test_onnx.py 21 KB
Newer Older
1
2
3
import io
import torch
from torchvision import ops
4
from torchvision import models
5
from torchvision.models.detection.image_list import ImageList
6
from torchvision.models.detection.transform import GeneralizedRCNNTransform
7
8
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
from torchvision.models.detection.backbone_utils import resnet_fpn_backbone
9
10
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
11
from torchvision.models.detection.mask_rcnn import MaskRCNNHeads, MaskRCNNPredictor
12

13
14
from collections import OrderedDict

15
16
17
18
19
20
21
# onnxruntime requires python 3.5 or above
try:
    import onnxruntime
except ImportError:
    onnxruntime = None

import unittest
22
from torchvision.ops._register_onnx_ops import _onnx_opset_version
23
24
25
26
27
28
29
30


@unittest.skipIf(onnxruntime is None, 'ONNX Runtime unavailable')
class ONNXExporterTester(unittest.TestCase):
    @classmethod
    def setUpClass(cls):
        torch.manual_seed(123)

31
32
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
33
34
35
        model.eval()

        onnx_io = io.BytesIO()
36
        # export to onnx with the first input
37
        torch.onnx.export(model, inputs_list[0], onnx_io,
38
39
                          do_constant_folding=do_constant_folding, opset_version=_onnx_opset_version,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
40
        # validate the exported model with onnx runtime
41
42
43
44
45
46
47
48
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
49
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
50

51
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
69

70
        for i in range(0, len(outputs)):
71
72
73
74
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
75
                    self.assertIn("(0.00%)", str(error), str(error))
76
                else:
77
                    raise
78

79
80
81
82
83
84
85
86
87
88
89
90
91
92
    @unittest.skip("Disable test until Split w/ zero sizes is implemented in ORT")
    def test_new_empty_tensor(self):
        class Module(torch.nn.Module):
            def __init__(self):
                super(Module, self).__init__()
                self.conv2 = ops.misc.ConvTranspose2d(16, 33, (3, 5))

            def forward(self, input2):
                return self.conv2(input2)

        input = torch.rand(0, 16, 10, 10)
        test_input = torch.rand(0, 16, 20, 20)
        self.run_model(Module(), [(input, ), (test_input,)], do_constant_folding=False)

93
94
95
96
97
98
99
100
101
    def test_nms(self):
        boxes = torch.rand(5, 4)
        boxes[:, 2:] += torch.rand(5, 2)
        scores = torch.randn(5)

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

102
        self.run_model(Module(), [(boxes, scores)])
103

104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    def test_clip_boxes_to_image(self):
        boxes = torch.randn(5, 4) * 500
        boxes[:, 2:] += boxes[:, :2]
        size = torch.randn(200, 300)

        size_2 = torch.randn(300, 400)

        class Module(torch.nn.Module):
            def forward(self, boxes, size):
                return ops.boxes.clip_boxes_to_image(boxes, size.shape)

        self.run_model(Module(), [(boxes, size), (boxes, size_2)],
                       input_names=["boxes", "size"],
                       dynamic_axes={"size": [0, 1]})

119
    def test_roi_align(self):
120
121
122
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
123
        self.run_model(model, [(x, single_roi)])
124

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    def test_roi_align_aligned(self):
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 0.5, 3, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1.8, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, 0, aligned=True)
        self.run_model(model, [(x, single_roi)])

    @unittest.skip  # Issue in exporting ROIAlign with aligned = True for malformed boxes
    def test_roi_align_malformed_boxes(self):
        x = torch.randn(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 2, 0.3, 1.5, 1.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 1, aligned=True)
        self.run_model(model, [(x, single_roi)])

153
    def test_roi_pool(self):
154
155
156
157
158
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
159
160
        self.run_model(model, [(x, rois)])

161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def test_resize_images(self):
        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()

            def forward(self_module, images):
                return self_module.transform.resize(images, None)[0]

        input = torch.rand(3, 10, 20)
        input_test = torch.rand(3, 100, 150)
        self.run_model(TransformModule(), [(input,), (input_test,)],
                       input_names=["input1"], dynamic_axes={"input1": [0, 1, 2, 3]})

175
176
177
178
179
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
180
                self_module.transform = self._init_test_generalized_rcnn_transform()
181
182
183
184

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

185
186
187
        input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        self.run_model(TransformModule(), [(input,), (input_test,)])
188

189
    def _init_test_generalized_rcnn_transform(self):
190
191
        min_size = 100
        max_size = 200
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh)
        return rpn

218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

267
268
    def test_rpn(self):
        class RPNModule(torch.nn.Module):
269
            def __init__(self_module):
270
271
272
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()

273
274
275
            def forward(self_module, images, features):
                images = ImageList(images, [i.shape[-2:] for i in images])
                return self_module.rpn(images, features)
276

277
        images = torch.rand(2, 3, 150, 150)
278
        features = self.get_features(images)
279
280
        images2 = torch.rand(2, 3, 80, 80)
        test_features = self.get_features(images2)
281

282
        model = RPNModule()
283
        model.eval()
284
285
286
287
288
289
290
        model(images, features)

        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3],
                                     "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3],
                                     "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})
291

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

317
318
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
319
            def __init__(self_module):
320
321
322
323
324
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()

325
326
327
328
329
            def forward(self_module, images, features):
                original_image_sizes = [img.shape[-2:] for img in images]
                images = ImageList(images, [i.shape[-2:] for i in images])
                proposals, _ = self_module.rpn(images, features)
                detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
330
                detections = self_module.transform.postprocess(detections,
331
332
                                                               images.image_sizes,
                                                               original_image_sizes)
333
334
                return detections

335
        images = torch.rand(2, 3, 100, 100)
336
        features = self.get_features(images)
337
338
        images2 = torch.rand(2, 3, 150, 150)
        test_features = self.get_features(images2)
339

340
        model = RoiHeadsModule()
341
        model.eval()
342
        model(images, features)
343

344
345
346
347
348
349
        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3],
                                     "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})

    def get_image_from_url(self, url, size=None):
350
351
352
353
354
355
356
        import requests
        from PIL import Image
        from io import BytesIO
        from torchvision import transforms

        data = requests.get(url)
        image = Image.open(BytesIO(data.content)).convert("RGB")
357
358
359
360

        if size is None:
            size = (300, 200)
        image = image.resize(size, Image.BILINEAR)
361
362
363
364
365
366

        to_tensor = transforms.ToTensor()
        return to_tensor(image)

    def get_test_images(self):
        image_url = "http://farm3.staticflickr.com/2469/3915380994_2e611b1779_z.jpg"
367
        image = self.get_image_from_url(url=image_url, size=(100, 320))
368

369
        image_url2 = "https://pytorch.org/tutorials/_static/img/tv_tutorial/tv_image05.png"
370
        image2 = self.get_image_from_url(url=image_url2, size=(250, 380))
371

372
373
374
375
376
377
        images = [image]
        test_images = [image2]
        return images, test_images

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()
378
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
379
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
380
381
        model.eval()
        model(images)
382
383
384
385
386
387
388
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)], input_names=["images_tensors"],
                       output_names=["outputs"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "outputs": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
        # Test exported model for an image with no detections on other images
        self.run_model(model, [(dummy_image,), (images,)], input_names=["images_tensors"],
389
390
391
                       output_names=["outputs"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "outputs": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
392

393
394
395
396
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
397
398
399
400
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()
429
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
Lara Haidar's avatar
Lara Haidar committed
430
        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
431
432
        model.eval()
        model(images)
433
434
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)],
435
                       input_names=["images_tensors"],
436
                       output_names=["boxes", "labels", "scores", "masks"],
437
438
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2, 3]},
439
                       tolerate_small_mismatch=True)
440
441
        # TODO: enable this test once dynamic model export is fixed
        # Test exported model for an image with no detections on other images
442
443
444
445
446
447
        self.run_model(model, [(dummy_image,), (images,)],
                       input_names=["images_tensors"],
                       output_names=["boxes", "labels", "scores", "masks"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
448

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
    # Verify that heatmaps_to_keypoints behaves the same in tracing.
    # This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
    # (since jit_trace witll call _heatmaps_to_keypoints).
    # @unittest.skip("Disable test until Resize bug fixed in ORT")
    def test_heatmaps_to_keypoints(self):
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

        maps = torch.rand(10, 1, 26, 26)
        rois = torch.rand(10, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out = heatmaps_to_keypoints(maps, rois)
        jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
        out_trace = jit_trace(maps, rois)

        assert torch.all(out[0].eq(out_trace[0]))
        assert torch.all(out[1].eq(out_trace[1]))

        maps2 = torch.rand(20, 2, 21, 21)
        rois2 = torch.rand(20, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out2 = heatmaps_to_keypoints(maps2, rois2)
        out_trace2 = jit_trace(maps2, rois2)

        assert torch.all(out2[0].eq(out_trace2[0]))
        assert torch.all(out2[1].eq(out_trace2[1]))
476

477
    def test_keypoint_rcnn(self):
Lara Haidar's avatar
Lara Haidar committed
478
        images, test_images = self.get_test_images()
479
        dummy_images = [torch.ones(3, 100, 100) * 0.3]
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
480
        model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
481
        model.eval()
482
        model(images)
483
        self.run_model(model, [(images,), (test_images,), (dummy_images,)],
484
485
486
487
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
488

489
490
491
492
493
        self.run_model(model, [(dummy_images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
                       dynamic_axes={"images_tensors": [0, 1, 2, 3]},
                       tolerate_small_mismatch=True)
494

495
496
497

if __name__ == '__main__':
    unittest.main()