test_onnx.py 18.2 KB
Newer Older
1
2
3
import io
import torch
from torchvision import ops
4
from torchvision import models
5
from torchvision.models.detection.image_list import ImageList
6
from torchvision.models.detection.transform import GeneralizedRCNNTransform
7
8
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
9
10
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
11
from torchvision.models.detection.mask_rcnn import MaskRCNNHeads, MaskRCNNPredictor
12

13
14
from collections import OrderedDict

15
16
17
18
19
20
21
# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None

import unittest
22
from torchvision.ops._register_onnx_ops import _onnx_opset_version
23
24
25
26
27
28
29
30


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

31
32
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
33
34
35
        model.eval()

        onnx_io = io.BytesIO()
36
        # export to onnx with the first input
37
        torch.onnx.export(model, inputs_list[0], onnx_io,
38
39
                          do_constant_folding=do_constant_folding, opset_version=_onnx_opset_version,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
40
        # validate the exported model with onnx runtime
41
42
43
44
45
46
47
48
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
49
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
50

51
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
        for i in range(0, len(outputs)):
70
71
72
73
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
74
                    self.assertIn("(0.00%)", str(error), str(error))
75
                else:
76
                    raise
77

78
79
80
81
82
83
84
85
86
87
88
89
90
91
    @unittest.skip("Disable test until Split w/ zero sizes is implemented in ORT")
    def test_new_empty_tensor(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()
                self.conv2 = ops.misc.ConvTranspose2d(16, 33, (3, 5))

            def forward(self, input2):
                return self.conv2(input2)

        input = torch.rand(0, 16, 10, 10)
        test_input = torch.rand(0, 16, 20, 20)
        self.run_model(Module(), [(input, ), (test_input,)], do_constant_folding=False)

92
93
94
95
96
97
98
99
100
    def test_nms(self):
        boxes = torch.rand(5, 4)
        boxes[:, 2:] += torch.rand(5, 2)
        scores = torch.randn(5)

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

101
        self.run_model(Module(), [(boxes, scores)])
102

103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def test_clip_boxes_to_image(self):
        boxes = torch.randn(5, 4) * 500
        boxes[:, 2:] += boxes[:, :2]
        size = torch.randn(200, 300)

        size_2 = torch.randn(300, 400)

        class Module(torch.nn.Module):
            def forward(self, boxes, size):
                return ops.boxes.clip_boxes_to_image(boxes, size.shape)

        self.run_model(Module(), [(boxes, size), (boxes, size_2)],
                       input_names=["boxes", "size"],
                       dynamic_axes={"size": [0, 1]})

118
    def test_roi_align(self):
119
120
121
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
122
        self.run_model(model, [(x, single_roi)])
123

124
    def test_roi_pool(self):
125
126
127
128
129
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
130
131
132
133
134
135
136
        self.run_model(model, [(x, rois)])

    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
137
                self_module.transform = self._init_test_generalized_rcnn_transform()
138
139
140
141

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

142
143
144
        input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        self.run_model(TransformModule(), [(input,), (input_test,)])
145

146
    def _init_test_generalized_rcnn_transform(self):
147
148
        min_size = 100
        max_size = 200
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)
        return rpn

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

224
225
    def test_rpn(self):
        class RPNModule(torch.nn.Module):
226
            def __init__(self_module):
227
228
229
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()

230
231
232
            def forward(self_module, images, features):
                images = ImageList(images, [i.shape[-2:] for i in images])
                return self_module.rpn(images, features)
233

234
        images = torch.rand(2, 3, 150, 150)
235
        features = self.get_features(images)
236
237
        images2 = torch.rand(2, 3, 80, 80)
        test_features = self.get_features(images2)
238

239
        model = RPNModule()
240
        model.eval()
241
242
243
244
245
246
247
        model(images, features)

        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3],
                                     "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3],
                                     "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})
248

249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

274
275
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
276
            def __init__(self_module):
277
278
279
280
281
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()

282
283
284
285
286
            def forward(self_module, images, features):
                original_image_sizes = [img.shape[-2:] for img in images]
                images = ImageList(images, [i.shape[-2:] for i in images])
                proposals, _ = self_module.rpn(images, features)
                detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
287
                detections = self_module.transform.postprocess(detections,
288
289
                                                               images.image_sizes,
                                                               original_image_sizes)
290
291
                return detections

292
        images = torch.rand(2, 3, 100, 100)
293
        features = self.get_features(images)
294
295
        images2 = torch.rand(2, 3, 150, 150)
        test_features = self.get_features(images2)
296

297
        model = RoiHeadsModule()
298
        model.eval()
299
        model(images, features)
300

301
302
303
304
305
306
        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3],
                                     "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})

    def get_image_from_url(self, url, size=None):
307
308
309
310
311
312
313
        import requests
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
314
315
316
317

        if size is None:
            size = (300, 200)
        image = image.resize(size, Image.BILINEAR)
318
319
320
321
322
323

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
324
325
        image = self.get_image_from_url(url=image_url, size=(200, 300))

326
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
327
328
        image2 = self.get_image_from_url(url=image_url2, size=(250, 200))

329
330
331
332
333
334
335
        images = [image]
        test_images = [image2]
        return images, test_images

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()

336
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
337
338
        model.eval()
        model(images)
339
340
341
342
        self.run_model(model, [(images,), (test_images,)], input_names=["images_tensors"],
                       output_names=["outputs"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "outputs": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
343

344
345
346
347
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
348
349
350
351
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

378
    @unittest.skip("Disable test until export of interpolate script module to ONNX is fixed")
379
380
381
    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()

Lara Haidar's avatar
Lara Haidar committed
382
        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
383
384
        model.eval()
        model(images)
385
386
387
388
389
        self.run_model(model, [(images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "outputs": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
390

391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    # Verify that heatmaps_to_keypoints behaves the same in tracing.
    # This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
    # (since jit_trace witll call _heatmaps_to_keypoints).
    # @unittest.skip("Disable test until Resize bug fixed in ORT")
    def test_heatmaps_to_keypoints(self):
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

        maps = torch.rand(10, 1, 26, 26)
        rois = torch.rand(10, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out = heatmaps_to_keypoints(maps, rois)
        jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
        out_trace = jit_trace(maps, rois)

        assert torch.all(out[0].eq(out_trace[0]))
        assert torch.all(out[1].eq(out_trace[1]))

        maps2 = torch.rand(20, 2, 21, 21)
        rois2 = torch.rand(20, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out2 = heatmaps_to_keypoints(maps2, rois2)
        out_trace2 = jit_trace(maps2, rois2)

        assert torch.all(out2[0].eq(out_trace2[0]))
        assert torch.all(out2[1].eq(out_trace2[1]))
418

419
    @unittest.skip("Disable test until export of interpolate script module to ONNX is fixed")
420
    def test_keypoint_rcnn(self):
Lara Haidar's avatar
Lara Haidar committed
421
422
423
        class KeyPointRCNN(torch.nn.Module):
            def __init__(self):
                super(KeyPointRCNN, self).__init__()
424
425
                self.model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(
                    pretrained=True, min_size=200, max_size=300)
Lara Haidar's avatar
Lara Haidar committed
426
427
428
429
430
431
432

            def forward(self, images):
                output = self.model(images)
                # TODO: The keypoints_scores require the use of Argmax that is updated in ONNX.
                #       For now we are testing all the output of KeypointRCNN except keypoints_scores.
                #       Enable When Argmax is updated in ONNX Runtime.
                return output[0]['boxes'], output[0]['labels'], output[0]['scores'], output[0]['keypoints']
433

Lara Haidar's avatar
Lara Haidar committed
434
435
        images, test_images = self.get_test_images()
        model = KeyPointRCNN()
436
        model.eval()
437
438
439
440
441
442
        model(images)
        self.run_model(model, [(images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
443

444
445
446

if __name__ == '__main__':
    unittest.main()