test_onnx.py 22.3 KB
Newer Older
1
2
3
4
5
6
7
8
# onnxruntime requires python 3.5 or above
try:
    # This import should be before that of torch
    # see https://github.com/onnx/onnx/issues/2394#issuecomment-581638840
    import onnxruntime
except ImportError:
    onnxruntime = None

9
from common_utils import set_rng_seed
10
from _assert_utils import assert_equal
11
12
13
import io
import torch
from torchvision import ops
14
from torchvision import models
15
from torchvision.models.detection.image_list import ImageList
16
from torchvision.models.detection.transform import GeneralizedRCNNTransform
17
18
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
19
20
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
21
from torchvision.models.detection.mask_rcnn import MaskRCNNHeads, MaskRCNNPredictor
22

23
24
from collections import OrderedDict

25
import unittest
26
from torchvision.ops._register_onnx_ops import _onnx_opset_version
27
28
29
30
31
32
33
34


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

35
36
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
37
38
39
        model.eval()

        onnx_io = io.BytesIO()
40
41
42
43
        if isinstance(inputs_list[0][-1], dict):
            torch_onnx_input = inputs_list[0] + ({},)
        else:
            torch_onnx_input = inputs_list[0]
44
        # export to onnx with the first input
45
        torch.onnx.export(model, torch_onnx_input, onnx_io,
46
47
                          do_constant_folding=do_constant_folding, opset_version=_onnx_opset_version,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
48
        # validate the exported model with onnx runtime
49
50
51
52
53
54
55
56
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
57
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
58

59
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
77

78
        for i in range(0, len(outputs)):
79
80
81
82
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
83
                    self.assertIn("(0.00%)", str(error), str(error))
84
                else:
85
                    raise
86
87

    def test_nms(self):
88
89
90
91
        num_boxes = 100
        boxes = torch.rand(num_boxes, 4)
        boxes[:, 2:] += boxes[:, :2]
        scores = torch.randn(num_boxes)
92
93
94
95
96

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

97
        self.run_model(Module(), [(boxes, scores)])
98

99
100
101
102
103
104
105
106
107
108
109
110
111
    def test_batched_nms(self):
        num_boxes = 100
        boxes = torch.rand(num_boxes, 4)
        boxes[:, 2:] += boxes[:, :2]
        scores = torch.randn(num_boxes)
        idxs = torch.randint(0, 5, size=(num_boxes,))

        class Module(torch.nn.Module):
            def forward(self, boxes, scores, idxs):
                return ops.batched_nms(boxes, scores, idxs, 0.5)

        self.run_model(Module(), [(boxes, scores, idxs)])

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    def test_clip_boxes_to_image(self):
        boxes = torch.randn(5, 4) * 500
        boxes[:, 2:] += boxes[:, :2]
        size = torch.randn(200, 300)

        size_2 = torch.randn(300, 400)

        class Module(torch.nn.Module):
            def forward(self, boxes, size):
                return ops.boxes.clip_boxes_to_image(boxes, size.shape)

        self.run_model(Module(), [(boxes, size), (boxes, size_2)],
                       input_names=["boxes", "size"],
                       dynamic_axes={"size": [0, 1]})

127
    def test_roi_align(self):
128
129
130
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
131
        self.run_model(model, [(x, single_roi)])
132

133
134
135
136
137
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, -1)
        self.run_model(model, [(x, single_roi)])

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
    def test_roi_align_aligned(self):
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 0.5, 3, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1.8, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, 0, aligned=True)
        self.run_model(model, [(x, single_roi)])

159
160
161
162
163
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, -1, aligned=True)
        self.run_model(model, [(x, single_roi)])

164
165
166
167
168
169
170
    @unittest.skip  # Issue in exporting ROIAlign with aligned = True for malformed boxes
    def test_roi_align_malformed_boxes(self):
        x = torch.randn(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 2, 0.3, 1.5, 1.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 1, aligned=True)
        self.run_model(model, [(x, single_roi)])

171
    def test_roi_pool(self):
172
173
174
175
176
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
177
178
        self.run_model(model, [(x, rois)])

179
180
181
182
183
184
185
186
187
188
189
190
    def test_resize_images(self):
        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()

            def forward(self_module, images):
                return self_module.transform.resize(images, None)[0]

        input = torch.rand(3, 10, 20)
        input_test = torch.rand(3, 100, 150)
        self.run_model(TransformModule(), [(input,), (input_test,)],
191
                       input_names=["input1"], dynamic_axes={"input1": [0, 1, 2]})
192

193
194
195
196
197
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
198
                self_module.transform = self._init_test_generalized_rcnn_transform()
199
200
201
202

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

203
204
205
        input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        self.run_model(TransformModule(), [(input,), (input_test,)])
206

207
    def _init_test_generalized_rcnn_transform(self):
208
209
        min_size = 100
        max_size = 200
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7
228
        rpn_score_thresh = 0.0
229
230
231
232
233

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
234
235
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh,
            score_thresh=rpn_score_thresh)
236
237
        return rpn

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

287
    def test_rpn(self):
288
289
        set_rng_seed(0)

290
        class RPNModule(torch.nn.Module):
291
            def __init__(self_module):
292
293
294
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()

295
296
297
            def forward(self_module, images, features):
                images = ImageList(images, [i.shape[-2:] for i in images])
                return self_module.rpn(images, features)
298

299
        images = torch.rand(2, 3, 150, 150)
300
        features = self.get_features(images)
301
302
        images2 = torch.rand(2, 3, 80, 80)
        test_features = self.get_features(images2)
303

304
        model = RPNModule()
305
        model.eval()
306
307
308
309
310
311
312
        model(images, features)

        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3],
                                     "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3],
                                     "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})
313

314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

339
340
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
341
            def __init__(self_module):
342
343
344
345
346
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()

347
348
349
350
351
            def forward(self_module, images, features):
                original_image_sizes = [img.shape[-2:] for img in images]
                images = ImageList(images, [i.shape[-2:] for i in images])
                proposals, _ = self_module.rpn(images, features)
                detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
352
                detections = self_module.transform.postprocess(detections,
353
354
                                                               images.image_sizes,
                                                               original_image_sizes)
355
356
                return detections

357
        images = torch.rand(2, 3, 100, 100)
358
        features = self.get_features(images)
359
360
        images2 = torch.rand(2, 3, 150, 150)
        test_features = self.get_features(images2)
361

362
        model = RoiHeadsModule()
363
        model.eval()
364
        model(images, features)
365

366
367
368
369
370
371
        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3],
                                     "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})

    def get_image_from_url(self, url, size=None):
372
373
374
375
376
377
378
        import requests
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
379
380
381
382

        if size is None:
            size = (300, 200)
        image = image.resize(size, Image.BILINEAR)
383
384
385
386
387
388

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
389
        image = self.get_image_from_url(url=image_url, size=(100, 320))
390

391
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
392
        image2 = self.get_image_from_url(url=image_url2, size=(250, 380))
393

394
395
396
397
398
399
        images = [image]
        test_images = [image2]
        return images, test_images

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()
400
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
401
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
402
403
        model.eval()
        model(images)
404
405
406
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)], input_names=["images_tensors"],
                       output_names=["outputs"],
407
                       dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
408
409
410
                       tolerate_small_mismatch=True)
        # Test exported model for an image with no detections on other images
        self.run_model(model, [(dummy_image,), (images,)], input_names=["images_tensors"],
411
                       output_names=["outputs"],
412
                       dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
413
                       tolerate_small_mismatch=True)
414

415
416
417
418
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
419
420
421
422
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()
451
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
Lara Haidar's avatar
Lara Haidar committed
452
        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
453
454
        model.eval()
        model(images)
455
456
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)],
457
                       input_names=["images_tensors"],
458
                       output_names=["boxes", "labels", "scores", "masks"],
459
460
                       dynamic_axes={"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2]},
461
                       tolerate_small_mismatch=True)
462
463
        # TODO: enable this test once dynamic model export is fixed
        # Test exported model for an image with no detections on other images
464
465
466
        self.run_model(model, [(dummy_image,), (images,)],
                       input_names=["images_tensors"],
                       output_names=["boxes", "labels", "scores", "masks"],
467
468
                       dynamic_axes={"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2]},
469
                       tolerate_small_mismatch=True)
470

471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    # Verify that heatmaps_to_keypoints behaves the same in tracing.
    # This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
    # (since jit_trace witll call _heatmaps_to_keypoints).
    # @unittest.skip("Disable test until Resize bug fixed in ORT")
    def test_heatmaps_to_keypoints(self):
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

        maps = torch.rand(10, 1, 26, 26)
        rois = torch.rand(10, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out = heatmaps_to_keypoints(maps, rois)
        jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
        out_trace = jit_trace(maps, rois)

487
488
        assert_equal(out[0], out_trace[0])
        assert_equal(out[1], out_trace[1])
489
490
491
492
493
494
495

        maps2 = torch.rand(20, 2, 21, 21)
        rois2 = torch.rand(20, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out2 = heatmaps_to_keypoints(maps2, rois2)
        out_trace2 = jit_trace(maps2, rois2)

496
497
        assert_equal(out2[0], out_trace2[0])
        assert_equal(out2[1], out_trace2[1])
498

499
    def test_keypoint_rcnn(self):
Lara Haidar's avatar
Lara Haidar committed
500
        images, test_images = self.get_test_images()
501
        dummy_images = [torch.ones(3, 100, 100) * 0.3]
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
502
        model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
503
        model.eval()
504
        model(images)
505
        self.run_model(model, [(images,), (test_images,), (dummy_images,)],
506
507
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
508
                       dynamic_axes={"images_tensors": [0, 1, 2]},
509
                       tolerate_small_mismatch=True)
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
510

511
512
513
        self.run_model(model, [(dummy_images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
514
                       dynamic_axes={"images_tensors": [0, 1, 2]},
515
                       tolerate_small_mismatch=True)
516

517
518
519
520
521
522
523
524
525
526
527
    def test_shufflenet_v2_dynamic_axes(self):
        model = models.shufflenet_v2_x0_5(pretrained=True)
        dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
        test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)

        self.run_model(model, [(dummy_input,), (test_inputs,)],
                       input_names=["input_images"],
                       output_names=["output"],
                       dynamic_axes={"input_images": {0: 'batch_size'}, "output": {0: 'batch_size'}},
                       tolerate_small_mismatch=True)

528
529
530

if __name__ == '__main__':
    unittest.main()