
558
559
560
561
562
563
564
565
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet50_2-9ba9bcbe.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 68883240,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe-with-fixres",
566
567
568
569
            "metrics": {
                "acc@1": 81.602,
                "acc@5": 95.758,
            },
570
571
572
573
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
574
575
576
577
578
579
580
581
582
583
584
585
586
        },
    )
    DEFAULT = IMAGENET1K_V2


class Wide_ResNet101_2_Weights(WeightsEnum):
    IMAGENET1K_V1 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth",
        transforms=partial(ImageClassification, crop_size=224),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/pull/912#issue-445437439",
587
588
589
590
            "metrics": {
                "acc@1": 78.848,
                "acc@5": 94.284,
            },
591
            "_docs": """These weights reproduce closely the results of the paper using a simple training recipe.""",
592
593
594
595
596
597
598
599
600
        },
    )
    IMAGENET1K_V2 = Weights(
        url="https://download.pytorch.org/models/wide_resnet101_2-d733dc28.pth",
        transforms=partial(ImageClassification, crop_size=224, resize_size=232),
        meta={
            **_COMMON_META,
            "num_params": 126886696,
            "recipe": "https://github.com/pytorch/vision/issues/3995#new-recipe",
601
602
603
604
            "metrics": {
                "acc@1": 82.510,
                "acc@5": 96.020,
            },
605
606
607
608
            "_docs": """
                These weights improve upon the results of the original paper by using TorchVision's `new training recipe
                <https://pytorch.org/blog/how-to-train-state-of-the-art-models-using-torchvision-latest-primitives/>`_.
            """,
609
610
611
612
613
614
615
        },
    )
    DEFAULT = IMAGENET1K_V2


@handle_legacy_interface(weights=("pretrained", ResNet18_Weights.IMAGENET1K_V1))
def resnet18(*, weights: Optional[ResNet18_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
616
    """ResNet-18 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
617
618

    Args:
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        weights (:class:`~torchvision.models.ResNet18_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet18_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet18_Weights
        :members:
633
    """
634
635
636
    weights = ResNet18_Weights.verify(weights)

    return _resnet(BasicBlock, [2, 2, 2, 2], weights, progress, **kwargs)
637
638


639
640
@handle_legacy_interface(weights=("pretrained", ResNet34_Weights.IMAGENET1K_V1))
def resnet34(*, weights: Optional[ResNet34_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
641
    """ResNet-34 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
642
643

    Args:
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        weights (:class:`~torchvision.models.ResNet34_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet34_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet34_Weights
        :members:
658
    """
659
    weights = ResNet34_Weights.verify(weights)
660

661
    return _resnet(BasicBlock, [3, 4, 6, 3], weights, progress, **kwargs)
662

663
664
665

@handle_legacy_interface(weights=("pretrained", ResNet50_Weights.IMAGENET1K_V1))
def resnet50(*, weights: Optional[ResNet50_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
666
    """ResNet-50 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
667
668

    Args:
669
670
671
672
673
674
675
676
677
678
679
680
681
682
        weights (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet50_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet50_Weights
        :members:
683
    """
684
685
686
    weights = ResNet50_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
687
688


689
690
@handle_legacy_interface(weights=("pretrained", ResNet101_Weights.IMAGENET1K_V1))
def resnet101(*, weights: Optional[ResNet101_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
691
    """ResNet-101 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
692
693

    Args:
694
695
696
697
698
699
700
701
702
703
704
705
706
707
        weights (:class:`~torchvision.models.ResNet101_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet101_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet101_Weights
        :members:
708
    """
709
    weights = ResNet101_Weights.verify(weights)
710

711
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
712

713
714
715

@handle_legacy_interface(weights=("pretrained", ResNet152_Weights.IMAGENET1K_V1))
def resnet152(*, weights: Optional[ResNet152_Weights] = None, progress: bool = True, **kwargs: Any) -> ResNet:
716
    """ResNet-152 from `Deep Residual Learning for Image Recognition <https://arxiv.org/pdf/1512.03385.pdf>`__.
717
718

    Args:
719
720
721
722
723
724
725
726
727
728
729
730
731
732
        weights (:class:`~torchvision.models.ResNet152_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNet152_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.ResNet152_Weights
        :members:
733
    """
734
735
736
    weights = ResNet152_Weights.verify(weights)

    return _resnet(Bottleneck, [3, 8, 36, 3], weights, progress, **kwargs)
737
738


739
740
741
742
@handle_legacy_interface(weights=("pretrained", ResNeXt50_32X4D_Weights.IMAGENET1K_V1))
def resnext50_32x4d(
    *, weights: Optional[ResNeXt50_32X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
743
744
    """ResNeXt-50 32x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
745
746

    Args:
747
748
749
750
751
752
753
754
755
756
757
758
759
        weights (:class:`~torchvision.models.ResNeXt50_32X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNext50_32X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt50_32X4D_Weights
        :members:
760
    """
761
    weights = ResNeXt50_32X4D_Weights.verify(weights)
762

763
764
765
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
766

767
768
769
770
771

@handle_legacy_interface(weights=("pretrained", ResNeXt101_32X8D_Weights.IMAGENET1K_V1))
def resnext101_32x8d(
    *, weights: Optional[ResNeXt101_32X8D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
772
773
    """ResNeXt-101 32x8d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.
774
775

    Args:
776
777
778
779
780
781
782
783
784
785
786
787
788
        weights (:class:`~torchvision.models.ResNeXt101_32X8D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_32X8D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_32X8D_Weights
        :members:
789
    """
790
    weights = ResNeXt101_32X8D_Weights.verify(weights)
791

792
793
794
    _ovewrite_named_param(kwargs, "groups", 32)
    _ovewrite_named_param(kwargs, "width_per_group", 8)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
795

796

797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
def resnext101_64x4d(
    *, weights: Optional[ResNeXt101_64X4D_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
    """ResNeXt-101 64x4d model from
    `Aggregated Residual Transformation for Deep Neural Networks <https://arxiv.org/abs/1611.05431>`_.

    Args:
        weights (:class:`~torchvision.models.ResNeXt101_64X4D_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.ResNeXt101_64X4D_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.ResNeXt101_64X4D_Weights
        :members:
    """
    weights = ResNeXt101_64X4D_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "groups", 64)
    _ovewrite_named_param(kwargs, "width_per_group", 4)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)


825
826
827
828
@handle_legacy_interface(weights=("pretrained", Wide_ResNet50_2_Weights.IMAGENET1K_V1))
def wide_resnet50_2(
    *, weights: Optional[Wide_ResNet50_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
829
830
    """Wide ResNet-50-2 model from
    `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
831
832
833
834
835
836
837

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
838
839
840
841
842
843
844
845
846
847
848
849
850
        weights (:class:`~torchvision.models.Wide_ResNet50_2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Wide_ResNet50_2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.Wide_ResNet50_2_Weights
        :members:
851
    """
852
853
854
855
    weights = Wide_ResNet50_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 6, 3], weights, progress, **kwargs)
856
857


858
859
860
861
@handle_legacy_interface(weights=("pretrained", Wide_ResNet101_2_Weights.IMAGENET1K_V1))
def wide_resnet101_2(
    *, weights: Optional[Wide_ResNet101_2_Weights] = None, progress: bool = True, **kwargs: Any
) -> ResNet:
862
863
    """Wide ResNet-101-2 model from
    `Wide Residual Networks <https://arxiv.org/abs/1605.07146>`_.
864
865
866

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
867
868
    convolutions is the same, e.g. last block in ResNet-101 has 2048-512-2048
    channels, and in Wide ResNet-101-2 has 2048-1024-2048.
869
870

    Args:
871
872
873
874
875
876
877
878
879
880
881
882
883
        weights (:class:`~torchvision.models.Wide_ResNet101_2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.Wide_ResNet101_2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
        **kwargs: parameters passed to the ``torchvision.models.resnet.ResNet``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py>`_
            for more details about this class.
    .. autoclass:: torchvision.models.Wide_ResNet101_2_Weights
        :members:
884
    """
885
886
887
888
    weights = Wide_ResNet101_2_Weights.verify(weights)

    _ovewrite_named_param(kwargs, "width_per_group", 64 * 2)
    return _resnet(Bottleneck, [3, 4, 23, 3], weights, progress, **kwargs)
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907


# The dictionary below is internal implementation detail and will be removed in v0.15
from ._utils import _ModelURLs


model_urls = _ModelURLs(
    {
        "resnet18": ResNet18_Weights.IMAGENET1K_V1.url,
        "resnet34": ResNet34_Weights.IMAGENET1K_V1.url,
        "resnet50": ResNet50_Weights.IMAGENET1K_V1.url,
        "resnet101": ResNet101_Weights.IMAGENET1K_V1.url,
        "resnet152": ResNet152_Weights.IMAGENET1K_V1.url,
        "resnext50_32x4d": ResNeXt50_32X4D_Weights.IMAGENET1K_V1.url,
        "resnext101_32x8d": ResNeXt101_32X8D_Weights.IMAGENET1K_V1.url,
        "wide_resnet50_2": Wide_ResNet50_2_Weights.IMAGENET1K_V1.url,
        "wide_resnet101_2": Wide_ResNet101_2_Weights.IMAGENET1K_V1.url,
    }
)