test_onnx.py 13.2 KB
Newer Older
1
2
3
import io
import torch
from torchvision import ops
4
from torchvision import models
5
from torchvision.models.detection.image_list import ImageList
6
from torchvision.models.detection.transform import GeneralizedRCNNTransform
7
8
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
9
10
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
11
from torchvision.models.detection.mask_rcnn import MaskRCNNHeads, MaskRCNNPredictor
12

13
14
from collections import OrderedDict

15
16
17
18
19
20
21
# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None

import unittest
22
from torchvision.ops._register_onnx_ops import _onnx_opset_version
23
24
25
26
27
28
29
30


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

31
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False):
32
33
34
        model.eval()

        onnx_io = io.BytesIO()
35
        # export to onnx with the first input
36
37
        torch.onnx.export(model, inputs_list[0], onnx_io,
                          do_constant_folding=True, opset_version=_onnx_opset_version)
38
39

        # validate the exported model with onnx runtime
40
41
42
43
44
45
46
47
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
48
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
49

50
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
        for i in range(0, len(outputs)):
69
70
71
72
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
73
                    self.assertIn("(0.00%)", str(error), str(error))
74
                else:
75
                    raise
76
77
78
79
80
81
82
83
84
85

    def test_nms(self):
        boxes = torch.rand(5, 4)
        boxes[:, 2:] += torch.rand(5, 2)
        scores = torch.randn(5)

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

86
        self.run_model(Module(), [(boxes, scores)])
87

88
    def test_roi_align(self):
89
90
91
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
92
        self.run_model(model, [(x, single_roi)])
93

94
    def test_roi_pool(self):
95
96
97
98
99
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
100
101
102
103
104
105
106
        self.run_model(model, [(x, rois)])

    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
107
                self_module.transform = self._init_test_generalized_rcnn_transform()
108
109
110
111

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

112
113
        input = [torch.rand(3, 100, 200), torch.rand(3, 200, 200)]
        input_test = [torch.rand(3, 100, 200), torch.rand(3, 200, 200)]
114
        self.run_model(TransformModule(), [input, input_test])
115

116
    def _init_test_generalized_rcnn_transform(self):
117
118
        min_size = 100
        max_size = 200
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)
        return rpn

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

194
195
196
197
198
199
200
201
202
203
204
    def test_rpn(self):
        class RPNModule(torch.nn.Module):
            def __init__(self_module, images):
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()
                self_module.images = ImageList(images, [i.shape[-2:] for i in images])

            def forward(self_module, features):
                return self_module.rpn(self_module.images, features)

        images = torch.rand(2, 3, 600, 600)
205
206
        features = self.get_features(images)
        test_features = self.get_features(images)
207
208
209
210
211
212

        model = RPNModule(images)
        model.eval()
        model(features)
        self.run_model(model, [(features,), (test_features,)], tolerate_small_mismatch=True)

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
            def __init__(self_module, images):
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()
                self_module.original_image_sizes = [img.shape[-2:] for img in images]
                self_module.images = ImageList(images, [i.shape[-2:] for i in images])

            def forward(self_module, features):
                proposals, _ = self_module.rpn(self_module.images, features)
                detections, _ = self_module.roi_heads(features, proposals, self_module.images.image_sizes)
                detections = self_module.transform.postprocess(detections,
                                                               self_module.images.image_sizes,
                                                               self_module.original_image_sizes)
                return detections

        images = torch.rand(2, 3, 600, 600)
        features = self.get_features(images)
        test_features = self.get_features(images)

        model = RoiHeadsModule(images)
        model.eval()
        model(features)
263
        self.run_model(model, [(features,), (test_features,)])
264
265
266
267
268
269
270
271
272
273

    def get_image_from_url(self, url):
        import requests
        import numpy
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
274
        image = image.resize((300, 200), Image.BILINEAR)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
        image = self.get_image_from_url(url=image_url)
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
        image2 = self.get_image_from_url(url=image_url2)
        images = [image]
        test_images = [image2]
        return images, test_images

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()

291
292
293
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True,
                                                                     min_size=200,
                                                                     max_size=300)
294
295
296
297
        model.eval()
        model(images)
        self.run_model(model, [(images,), (test_images,)])

298
299
300
301
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
302
303
304
305
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

    @unittest.skip("Disable test until Resize opset 11 is implemented in ONNX Runtime")
    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()

        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True)
        model.eval()
        model(images)
        self.run_model(model, [(images,), (test_images,)])

341
342
343

if __name__ == '__main__':
    unittest.main()