test_onnx.py 11.4 KB
Newer Older
1
2
3
import io
import torch
from torchvision import ops
4
from torchvision import models
5
from torchvision.models.detection.image_list import ImageList
6
from torchvision.models.detection.transform import GeneralizedRCNNTransform
7
8
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
9
10
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
11

12
13
from collections import OrderedDict

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None

import unittest


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

29
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False):
30
31
32
        model.eval()

        onnx_io = io.BytesIO()
33
34
        # export to onnx with the first input
        torch.onnx.export(model, inputs_list[0], onnx_io, do_constant_folding=True, opset_version=10)
35
36

        # validate the exported model with onnx runtime
37
38
39
40
41
42
43
44
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
45
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
46

47
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
        for i in range(0, len(outputs)):
66
67
68
69
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
70
                    self.assertIn("(0.00%)", str(error), str(error))
71
                else:
72
                    raise
73
74
75
76
77
78
79
80
81
82

    def test_nms(self):
        boxes = torch.rand(5, 4)
        boxes[:, 2:] += torch.rand(5, 2)
        scores = torch.randn(5)

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

83
        self.run_model(Module(), [(boxes, scores)])
84

85
    def test_roi_align(self):
86
87
88
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
89
        self.run_model(model, [(x, single_roi)])
90

91
    def test_roi_pool(self):
92
93
94
95
96
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
97
98
99
100
101
102
103
104
        self.run_model(model, [(x, rois)])

    @unittest.skip("Disable test until Resize opset 11 is implemented in ONNX Runtime")
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
105
                self_module.transform = self._init_test_generalized_rcnn_transform()
106
107
108
109
110
111
112

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

        input = [torch.rand(3, 800, 1280), torch.rand(3, 800, 800)]
        input_test = [torch.rand(3, 800, 1280), torch.rand(3, 800, 800)]
        self.run_model(TransformModule(), [input, input_test])
113

114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
    def _init_test_generalized_rcnn_transform(self):
        min_size = 800
        max_size = 1333
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)
        return rpn

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

192
193
194
195
196
197
198
199
200
201
202
    def test_rpn(self):
        class RPNModule(torch.nn.Module):
            def __init__(self_module, images):
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()
                self_module.images = ImageList(images, [i.shape[-2:] for i in images])

            def forward(self_module, features):
                return self_module.rpn(self_module.images, features)

        images = torch.rand(2, 3, 600, 600)
203
204
        features = self.get_features(images)
        test_features = self.get_features(images)
205
206
207
208
209
210

        model = RPNModule(images)
        model.eval()
        model(features)
        self.run_model(model, [(features,), (test_features,)], tolerate_small_mismatch=True)

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
    @unittest.skipIf(torch.__version__ < "1.4.", "Disable test if torch version is less than 1.4")
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
            def __init__(self_module, images):
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()
                self_module.original_image_sizes = [img.shape[-2:] for img in images]
                self_module.images = ImageList(images, [i.shape[-2:] for i in images])

            def forward(self_module, features):
                proposals, _ = self_module.rpn(self_module.images, features)
                detections, _ = self_module.roi_heads(features, proposals, self_module.images.image_sizes)
                detections = self_module.transform.postprocess(detections,
                                                               self_module.images.image_sizes,
                                                               self_module.original_image_sizes)
                return detections

        images = torch.rand(2, 3, 600, 600)
        features = self.get_features(images)
        test_features = self.get_features(images)

        model = RoiHeadsModule(images)
        model.eval()
        model(features)
        self.run_model(model, [(features,), (test_features,)], tolerate_small_mismatch=True)

    def get_image_from_url(self, url):
        import requests
        import numpy
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
        image = image.resize((800, 1280), Image.BILINEAR)

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
        image = self.get_image_from_url(url=image_url)
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
        image2 = self.get_image_from_url(url=image_url2)
        images = [image]
        test_images = [image2]
        return images, test_images

    @unittest.skip("Disable test until Resize opset 11 is implemented in ONNX Runtime")
    @unittest.skipIf(torch.__version__ < "1.4.", "Disable test if torch version is less than 1.4")
    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()

        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True)
        model.eval()
        model(images)
        self.run_model(model, [(images,), (test_images,)])

297
298
299

if __name__ == '__main__':
    unittest.main()