test_onnx.py 21.7 KB
Newer Older
1
from common_utils import set_rng_seed, assert_equal
2
import io
3
import pytest
4
5
import torch
from torchvision import ops
6
from torchvision import models
7
from torchvision.models.detection.image_list import ImageList
8
from torchvision.models.detection.transform import GeneralizedRCNNTransform
9
from torchvision.models.detection.rpn import AnchorGenerator, RPNHead, RegionProposalNetwork
10
11
from torchvision.models.detection.roi_heads import RoIHeads
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor, TwoMLPHead
12

13
from collections import OrderedDict
14
from typing import List, Tuple
15

16
from torchvision.ops._register_onnx_ops import _onnx_opset_version
17

18
19
20
21
# In environments without onnxruntime we prefer to
# invoke all tests in the repo and have this one skipped rather than fail.
onnxruntime = pytest.importorskip("onnxruntime")

22

23
class TestONNXExporter:
24
    @classmethod
25
    def setup_class(cls):
26
27
        torch.manual_seed(123)

28
29
    def run_model(self, model, inputs_list, tolerate_small_mismatch=False, do_constant_folding=True, dynamic_axes=None,
                  output_names=None, input_names=None):
30
31
32
        model.eval()

        onnx_io = io.BytesIO()
33
34
35
36
        if isinstance(inputs_list[0][-1], dict):
            torch_onnx_input = inputs_list[0] + ({},)
        else:
            torch_onnx_input = inputs_list[0]
37
        # export to onnx with the first input
38
        torch.onnx.export(model, torch_onnx_input, onnx_io,
39
40
                          do_constant_folding=do_constant_folding, opset_version=_onnx_opset_version,
                          dynamic_axes=dynamic_axes, input_names=input_names, output_names=output_names)
41
        # validate the exported model with onnx runtime
42
43
44
45
46
47
48
49
        for test_inputs in inputs_list:
            with torch.no_grad():
                if isinstance(test_inputs, torch.Tensor) or \
                   isinstance(test_inputs, list):
                    test_inputs = (test_inputs,)
                test_ouputs = model(*test_inputs)
                if isinstance(test_ouputs, torch.Tensor):
                    test_ouputs = (test_ouputs,)
50
            self.ort_validate(onnx_io, test_inputs, test_ouputs, tolerate_small_mismatch)
51

52
    def ort_validate(self, onnx_io, inputs, outputs, tolerate_small_mismatch=False):
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

        inputs, _ = torch.jit._flatten(inputs)
        outputs, _ = torch.jit._flatten(outputs)

        def to_numpy(tensor):
            if tensor.requires_grad:
                return tensor.detach().cpu().numpy()
            else:
                return tensor.cpu().numpy()

        inputs = list(map(to_numpy, inputs))
        outputs = list(map(to_numpy, outputs))

        ort_session = onnxruntime.InferenceSession(onnx_io.getvalue())
        # compute onnxruntime output prediction
        ort_inputs = dict((ort_session.get_inputs()[i].name, inpt) for i, inpt in enumerate(inputs))
        ort_outs = ort_session.run(None, ort_inputs)
70

71
        for i in range(0, len(outputs)):
72
73
74
75
            try:
                torch.testing.assert_allclose(outputs[i], ort_outs[i], rtol=1e-03, atol=1e-05)
            except AssertionError as error:
                if tolerate_small_mismatch:
76
                    assert "(0.00%)" in str(error), str(error)
77
                else:
78
                    raise
79
80

    def test_nms(self):
81
82
83
84
        num_boxes = 100
        boxes = torch.rand(num_boxes, 4)
        boxes[:, 2:] += boxes[:, :2]
        scores = torch.randn(num_boxes)
85
86
87
88
89

        class Module(torch.nn.Module):
            def forward(self, boxes, scores):
                return ops.nms(boxes, scores, 0.5)

90
        self.run_model(Module(), [(boxes, scores)])
91

92
93
94
95
96
97
98
99
100
101
102
103
104
    def test_batched_nms(self):
        num_boxes = 100
        boxes = torch.rand(num_boxes, 4)
        boxes[:, 2:] += boxes[:, :2]
        scores = torch.randn(num_boxes)
        idxs = torch.randint(0, 5, size=(num_boxes,))

        class Module(torch.nn.Module):
            def forward(self, boxes, scores, idxs):
                return ops.batched_nms(boxes, scores, idxs, 0.5)

        self.run_model(Module(), [(boxes, scores, idxs)])

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_clip_boxes_to_image(self):
        boxes = torch.randn(5, 4) * 500
        boxes[:, 2:] += boxes[:, :2]
        size = torch.randn(200, 300)

        size_2 = torch.randn(300, 400)

        class Module(torch.nn.Module):
            def forward(self, boxes, size):
                return ops.boxes.clip_boxes_to_image(boxes, size.shape)

        self.run_model(Module(), [(boxes, size), (boxes, size_2)],
                       input_names=["boxes", "size"],
                       dynamic_axes={"size": [0, 1]})

120
    def test_roi_align(self):
121
122
123
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2)
124
        self.run_model(model, [(x, single_roi)])
125

126
127
128
129
130
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, -1)
        self.run_model(model, [(x, single_roi)])

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
    def test_roi_align_aligned(self):
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 1.5, 1.5, 3, 3]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 0.5, 3, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1.8, 2, aligned=True)
        self.run_model(model, [(x, single_roi)])

        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, 0, aligned=True)
        self.run_model(model, [(x, single_roi)])

152
153
154
155
156
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 0.2, 0.3, 4.5, 3.5]], dtype=torch.float32)
        model = ops.RoIAlign((2, 2), 2.5, -1, aligned=True)
        self.run_model(model, [(x, single_roi)])

157
    @pytest.mark.skip(reason="Issue in exporting ROIAlign with aligned = True for malformed boxes")
158
159
160
161
162
163
    def test_roi_align_malformed_boxes(self):
        x = torch.randn(1, 1, 10, 10, dtype=torch.float32)
        single_roi = torch.tensor([[0, 2, 0.3, 1.5, 1.5]], dtype=torch.float32)
        model = ops.RoIAlign((5, 5), 1, 1, aligned=True)
        self.run_model(model, [(x, single_roi)])

164
    def test_roi_pool(self):
165
166
167
168
169
        x = torch.rand(1, 1, 10, 10, dtype=torch.float32)
        rois = torch.tensor([[0, 0, 0, 4, 4]], dtype=torch.float32)
        pool_h = 5
        pool_w = 5
        model = ops.RoIPool((pool_h, pool_w), 2)
170
171
        self.run_model(model, [(x, rois)])

172
173
174
175
176
177
178
179
180
181
182
183
    def test_resize_images(self):
        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()

            def forward(self_module, images):
                return self_module.transform.resize(images, None)[0]

        input = torch.rand(3, 10, 20)
        input_test = torch.rand(3, 100, 150)
        self.run_model(TransformModule(), [(input,), (input_test,)],
184
                       input_names=["input1"], dynamic_axes={"input1": [0, 1, 2]})
185

186
187
188
189
190
    def test_transform_images(self):

        class TransformModule(torch.nn.Module):
            def __init__(self_module):
                super(TransformModule, self_module).__init__()
191
                self_module.transform = self._init_test_generalized_rcnn_transform()
192
193
194
195

            def forward(self_module, images):
                return self_module.transform(images)[0].tensors

196
197
198
        input = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        input_test = torch.rand(3, 100, 200), torch.rand(3, 200, 200)
        self.run_model(TransformModule(), [(input,), (input_test,)])
199

200
    def _init_test_generalized_rcnn_transform(self):
201
202
        min_size = 100
        max_size = 200
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        image_mean = [0.485, 0.456, 0.406]
        image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)
        return transform

    def _init_test_rpn(self):
        anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
        aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
        rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
        out_channels = 256
        rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
        rpn_fg_iou_thresh = 0.7
        rpn_bg_iou_thresh = 0.3
        rpn_batch_size_per_image = 256
        rpn_positive_fraction = 0.5
        rpn_pre_nms_top_n = dict(training=2000, testing=1000)
        rpn_post_nms_top_n = dict(training=2000, testing=1000)
        rpn_nms_thresh = 0.7
221
        rpn_score_thresh = 0.0
222
223
224
225
226

        rpn = RegionProposalNetwork(
            rpn_anchor_generator, rpn_head,
            rpn_fg_iou_thresh, rpn_bg_iou_thresh,
            rpn_batch_size_per_image, rpn_positive_fraction,
227
228
            rpn_pre_nms_top_n, rpn_post_nms_top_n, rpn_nms_thresh,
            score_thresh=rpn_score_thresh)
229
230
        return rpn

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
    def _init_test_roi_heads_faster_rcnn(self):
        out_channels = 256
        num_classes = 91

        box_fg_iou_thresh = 0.5
        box_bg_iou_thresh = 0.5
        box_batch_size_per_image = 512
        box_positive_fraction = 0.25
        bbox_reg_weights = None
        box_score_thresh = 0.05
        box_nms_thresh = 0.5
        box_detections_per_img = 100

        box_roi_pool = ops.MultiScaleRoIAlign(
            featmap_names=['0', '1', '2', '3'],
            output_size=7,
            sampling_ratio=2)

        resolution = box_roi_pool.output_size[0]
        representation_size = 1024
        box_head = TwoMLPHead(
            out_channels * resolution ** 2,
            representation_size)

        representation_size = 1024
        box_predictor = FastRCNNPredictor(
            representation_size,
            num_classes)

        roi_heads = RoIHeads(
            box_roi_pool, box_head, box_predictor,
            box_fg_iou_thresh, box_bg_iou_thresh,
            box_batch_size_per_image, box_positive_fraction,
            bbox_reg_weights,
            box_score_thresh, box_nms_thresh, box_detections_per_img)
        return roi_heads

    def get_features(self, images):
        s0, s1 = images.shape[-2:]
        features = [
            ('0', torch.rand(2, 256, s0 // 4, s1 // 4)),
            ('1', torch.rand(2, 256, s0 // 8, s1 // 8)),
            ('2', torch.rand(2, 256, s0 // 16, s1 // 16)),
            ('3', torch.rand(2, 256, s0 // 32, s1 // 32)),
            ('4', torch.rand(2, 256, s0 // 64, s1 // 64)),
        ]
        features = OrderedDict(features)
        return features

280
    def test_rpn(self):
281
282
        set_rng_seed(0)

283
        class RPNModule(torch.nn.Module):
284
            def __init__(self_module):
285
286
287
                super(RPNModule, self_module).__init__()
                self_module.rpn = self._init_test_rpn()

288
289
290
            def forward(self_module, images, features):
                images = ImageList(images, [i.shape[-2:] for i in images])
                return self_module.rpn(images, features)
291

292
        images = torch.rand(2, 3, 150, 150)
293
        features = self.get_features(images)
294
295
        images2 = torch.rand(2, 3, 80, 80)
        test_features = self.get_features(images2)
296

297
        model = RPNModule()
298
        model.eval()
299
300
301
302
303
304
305
        model(images, features)

        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3],
                                     "input3": [0, 1, 2, 3], "input4": [0, 1, 2, 3],
                                     "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})
306

307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    def test_multi_scale_roi_align(self):

        class TransformModule(torch.nn.Module):
            def __init__(self):
                super(TransformModule, self).__init__()
                self.model = ops.MultiScaleRoIAlign(['feat1', 'feat2'], 3, 2)
                self.image_sizes = [(512, 512)]

            def forward(self, input, boxes):
                return self.model(input, boxes, self.image_sizes)

        i = OrderedDict()
        i['feat1'] = torch.rand(1, 5, 64, 64)
        i['feat2'] = torch.rand(1, 5, 16, 16)
        boxes = torch.rand(6, 4) * 256
        boxes[:, 2:] += boxes[:, :2]

        i1 = OrderedDict()
        i1['feat1'] = torch.rand(1, 5, 64, 64)
        i1['feat2'] = torch.rand(1, 5, 16, 16)
        boxes1 = torch.rand(6, 4) * 256
        boxes1[:, 2:] += boxes1[:, :2]

        self.run_model(TransformModule(), [(i, [boxes],), (i1, [boxes1],)])

332
333
    def test_roi_heads(self):
        class RoiHeadsModule(torch.nn.Module):
334
            def __init__(self_module):
335
336
337
338
339
                super(RoiHeadsModule, self_module).__init__()
                self_module.transform = self._init_test_generalized_rcnn_transform()
                self_module.rpn = self._init_test_rpn()
                self_module.roi_heads = self._init_test_roi_heads_faster_rcnn()

340
341
342
343
344
            def forward(self_module, images, features):
                original_image_sizes = [img.shape[-2:] for img in images]
                images = ImageList(images, [i.shape[-2:] for i in images])
                proposals, _ = self_module.rpn(images, features)
                detections, _ = self_module.roi_heads(features, proposals, images.image_sizes)
345
                detections = self_module.transform.postprocess(detections,
346
347
                                                               images.image_sizes,
                                                               original_image_sizes)
348
349
                return detections

350
        images = torch.rand(2, 3, 100, 100)
351
        features = self.get_features(images)
352
353
        images2 = torch.rand(2, 3, 150, 150)
        test_features = self.get_features(images2)
354

355
        model = RoiHeadsModule()
356
        model.eval()
357
        model(images, features)
358

359
360
361
362
363
        self.run_model(model, [(images, features), (images2, test_features)], tolerate_small_mismatch=True,
                       input_names=["input1", "input2", "input3", "input4", "input5", "input6"],
                       dynamic_axes={"input1": [0, 1, 2, 3], "input2": [0, 1, 2, 3], "input3": [0, 1, 2, 3],
                                     "input4": [0, 1, 2, 3], "input5": [0, 1, 2, 3], "input6": [0, 1, 2, 3]})

364
365
    def get_image(self, rel_path: str, size: Tuple[int, int]) -> torch.Tensor:
        import os
366
367
368
        from PIL import Image
        from torchvision import transforms

369
370
371
        data_dir = os.path.join(os.path.dirname(__file__), "assets")
        path = os.path.join(data_dir, *rel_path.split("/"))
        image = Image.open(path).convert("RGB").resize(size, Image.BILINEAR)
372

373
        return transforms.ToTensor()(image)
374

375
376
377
    def get_test_images(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
        return ([self.get_image("encode_jpeg/grace_hopper_517x606.jpg", (100, 320))],
                [self.get_image("fakedata/logos/rgb_pytorch.png", (250, 380))])
378
379
380

    def test_faster_rcnn(self):
        images, test_images = self.get_test_images()
381
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
382
        model = models.detection.faster_rcnn.fasterrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
383
384
        model.eval()
        model(images)
385
386
387
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)], input_names=["images_tensors"],
                       output_names=["outputs"],
388
                       dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
389
390
391
                       tolerate_small_mismatch=True)
        # Test exported model for an image with no detections on other images
        self.run_model(model, [(dummy_image,), (images,)], input_names=["images_tensors"],
392
                       output_names=["outputs"],
393
                       dynamic_axes={"images_tensors": [0, 1, 2], "outputs": [0, 1, 2]},
394
                       tolerate_small_mismatch=True)
395

396
397
398
399
    # Verify that paste_mask_in_image beahves the same in tracing.
    # This test also compares both paste_masks_in_image and _onnx_paste_masks_in_image
    # (since jit_trace witll call _onnx_paste_masks_in_image).
    def test_paste_mask_in_image(self):
400
401
402
403
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
        masks = torch.rand(10, 1, 26, 26)
        boxes = torch.rand(10, 4)
        boxes[:, 2:] += torch.rand(10, 2)
        boxes *= 50
        o_im_s = (100, 100)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out = paste_masks_in_image(masks, boxes, o_im_s)
        jit_trace = torch.jit.trace(paste_masks_in_image,
                                    (masks, boxes,
                                     [torch.tensor(o_im_s[0]),
                                      torch.tensor(o_im_s[1])]))
        out_trace = jit_trace(masks, boxes, [torch.tensor(o_im_s[0]), torch.tensor(o_im_s[1])])

        assert torch.all(out.eq(out_trace))

        masks2 = torch.rand(20, 1, 26, 26)
        boxes2 = torch.rand(20, 4)
        boxes2[:, 2:] += torch.rand(20, 2)
        boxes2 *= 100
        o_im_s2 = (200, 200)
        from torchvision.models.detection.roi_heads import paste_masks_in_image
        out2 = paste_masks_in_image(masks2, boxes2, o_im_s2)
        out_trace2 = jit_trace(masks2, boxes2, [torch.tensor(o_im_s2[0]), torch.tensor(o_im_s2[1])])

        assert torch.all(out2.eq(out_trace2))

    def test_mask_rcnn(self):
        images, test_images = self.get_test_images()
432
        dummy_image = [torch.ones(3, 100, 100) * 0.3]
Lara Haidar's avatar
Lara Haidar committed
433
        model = models.detection.mask_rcnn.maskrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
434
435
        model.eval()
        model(images)
436
437
        # Test exported model on images of different size, or dummy input
        self.run_model(model, [(images,), (test_images,), (dummy_image,)],
438
                       input_names=["images_tensors"],
439
                       output_names=["boxes", "labels", "scores", "masks"],
440
441
                       dynamic_axes={"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2]},
442
                       tolerate_small_mismatch=True)
443
        # Test exported model for an image with no detections on other images
444
445
446
        self.run_model(model, [(dummy_image,), (images,)],
                       input_names=["images_tensors"],
                       output_names=["boxes", "labels", "scores", "masks"],
447
448
                       dynamic_axes={"images_tensors": [0, 1, 2], "boxes": [0, 1], "labels": [0],
                                     "scores": [0], "masks": [0, 1, 2]},
449
                       tolerate_small_mismatch=True)
450

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
    # Verify that heatmaps_to_keypoints behaves the same in tracing.
    # This test also compares both heatmaps_to_keypoints and _onnx_heatmaps_to_keypoints
    # (since jit_trace witll call _heatmaps_to_keypoints).
    def test_heatmaps_to_keypoints(self):
        # disable profiling
        torch._C._jit_set_profiling_executor(False)
        torch._C._jit_set_profiling_mode(False)

        maps = torch.rand(10, 1, 26, 26)
        rois = torch.rand(10, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out = heatmaps_to_keypoints(maps, rois)
        jit_trace = torch.jit.trace(heatmaps_to_keypoints, (maps, rois))
        out_trace = jit_trace(maps, rois)

466
467
        assert_equal(out[0], out_trace[0])
        assert_equal(out[1], out_trace[1])
468
469
470
471
472
473
474

        maps2 = torch.rand(20, 2, 21, 21)
        rois2 = torch.rand(20, 4)
        from torchvision.models.detection.roi_heads import heatmaps_to_keypoints
        out2 = heatmaps_to_keypoints(maps2, rois2)
        out_trace2 = jit_trace(maps2, rois2)

475
476
        assert_equal(out2[0], out_trace2[0])
        assert_equal(out2[1], out_trace2[1])
477

478
    def test_keypoint_rcnn(self):
Lara Haidar's avatar
Lara Haidar committed
479
        images, test_images = self.get_test_images()
480
        dummy_images = [torch.ones(3, 100, 100) * 0.3]
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
481
        model = models.detection.keypoint_rcnn.keypointrcnn_resnet50_fpn(pretrained=True, min_size=200, max_size=300)
482
        model.eval()
483
        model(images)
484
        self.run_model(model, [(images,), (test_images,), (dummy_images,)],
485
486
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
487
                       dynamic_axes={"images_tensors": [0, 1, 2]},
488
                       tolerate_small_mismatch=True)
Ksenija Stanojevic's avatar
Ksenija Stanojevic committed
489

490
491
492
        self.run_model(model, [(dummy_images,), (test_images,)],
                       input_names=["images_tensors"],
                       output_names=["outputs1", "outputs2", "outputs3", "outputs4"],
493
                       dynamic_axes={"images_tensors": [0, 1, 2]},
494
                       tolerate_small_mismatch=True)
495

496
497
498
499
500
501
502
503
504
505
506
    def test_shufflenet_v2_dynamic_axes(self):
        model = models.shufflenet_v2_x0_5(pretrained=True)
        dummy_input = torch.randn(1, 3, 224, 224, requires_grad=True)
        test_inputs = torch.cat([dummy_input, dummy_input, dummy_input], 0)

        self.run_model(model, [(dummy_input,), (test_inputs,)],
                       input_names=["input_images"],
                       output_names=["output"],
                       dynamic_axes={"input_images": {0: 'batch_size'}, "output": {0: 'batch_size'}},
                       tolerate_small_mismatch=True)

507
508

if __name__ == '__main__':
509
    pytest.main([__file__])