test_onnx.py 18.7 KB
Newer Older
1
2
3
import io
import torch
from torchvision import ops
4
from torchvision import models
5
from torchvision.models.detection.image_list import ImageList
6
from torchvision.models.detection.transform import GeneralizedRCNNTransform
7
8
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
9
10
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
11
from torchvision.models.detection.mask_rcnn import MaskRCNNHeads, MaskRCNNPredictor
12

13
14
from collections import OrderedDict

15
16
17
18
19
20
21
# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None

import unittest
22
from torchvision.ops._register_onnx_ops import _onnx_opset_version
23
24
25
26
27
28
29
30


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

31
32
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
33
34
35
        model.eval()

        onnx_io = io.BytesIO()
36
        # export to onnx with the first input
37
        torch.onnx.export(model, inputs_list[0], onnx_io,
38
39
                          do_constant_folding=do_constant_folding, opset_version=_onnx_opset_version,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
40
        # validate the exported model with onnx runtime
41
42
43
44
45
46
47
48
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
49
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
50

51
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
        for i in range(0, len(outputs)):
70
71
72
73
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
74
                    self.assertIn("(0.00%)", str(error), str(error))
75
                else:
76
                    raise
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
    @unittest.skip("Disable test until Split w/ zero sizes is implemented in ORT")
    def test_new_empty_tensor(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()
                self.conv2 = ops.misc.ConvTranspose2d(16, 33, (3, 5))

            def forward(self, input2):
                return self.conv2(input2)

        input = torch.rand(0, 16, 10, 10)
        test_input = torch.rand(0, 16, 20, 20)
        self.run_model(Module(), [(input, ), (test_input,)], do_constant_folding=False)

92
93
94
95
96
97
98
99
100
    def test_nms(self):
        boxes = torch.rand(5, 4)
        boxes[:, 2:] += torch.rand(5, 2)
        scores = torch.randn(5)

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

101
        self.run_model(Module(), [(boxes, scores)])
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def test_clip_boxes_to_image(self):
        boxes = torch.randn(5, 4) * 500
        boxes[:, 2:] += boxes[:, :2]
        size = torch.randn(200, 300)

        size_2 = torch.randn(300, 400)

        class Module(torch.nn.Module):
            def forward(self, boxes, size):
                return ops.boxes.clip_boxes_to_image(boxes, size.shape)

        self.run_model(Module(), [(boxes, size), (boxes, size_2)],
                       input_names=["boxes", "size"],
                       dynamic_axes={"size": [0, 1]})

118
    def test_roi_align(self):
119
120
121
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
122
        self.run_model(model, [(x, single_roi)])
123

124
    def test_roi_pool(self):
125
126
127
128
129
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
130
131
        self.run_model(model, [(x, rois)])

132
133
134
135
136
137
138
139
140
141
142
143
144
145
    def test_resize_images(self):
        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()

            def forward(self_module, images):
                return self_module.transform.resize(images, None)[0]

        input = torch.rand(3, 10, 20)
        input_test = torch.rand(3, 100, 150)
        self.run_model(TransformModule(), [(input,), (input_test,)],
                       input_names=["input1"], dynamic_axes={"input1": [0, 1, 2, 3]})

146
147
148
149
150
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
151
                self_module.transform = self._init_test_generalized_rcnn_transform()
152
153
154
155

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

156
157
158
        input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        self.run_model(TransformModule(), [(input,), (input_test,)])
159

160
    def _init_test_generalized_rcnn_transform(self):
161
162
        min_size = 100
        max_size = 200
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)
        return rpn

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

238
239
    def test_rpn(self):
        class RPNModule(torch.nn.Module):
240
            def __init__(self_module):
241
242
243
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()

244
245
246
            def forward(self_module, images, features):
                images = ImageList(images, [i.shape[-2:] for i in images])
                return self_module.rpn(images, features)
247

248
        images = torch.rand(2, 3, 150, 150)
249
        features = self.get_features(images)
250
251
        images2 = torch.rand(2, 3, 80, 80)
        test_features = self.get_features(images2)
252

253
        model = RPNModule()
254
        model.eval()
255
256
257
258
259
260
261
        model(images, features)

        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3],
                                     "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3],
                                     "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})
262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

288
289
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
290
            def __init__(self_module):
291
292
293
294
295
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()

296
297
298
299
300
            def forward(self_module, images, features):
                original_image_sizes = [img.shape[-2:] for img in images]
                images = ImageList(images, [i.shape[-2:] for i in images])
                proposals, _ = self_module.rpn(images, features)
                detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
301
                detections = self_module.transform.postprocess(detections,
302
303
                                                               images.image_sizes,
                                                               original_image_sizes)
304
305
                return detections

306
        images = torch.rand(2, 3, 100, 100)
307
        features = self.get_features(images)
308
309
        images2 = torch.rand(2, 3, 150, 150)
        test_features = self.get_features(images2)
310

311
        model = RoiHeadsModule()
312
        model.eval()
313
        model(images, features)
314

315
316
317
318
319
320
        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3],
                                     "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})

    def get_image_from_url(self, url, size=None):
321
322
323
324
325
326
327
        import requests
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
328
329
330
331

        if size is None:
            size = (300, 200)
        image = image.resize(size, Image.BILINEAR)
332
333
334
335
336
337

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
338
        image = self.get_image_from_url(url=image_url, size=(100, 320))
339

340
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
341
        image2 = self.get_image_from_url(url=image_url2, size=(250, 380))
342

343
344
345
346
347
348
349
        images = [image]
        test_images = [image2]
        return images, test_images

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()

350
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
351
352
        model.eval()
        model(images)
353
354
355
356
        self.run_model(model, [(images,), (test_images,)], input_names=["images_tensors"],
                       output_names=["outputs"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "outputs": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
357

358
359
360
361
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
362
363
364
365
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()

Lara Haidar's avatar
Lara Haidar committed
395
        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
396
397
        model.eval()
        model(images)
398
399
        self.run_model(model, [(images,), (test_images,)],
                       input_names=["images_tensors"],
400
401
402
                       output_names=["boxes", "labels", "scores"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2, 3]},
403
                       tolerate_small_mismatch=True)
404

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
    # Verify that heatmaps_to_keypoints behaves the same in tracing.
    # This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
    # (since jit_trace witll call _heatmaps_to_keypoints).
    # @unittest.skip("Disable test until Resize bug fixed in ORT")
    def test_heatmaps_to_keypoints(self):
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

        maps = torch.rand(10, 1, 26, 26)
        rois = torch.rand(10, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out = heatmaps_to_keypoints(maps, rois)
        jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
        out_trace = jit_trace(maps, rois)

        assert torch.all(out[0].eq(out_trace[0]))
        assert torch.all(out[1].eq(out_trace[1]))

        maps2 = torch.rand(20, 2, 21, 21)
        rois2 = torch.rand(20, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out2 = heatmaps_to_keypoints(maps2, rois2)
        out_trace2 = jit_trace(maps2, rois2)

        assert torch.all(out2[0].eq(out_trace2[0]))
        assert torch.all(out2[1].eq(out_trace2[1]))
432

433
    def test_keypoint_rcnn(self):
Lara Haidar's avatar
Lara Haidar committed
434
435
436
        class KeyPointRCNN(torch.nn.Module):
            def __init__(self):
                super(KeyPointRCNN, self).__init__()
437
438
                self.model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(
                    pretrained=True, min_size=200, max_size=300)
Lara Haidar's avatar
Lara Haidar committed
439
440
441
442
443
444
445

            def forward(self, images):
                output = self.model(images)
                # TODO: The keypoints_scores require the use of Argmax that is updated in ONNX.
                #       For now we are testing all the output of KeypointRCNN except keypoints_scores.
                #       Enable When Argmax is updated in ONNX Runtime.
                return output[0]['boxes'], output[0]['labels'], output[0]['scores'], output[0]['keypoints']
446

Lara Haidar's avatar
Lara Haidar committed
447
448
        images, test_images = self.get_test_images()
        model = KeyPointRCNN()
449
        model.eval()
450
451
452
453
454
455
        model(images)
        self.run_model(model, [(images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
456

457
458
459

if __name__ == '__main__':
    unittest.main()