functional.py 54.9 KB
Newer Older
1
import math
2
3
import numbers
import warnings
4
from enum import Enum
5
6

import numpy as np
vfdev's avatar
vfdev committed
7
from PIL import Image
8
9
10

import torch
from torch import Tensor
11
from typing import List, Tuple, Any, Optional
12

13
14
15
16
17
try:
    import accimage
except ImportError:
    accimage = None

18
19
20
from . import functional_pil as F_pil
from . import functional_tensor as F_t

21

22
class InterpolationMode(Enum):
23
24
25
26
27
28
29
30
31
32
33
34
    """Interpolation modes
    """
    NEAREST = "nearest"
    BILINEAR = "bilinear"
    BICUBIC = "bicubic"
    # For PIL compatibility
    BOX = "box"
    HAMMING = "hamming"
    LANCZOS = "lanczos"


# TODO: Once torchscript supports Enums with staticmethod
35
36
# this can be put into InterpolationMode as staticmethod
def _interpolation_modes_from_int(i: int) -> InterpolationMode:
37
    inverse_modes_mapping = {
38
39
40
41
42
43
        0: InterpolationMode.NEAREST,
        2: InterpolationMode.BILINEAR,
        3: InterpolationMode.BICUBIC,
        4: InterpolationMode.BOX,
        5: InterpolationMode.HAMMING,
        1: InterpolationMode.LANCZOS,
44
45
46
47
48
    }
    return inverse_modes_mapping[i]


pil_modes_mapping = {
49
50
51
52
53
54
    InterpolationMode.NEAREST: 0,
    InterpolationMode.BILINEAR: 2,
    InterpolationMode.BICUBIC: 3,
    InterpolationMode.BOX: 4,
    InterpolationMode.HAMMING: 5,
    InterpolationMode.LANCZOS: 1,
55
56
}

vfdev's avatar
vfdev committed
57
_is_pil_image = F_pil._is_pil_image
vfdev's avatar
vfdev committed
58
_parse_fill = F_pil._parse_fill
vfdev's avatar
vfdev committed
59
60
61


def _get_image_size(img: Tensor) -> List[int]:
62
    """Returns image size as [w, h]
vfdev's avatar
vfdev committed
63
64
65
    """
    if isinstance(img, torch.Tensor):
        return F_t._get_image_size(img)
66

vfdev's avatar
vfdev committed
67
    return F_pil._get_image_size(img)
68

vfdev's avatar
vfdev committed
69

70
def _get_image_num_channels(img: Tensor) -> int:
71
72
    """Returns number of image channels
    """
73
74
75
76
77
78
    if isinstance(img, torch.Tensor):
        return F_t._get_image_num_channels(img)

    return F_pil._get_image_num_channels(img)


vfdev's avatar
vfdev committed
79
80
@torch.jit.unused
def _is_numpy(img: Any) -> bool:
81
82
83
    return isinstance(img, np.ndarray)


vfdev's avatar
vfdev committed
84
85
@torch.jit.unused
def _is_numpy_image(img: Any) -> bool:
86
    return img.ndim in {2, 3}
87
88
89
90


def to_tensor(pic):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.
91
    This function does not support torchscript.
92

93
    See :class:`~torchvision.transforms.ToTensor` for more details.
94
95
96
97
98
99
100

    Args:
        pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
vfdev's avatar
vfdev committed
101
    if not(F_pil._is_pil_image(pic) or _is_numpy(pic)):
102
103
        raise TypeError('pic should be PIL Image or ndarray. Got {}'.format(type(pic)))

104
105
106
    if _is_numpy(pic) and not _is_numpy_image(pic):
        raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

107
108
    default_float_dtype = torch.get_default_dtype()

109
110
    if isinstance(pic, np.ndarray):
        # handle numpy array
surgan12's avatar
surgan12 committed
111
112
113
        if pic.ndim == 2:
            pic = pic[:, :, None]

114
        img = torch.from_numpy(pic.transpose((2, 0, 1))).contiguous()
115
        # backward compatibility
116
        if isinstance(img, torch.ByteTensor):
117
            return img.to(dtype=default_float_dtype).div(255)
118
119
        else:
            return img
120
121

    if accimage is not None and isinstance(pic, accimage.Image):
122
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.float32)
123
        pic.copyto(nppic)
124
        return torch.from_numpy(nppic).to(dtype=default_float_dtype)
125
126
127
128
129
130

    # handle PIL Image
    if pic.mode == 'I':
        img = torch.from_numpy(np.array(pic, np.int32, copy=False))
    elif pic.mode == 'I;16':
        img = torch.from_numpy(np.array(pic, np.int16, copy=False))
131
132
    elif pic.mode == 'F':
        img = torch.from_numpy(np.array(pic, np.float32, copy=False))
133
134
    elif pic.mode == '1':
        img = 255 * torch.from_numpy(np.array(pic, np.uint8, copy=False))
135
136
    else:
        img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))
137
138

    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
139
    # put it from HWC to CHW format
140
    img = img.permute((2, 0, 1)).contiguous()
141
    if isinstance(img, torch.ByteTensor):
142
        return img.to(dtype=default_float_dtype).div(255)
143
144
145
146
    else:
        return img


147
148
def pil_to_tensor(pic):
    """Convert a ``PIL Image`` to a tensor of the same type.
149
    This function does not support torchscript.
150

vfdev's avatar
vfdev committed
151
    See :class:`~torchvision.transforms.PILToTensor` for more details.
152
153
154
155
156
157
158

    Args:
        pic (PIL Image): Image to be converted to tensor.

    Returns:
        Tensor: Converted image.
    """
159
    if not F_pil._is_pil_image(pic):
160
161
162
        raise TypeError('pic should be PIL Image. Got {}'.format(type(pic)))

    if accimage is not None and isinstance(pic, accimage.Image):
163
164
        # accimage format is always uint8 internally, so always return uint8 here
        nppic = np.zeros([pic.channels, pic.height, pic.width], dtype=np.uint8)
165
166
167
168
169
170
171
172
173
174
175
        pic.copyto(nppic)
        return torch.as_tensor(nppic)

    # handle PIL Image
    img = torch.as_tensor(np.asarray(pic))
    img = img.view(pic.size[1], pic.size[0], len(pic.getbands()))
    # put it from HWC to CHW format
    img = img.permute((2, 0, 1))
    return img


176
177
def convert_image_dtype(image: torch.Tensor, dtype: torch.dtype = torch.float) -> torch.Tensor:
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly
178
    This function does not support PIL Image.
179
180
181
182
183
184

    Args:
        image (torch.Tensor): Image to be converted
        dtype (torch.dtype): Desired data type of the output

    Returns:
vfdev's avatar
vfdev committed
185
        Tensor: Converted image
186
187
188
189
190
191
192
193
194
195
196
197

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """
198
199
200
201
    if not isinstance(image, torch.Tensor):
        raise TypeError('Input img should be Tensor Image')

    return F_t.convert_image_dtype(image, dtype)
202
203


204
def to_pil_image(pic, mode=None):
205
    """Convert a tensor or an ndarray to PIL Image. This function does not support torchscript.
206

207
    See :class:`~torchvision.transforms.ToPILImage` for more details.
208
209
210
211
212

    Args:
        pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).

213
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
214
215
216
217

    Returns:
        PIL Image: Image converted to PIL Image.
    """
Varun Agrawal's avatar
Varun Agrawal committed
218
    if not(isinstance(pic, torch.Tensor) or isinstance(pic, np.ndarray)):
219
220
        raise TypeError('pic should be Tensor or ndarray. Got {}.'.format(type(pic)))

Varun Agrawal's avatar
Varun Agrawal committed
221
222
223
224
225
226
    elif isinstance(pic, torch.Tensor):
        if pic.ndimension() not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndimension()))

        elif pic.ndimension() == 2:
            # if 2D image, add channel dimension (CHW)
Surgan Jandial's avatar
Surgan Jandial committed
227
            pic = pic.unsqueeze(0)
Varun Agrawal's avatar
Varun Agrawal committed
228

229
230
231
232
        # check number of channels
        if pic.shape[-3] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-3]))

Varun Agrawal's avatar
Varun Agrawal committed
233
234
235
236
237
238
239
240
    elif isinstance(pic, np.ndarray):
        if pic.ndim not in {2, 3}:
            raise ValueError('pic should be 2/3 dimensional. Got {} dimensions.'.format(pic.ndim))

        elif pic.ndim == 2:
            # if 2D image, add channel dimension (HWC)
            pic = np.expand_dims(pic, 2)

241
242
243
244
        # check number of channels
        if pic.shape[-1] > 4:
            raise ValueError('pic should not have > 4 channels. Got {} channels.'.format(pic.shape[-1]))

245
    npimg = pic
Varun Agrawal's avatar
Varun Agrawal committed
246
    if isinstance(pic, torch.Tensor):
247
248
249
        if pic.is_floating_point() and mode != 'F':
            pic = pic.mul(255).byte()
        npimg = np.transpose(pic.cpu().numpy(), (1, 2, 0))
250
251
252
253
254
255
256
257
258
259

    if not isinstance(npimg, np.ndarray):
        raise TypeError('Input pic must be a torch.Tensor or NumPy ndarray, ' +
                        'not {}'.format(type(npimg)))

    if npimg.shape[2] == 1:
        expected_mode = None
        npimg = npimg[:, :, 0]
        if npimg.dtype == np.uint8:
            expected_mode = 'L'
vfdev's avatar
vfdev committed
260
        elif npimg.dtype == np.int16:
261
            expected_mode = 'I;16'
vfdev's avatar
vfdev committed
262
        elif npimg.dtype == np.int32:
263
264
265
266
267
268
269
270
            expected_mode = 'I'
        elif npimg.dtype == np.float32:
            expected_mode = 'F'
        if mode is not None and mode != expected_mode:
            raise ValueError("Incorrect mode ({}) supplied for input type {}. Should be {}"
                             .format(mode, np.dtype, expected_mode))
        mode = expected_mode

surgan12's avatar
surgan12 committed
271
272
273
274
275
276
277
278
    elif npimg.shape[2] == 2:
        permitted_2_channel_modes = ['LA']
        if mode is not None and mode not in permitted_2_channel_modes:
            raise ValueError("Only modes {} are supported for 2D inputs".format(permitted_2_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'LA'

279
    elif npimg.shape[2] == 4:
surgan12's avatar
surgan12 committed
280
        permitted_4_channel_modes = ['RGBA', 'CMYK', 'RGBX']
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        if mode is not None and mode not in permitted_4_channel_modes:
            raise ValueError("Only modes {} are supported for 4D inputs".format(permitted_4_channel_modes))

        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGBA'
    else:
        permitted_3_channel_modes = ['RGB', 'YCbCr', 'HSV']
        if mode is not None and mode not in permitted_3_channel_modes:
            raise ValueError("Only modes {} are supported for 3D inputs".format(permitted_3_channel_modes))
        if mode is None and npimg.dtype == np.uint8:
            mode = 'RGB'

    if mode is None:
        raise TypeError('Input type {} is not supported'.format(npimg.dtype))

    return Image.fromarray(npimg, mode=mode)


299
def normalize(tensor: Tensor, mean: List[float], std: List[float], inplace: bool = False) -> Tensor:
300
    """Normalize a tensor image with mean and standard deviation.
301
    This transform does not support PIL Image.
302

303
    .. note::
surgan12's avatar
surgan12 committed
304
        This transform acts out of place by default, i.e., it does not mutates the input tensor.
305

306
    See :class:`~torchvision.transforms.Normalize` for more details.
307
308

    Args:
309
        tensor (Tensor): Tensor image of size (C, H, W) or (B, C, H, W) to be normalized.
310
        mean (sequence): Sequence of means for each channel.
311
        std (sequence): Sequence of standard deviations for each channel.
312
        inplace(bool,optional): Bool to make this operation inplace.
313
314
315
316

    Returns:
        Tensor: Normalized Tensor image.
    """
317
318
    if not isinstance(tensor, torch.Tensor):
        raise TypeError('Input tensor should be a torch tensor. Got {}.'.format(type(tensor)))
319

320
321
    if tensor.ndim < 3:
        raise ValueError('Expected tensor to be a tensor image of size (..., C, H, W). Got tensor.size() = '
322
                         '{}.'.format(tensor.size()))
323

surgan12's avatar
surgan12 committed
324
325
326
    if not inplace:
        tensor = tensor.clone()

327
328
329
    dtype = tensor.dtype
    mean = torch.as_tensor(mean, dtype=dtype, device=tensor.device)
    std = torch.as_tensor(std, dtype=dtype, device=tensor.device)
330
331
    if (std == 0).any():
        raise ValueError('std evaluated to zero after conversion to {}, leading to division by zero.'.format(dtype))
332
    if mean.ndim == 1:
333
        mean = mean.view(-1, 1, 1)
334
    if std.ndim == 1:
335
        std = std.view(-1, 1, 1)
336
    tensor.sub_(mean).div_(std)
337
    return tensor
338
339


340
341
def resize(img: Tensor, size: List[int], interpolation: InterpolationMode = InterpolationMode.BILINEAR,
           max_size: Optional[int] = None) -> Tensor:
vfdev's avatar
vfdev committed
342
    r"""Resize the input image to the given size.
343
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
344
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
345
346

    Args:
vfdev's avatar
vfdev committed
347
        img (PIL Image or Tensor): Image to be resized.
348
349
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), the output size will be matched to this. If size is an int,
Vitaliy Chiley's avatar
Vitaliy Chiley committed
350
            the smaller edge of the image will be matched to this number maintaining
351
            the aspect ratio. i.e, if height > width, then image will be rescaled to
vfdev's avatar
vfdev committed
352
            :math:`\left(\text{size} \times \frac{\text{height}}{\text{width}}, \text{size}\right)`.
353
            In torchscript mode size as single int is not supported, use a sequence of length 1: ``[size, ]``.
354
355
356
357
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
358
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
359
360
361
362
363
364
365
366
        max_size (int, optional): The maximum allowed for the longer edge of
            the resized image: if the longer edge of the image is greater
            than ``max_size`` after being resized according to ``size``, then
            the image is resized again so that the longer edge is equal to
            ``max_size``. As a result, ```size` might be overruled, i.e the
            smaller edge may be shorter than ``size``. This is only supported
            if ``size`` is an int (or a sequence of length 1 in torchscript
            mode).
367
368

    Returns:
vfdev's avatar
vfdev committed
369
        PIL Image or Tensor: Resized image.
370
    """
371
372
373
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
374
375
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
376
377
378
        )
        interpolation = _interpolation_modes_from_int(interpolation)

379
380
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
381

vfdev's avatar
vfdev committed
382
    if not isinstance(img, torch.Tensor):
383
        pil_interpolation = pil_modes_mapping[interpolation]
384
        return F_pil.resize(img, size=size, interpolation=pil_interpolation, max_size=max_size)
vfdev's avatar
vfdev committed
385

386
    return F_t.resize(img, size=size, interpolation=interpolation.value, max_size=max_size)
387
388
389
390
391
392
393
394


def scale(*args, **kwargs):
    warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                  "please use transforms.Resize instead.")
    return resize(*args, **kwargs)


395
396
def pad(img: Tensor, padding: List[int], fill: int = 0, padding_mode: str = "constant") -> Tensor:
    r"""Pad the given image on all sides with the given "pad" value.
397
    If the image is torch Tensor, it is expected
398
399
400
    to have [..., H, W] shape, where ... means at most 2 leading dimensions for mode reflect and symmetric,
    at most 3 leading dimensions for mode edge,
    and an arbitrary number of leading dimensions for mode constant
401
402

    Args:
403
        img (PIL Image or Tensor): Image to be padded.
404
405
406
        padding (int or sequence): Padding on each border. If a single int is provided this
            is used to pad all borders. If sequence of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a sequence of length 4 is provided
407
            this is the padding for the left, top, right and bottom borders respectively.
408
409
410
411
412
413
            In torchscript mode padding as single int is not supported, use a sequence of length 1: ``[padding, ]``.
        fill (number or str or tuple): Pixel fill value for constant fill. Default is 0.
            If a tuple of length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant.
            Only number is supported for torch Tensor.
            Only int or str or tuple value is supported for PIL Image.
414
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.
415
416
417

            - constant: pads with a constant value, this value is specified with fill

418
419
            - edge: pads with the last value on the edge of the image,
                    if input a 5D torch Tensor, the last 3 dimensions will be padded instead of the last 2
420
421
422
423
424
425
426
427
428
429

            - reflect: pads with reflection of image (without repeating the last value on the edge)

                       padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                       will result in [3, 2, 1, 2, 3, 4, 3, 2]

            - symmetric: pads with reflection of image (repeating the last value on the edge)

                         padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                         will result in [2, 1, 1, 2, 3, 4, 4, 3]
430
431

    Returns:
432
        PIL Image or Tensor: Padded image.
433
    """
434
435
    if not isinstance(img, torch.Tensor):
        return F_pil.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
436

437
    return F_t.pad(img, padding=padding, fill=fill, padding_mode=padding_mode)
438
439


vfdev's avatar
vfdev committed
440
441
def crop(img: Tensor, top: int, left: int, height: int, width: int) -> Tensor:
    """Crop the given image at specified location and output size.
442
443
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
444

445
    Args:
vfdev's avatar
vfdev committed
446
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
447
448
449
450
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
451

452
    Returns:
vfdev's avatar
vfdev committed
453
        PIL Image or Tensor: Cropped image.
454
455
    """

vfdev's avatar
vfdev committed
456
457
    if not isinstance(img, torch.Tensor):
        return F_pil.crop(img, top, left, height, width)
458

vfdev's avatar
vfdev committed
459
    return F_t.crop(img, top, left, height, width)
460

vfdev's avatar
vfdev committed
461
462
463

def center_crop(img: Tensor, output_size: List[int]) -> Tensor:
    """Crops the given image at the center.
464
    If the image is torch Tensor, it is expected
465
466
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
    If image size is smaller than output size along any edge, image is padded with 0 and then center cropped.
467

468
    Args:
vfdev's avatar
vfdev committed
469
        img (PIL Image or Tensor): Image to be cropped.
470
        output_size (sequence or int): (height, width) of the crop box. If int or sequence with single int,
vfdev's avatar
vfdev committed
471
472
            it is used for both directions.

473
    Returns:
vfdev's avatar
vfdev committed
474
        PIL Image or Tensor: Cropped image.
475
    """
476
477
    if isinstance(output_size, numbers.Number):
        output_size = (int(output_size), int(output_size))
vfdev's avatar
vfdev committed
478
479
480
481
    elif isinstance(output_size, (tuple, list)) and len(output_size) == 1:
        output_size = (output_size[0], output_size[0])

    image_width, image_height = _get_image_size(img)
482
    crop_height, crop_width = output_size
vfdev's avatar
vfdev committed
483

484
485
486
487
488
489
490
491
492
493
494
495
    if crop_width > image_width or crop_height > image_height:
        padding_ltrb = [
            (crop_width - image_width) // 2 if crop_width > image_width else 0,
            (crop_height - image_height) // 2 if crop_height > image_height else 0,
            (crop_width - image_width + 1) // 2 if crop_width > image_width else 0,
            (crop_height - image_height + 1) // 2 if crop_height > image_height else 0,
        ]
        img = pad(img, padding_ltrb, fill=0)  # PIL uses fill value 0
        image_width, image_height = _get_image_size(img)
        if crop_width == image_width and crop_height == image_height:
            return img

496
497
    crop_top = int(round((image_height - crop_height) / 2.))
    crop_left = int(round((image_width - crop_width) / 2.))
498
    return crop(img, crop_top, crop_left, crop_height, crop_width)
499
500


501
def resized_crop(
502
        img: Tensor, top: int, left: int, height: int, width: int, size: List[int],
503
        interpolation: InterpolationMode = InterpolationMode.BILINEAR
504
505
) -> Tensor:
    """Crop the given image and resize it to desired size.
506
    If the image is torch Tensor, it is expected
507
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
508

509
    Notably used in :class:`~torchvision.transforms.RandomResizedCrop`.
510
511

    Args:
512
        img (PIL Image or Tensor): Image to be cropped. (0,0) denotes the top left corner of the image.
513
514
515
516
        top (int): Vertical component of the top left corner of the crop box.
        left (int): Horizontal component of the top left corner of the crop box.
        height (int): Height of the crop box.
        width (int): Width of the crop box.
517
        size (sequence or int): Desired output size. Same semantics as ``resize``.
518
519
520
521
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`.
            Default is ``InterpolationMode.BILINEAR``. If input is Tensor, only ``InterpolationMode.NEAREST``,
            ``InterpolationMode.BILINEAR`` and ``InterpolationMode.BICUBIC`` are supported.
522
523
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.

524
    Returns:
525
        PIL Image or Tensor: Cropped image.
526
    """
527
    img = crop(img, top, left, height, width)
528
529
530
531
    img = resize(img, size, interpolation)
    return img


532
def hflip(img: Tensor) -> Tensor:
533
    """Horizontally flip the given image.
534
535

    Args:
vfdev's avatar
vfdev committed
536
        img (PIL Image or Tensor): Image to be flipped. If img
537
            is a Tensor, it is expected to be in [..., H, W] format,
538
            where ... means it can have an arbitrary number of leading
539
            dimensions.
540
541

    Returns:
vfdev's avatar
vfdev committed
542
        PIL Image or Tensor:  Horizontally flipped image.
543
    """
544
545
    if not isinstance(img, torch.Tensor):
        return F_pil.hflip(img)
546

547
    return F_t.hflip(img)
548
549


550
551
552
def _get_perspective_coeffs(
        startpoints: List[List[int]], endpoints: List[List[int]]
) -> List[float]:
553
554
    """Helper function to get the coefficients (a, b, c, d, e, f, g, h) for the perspective transforms.

Vitaliy Chiley's avatar
Vitaliy Chiley committed
555
    In Perspective Transform each pixel (x, y) in the original image gets transformed as,
556
557
558
     (x, y) -> ( (ax + by + c) / (gx + hy + 1), (dx + ey + f) / (gx + hy + 1) )

    Args:
559
560
561
562
563
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.

564
565
566
    Returns:
        octuple (a, b, c, d, e, f, g, h) for transforming each pixel.
    """
567
568
569
570
571
    a_matrix = torch.zeros(2 * len(startpoints), 8, dtype=torch.float)

    for i, (p1, p2) in enumerate(zip(endpoints, startpoints)):
        a_matrix[2 * i, :] = torch.tensor([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
        a_matrix[2 * i + 1, :] = torch.tensor([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
572

573
574
    b_matrix = torch.tensor(startpoints, dtype=torch.float).view(8)
    res = torch.lstsq(b_matrix, a_matrix)[0]
575

576
577
    output: List[float] = res.squeeze(1).tolist()
    return output
578
579


580
581
582
583
def perspective(
        img: Tensor,
        startpoints: List[List[int]],
        endpoints: List[List[int]],
584
        interpolation: InterpolationMode = InterpolationMode.BILINEAR,
585
        fill: Optional[List[float]] = None
586
587
) -> Tensor:
    """Perform perspective transform of the given image.
588
    If the image is torch Tensor, it is expected
589
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
590
591

    Args:
592
593
594
595
596
        img (PIL Image or Tensor): Image to be transformed.
        startpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the original image.
        endpoints (list of list of ints): List containing four lists of two integers corresponding to four corners
            ``[top-left, top-right, bottom-right, bottom-left]`` of the transformed image.
597
598
599
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.BILINEAR``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
600
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
601
602
603
604
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
605
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
606

607
    Returns:
608
        PIL Image or Tensor: transformed Image.
609
    """
610

611
    coeffs = _get_perspective_coeffs(startpoints, endpoints)
612

613
614
615
    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
616
617
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
618
619
620
        )
        interpolation = _interpolation_modes_from_int(interpolation)

621
622
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
623

624
    if not isinstance(img, torch.Tensor):
625
626
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.perspective(img, coeffs, interpolation=pil_interpolation, fill=fill)
627

628
    return F_t.perspective(img, coeffs, interpolation=interpolation.value, fill=fill)
629
630


631
def vflip(img: Tensor) -> Tensor:
632
    """Vertically flip the given image.
633
634

    Args:
vfdev's avatar
vfdev committed
635
        img (PIL Image or Tensor): Image to be flipped. If img
636
            is a Tensor, it is expected to be in [..., H, W] format,
637
            where ... means it can have an arbitrary number of leading
638
            dimensions.
639
640

    Returns:
641
        PIL Image or Tensor:  Vertically flipped image.
642
    """
643
644
    if not isinstance(img, torch.Tensor):
        return F_pil.vflip(img)
645

646
    return F_t.vflip(img)
647
648


vfdev's avatar
vfdev committed
649
650
def five_crop(img: Tensor, size: List[int]) -> Tuple[Tensor, Tensor, Tensor, Tensor, Tensor]:
    """Crop the given image into four corners and the central crop.
651
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
652
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
653
654
655
656
657
658

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

    Args:
vfdev's avatar
vfdev committed
659
660
661
        img (PIL Image or Tensor): Image to be cropped.
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
662
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
663

664
    Returns:
665
666
       tuple: tuple (tl, tr, bl, br, center)
                Corresponding top left, top right, bottom left, bottom right and center crop.
667
668
669
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
670
671
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])
672

vfdev's avatar
vfdev committed
673
674
675
676
    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")

    image_width, image_height = _get_image_size(img)
677
678
679
680
681
    crop_height, crop_width = size
    if crop_width > image_width or crop_height > image_height:
        msg = "Requested crop size {} is bigger than input size {}"
        raise ValueError(msg.format(size, (image_height, image_width)))

vfdev's avatar
vfdev committed
682
683
684
685
686
687
688
689
    tl = crop(img, 0, 0, crop_height, crop_width)
    tr = crop(img, 0, image_width - crop_width, crop_height, crop_width)
    bl = crop(img, image_height - crop_height, 0, crop_height, crop_width)
    br = crop(img, image_height - crop_height, image_width - crop_width, crop_height, crop_width)

    center = center_crop(img, [crop_height, crop_width])

    return tl, tr, bl, br, center
690
691


vfdev's avatar
vfdev committed
692
693
694
def ten_crop(img: Tensor, size: List[int], vertical_flip: bool = False) -> List[Tensor]:
    """Generate ten cropped images from the given image.
    Crop the given image into four corners and the central crop plus the
695
    flipped version of these (horizontal flipping is used by default).
696
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
697
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
698
699
700
701
702

    .. Note::
        This transform returns a tuple of images and there may be a
        mismatch in the number of inputs and targets your ``Dataset`` returns.

703
    Args:
vfdev's avatar
vfdev committed
704
        img (PIL Image or Tensor): Image to be cropped.
705
        size (sequence or int): Desired output size of the crop. If size is an
706
            int instead of sequence like (h, w), a square crop (size, size) is
707
            made. If provided a sequence of length 1, it will be interpreted as (size[0], size[0]).
708
        vertical_flip (bool): Use vertical flipping instead of horizontal
709
710

    Returns:
711
712
713
        tuple: tuple (tl, tr, bl, br, center, tl_flip, tr_flip, bl_flip, br_flip, center_flip)
            Corresponding top left, top right, bottom left, bottom right and
            center crop and same for the flipped image.
714
715
716
    """
    if isinstance(size, numbers.Number):
        size = (int(size), int(size))
vfdev's avatar
vfdev committed
717
718
719
720
721
    elif isinstance(size, (tuple, list)) and len(size) == 1:
        size = (size[0], size[0])

    if len(size) != 2:
        raise ValueError("Please provide only two dimensions (h, w) for size.")
722
723
724
725
726
727
728
729
730
731
732
733

    first_five = five_crop(img, size)

    if vertical_flip:
        img = vflip(img)
    else:
        img = hflip(img)

    second_five = five_crop(img, size)
    return first_five + second_five


734
def adjust_brightness(img: Tensor, brightness_factor: float) -> Tensor:
735
    """Adjust brightness of an image.
736
737

    Args:
vfdev's avatar
vfdev committed
738
        img (PIL Image or Tensor): Image to be adjusted.
739
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
740
        where ... means it can have an arbitrary number of leading dimensions.
741
742
743
744
745
        brightness_factor (float):  How much to adjust the brightness. Can be
            any non negative number. 0 gives a black image, 1 gives the
            original image while 2 increases the brightness by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
746
        PIL Image or Tensor: Brightness adjusted image.
747
    """
748
749
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_brightness(img, brightness_factor)
750

751
    return F_t.adjust_brightness(img, brightness_factor)
752
753


754
def adjust_contrast(img: Tensor, contrast_factor: float) -> Tensor:
755
    """Adjust contrast of an image.
756
757

    Args:
vfdev's avatar
vfdev committed
758
        img (PIL Image or Tensor): Image to be adjusted.
759
760
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
761
762
763
764
765
        contrast_factor (float): How much to adjust the contrast. Can be any
            non negative number. 0 gives a solid gray image, 1 gives the
            original image while 2 increases the contrast by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
766
        PIL Image or Tensor: Contrast adjusted image.
767
    """
768
769
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_contrast(img, contrast_factor)
770

771
    return F_t.adjust_contrast(img, contrast_factor)
772
773


774
def adjust_saturation(img: Tensor, saturation_factor: float) -> Tensor:
775
776
777
    """Adjust color saturation of an image.

    Args:
vfdev's avatar
vfdev committed
778
        img (PIL Image or Tensor): Image to be adjusted.
779
780
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
781
782
783
784
785
        saturation_factor (float):  How much to adjust the saturation. 0 will
            give a black and white image, 1 will give the original image while
            2 will enhance the saturation by a factor of 2.

    Returns:
vfdev's avatar
vfdev committed
786
        PIL Image or Tensor: Saturation adjusted image.
787
    """
788
789
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_saturation(img, saturation_factor)
790

791
    return F_t.adjust_saturation(img, saturation_factor)
792
793


794
def adjust_hue(img: Tensor, hue_factor: float) -> Tensor:
795
796
797
798
799
800
801
802
803
    """Adjust hue of an image.

    The image hue is adjusted by converting the image to HSV and
    cyclically shifting the intensities in the hue channel (H).
    The image is then converted back to original image mode.

    `hue_factor` is the amount of shift in H channel and must be in the
    interval `[-0.5, 0.5]`.

804
805
806
    See `Hue`_ for more details.

    .. _Hue: https://en.wikipedia.org/wiki/Hue
807
808

    Args:
809
        img (PIL Image or Tensor): Image to be adjusted.
810
811
812
        If img is torch Tensor, it is expected to be in [..., 3, H, W] format,
        where ... means it can have an arbitrary number of leading dimensions.
        If img is PIL Image mode "1", "L", "I", "F" and modes with transparency (alpha channel) are not supported.
813
814
815
816
817
818
819
        hue_factor (float):  How much to shift the hue channel. Should be in
            [-0.5, 0.5]. 0.5 and -0.5 give complete reversal of hue channel in
            HSV space in positive and negative direction respectively.
            0 means no shift. Therefore, both -0.5 and 0.5 will give an image
            with complementary colors while 0 gives the original image.

    Returns:
820
        PIL Image or Tensor: Hue adjusted image.
821
    """
822
823
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_hue(img, hue_factor)
824

825
    return F_t.adjust_hue(img, hue_factor)
826
827


828
def adjust_gamma(img: Tensor, gamma: float, gain: float = 1) -> Tensor:
829
    r"""Perform gamma correction on an image.
830
831
832
833

    Also known as Power Law Transform. Intensities in RGB mode are adjusted
    based on the following equation:

834
835
836
837
    .. math::
        I_{\text{out}} = 255 \times \text{gain} \times \left(\frac{I_{\text{in}}}{255}\right)^{\gamma}

    See `Gamma Correction`_ for more details.
838

839
    .. _Gamma Correction: https://en.wikipedia.org/wiki/Gamma_correction
840
841

    Args:
842
        img (PIL Image or Tensor): PIL Image to be adjusted.
843
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
844
        where ... means it can have an arbitrary number of leading dimensions.
845
        If img is PIL Image, modes with transparency (alpha channel) are not supported.
846
847
848
        gamma (float): Non negative real number, same as :math:`\gamma` in the equation.
            gamma larger than 1 make the shadows darker,
            while gamma smaller than 1 make dark regions lighter.
849
        gain (float): The constant multiplier.
850
851
    Returns:
        PIL Image or Tensor: Gamma correction adjusted image.
852
    """
853
854
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_gamma(img, gamma, gain)
855

856
    return F_t.adjust_gamma(img, gamma, gain)
857
858


vfdev's avatar
vfdev committed
859
def _get_inverse_affine_matrix(
vfdev's avatar
vfdev committed
860
        center: List[float], angle: float, translate: List[float], scale: float, shear: List[float]
vfdev's avatar
vfdev committed
861
) -> List[float]:
862
863
864
865
866
867
868
    # Helper method to compute inverse matrix for affine transformation

    # As it is explained in PIL.Image.rotate
    # We need compute INVERSE of affine transformation matrix: M = T * C * RSS * C^-1
    # where T is translation matrix: [1, 0, tx | 0, 1, ty | 0, 0, 1]
    #       C is translation matrix to keep center: [1, 0, cx | 0, 1, cy | 0, 0, 1]
    #       RSS is rotation with scale and shear matrix
869
870
871
872
873
874
875
876
877
878
    #       RSS(a, s, (sx, sy)) =
    #       = R(a) * S(s) * SHy(sy) * SHx(sx)
    #       = [ s*cos(a - sy)/cos(sy), s*(-cos(a - sy)*tan(x)/cos(y) - sin(a)), 0 ]
    #         [ s*sin(a + sy)/cos(sy), s*(-sin(a - sy)*tan(x)/cos(y) + cos(a)), 0 ]
    #         [ 0                    , 0                                      , 1 ]
    #
    # where R is a rotation matrix, S is a scaling matrix, and SHx and SHy are the shears:
    # SHx(s) = [1, -tan(s)] and SHy(s) = [1      , 0]
    #          [0, 1      ]              [-tan(s), 1]
    #
879
880
    # Thus, the inverse is M^-1 = C * RSS^-1 * C^-1 * T^-1

881
882
883
884
885
886
887
    rot = math.radians(angle)
    sx, sy = [math.radians(s) for s in shear]

    cx, cy = center
    tx, ty = translate

    # RSS without scaling
vfdev's avatar
vfdev committed
888
889
890
891
    a = math.cos(rot - sy) / math.cos(sy)
    b = -math.cos(rot - sy) * math.tan(sx) / math.cos(sy) - math.sin(rot)
    c = math.sin(rot - sy) / math.cos(sy)
    d = -math.sin(rot - sy) * math.tan(sx) / math.cos(sy) + math.cos(rot)
892
893

    # Inverted rotation matrix with scale and shear
894
    # det([[a, b], [c, d]]) == 1, since det(rotation) = 1 and det(shear) = 1
vfdev's avatar
vfdev committed
895
896
    matrix = [d, -b, 0.0, -c, a, 0.0]
    matrix = [x / scale for x in matrix]
897
898

    # Apply inverse of translation and of center translation: RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
899
900
    matrix[2] += matrix[0] * (-cx - tx) + matrix[1] * (-cy - ty)
    matrix[5] += matrix[3] * (-cx - tx) + matrix[4] * (-cy - ty)
901
902

    # Apply center translation: C * RSS^-1 * C^-1 * T^-1
vfdev's avatar
vfdev committed
903
904
    matrix[2] += cx
    matrix[5] += cy
905

vfdev's avatar
vfdev committed
906
    return matrix
907

vfdev's avatar
vfdev committed
908

vfdev's avatar
vfdev committed
909
def rotate(
910
        img: Tensor, angle: float, interpolation: InterpolationMode = InterpolationMode.NEAREST,
911
        expand: bool = False, center: Optional[List[int]] = None,
912
        fill: Optional[List[float]] = None, resample: Optional[int] = None
vfdev's avatar
vfdev committed
913
914
) -> Tensor:
    """Rotate the image by angle.
915
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
916
917
918
919
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.

    Args:
        img (PIL Image or Tensor): image to be rotated.
920
        angle (number): rotation angle value in degrees, counter-clockwise.
921
922
923
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
924
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
vfdev's avatar
vfdev committed
925
926
927
928
        expand (bool, optional): Optional expansion flag.
            If true, expands the output image to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
929
        center (sequence, optional): Optional center of rotation. Origin is the upper left corner.
vfdev's avatar
vfdev committed
930
            Default is the center of the image.
931
932
933
934
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
935
            If input is PIL Image, the options is only available for ``Pillow>=5.2.0``.
vfdev's avatar
vfdev committed
936
937
938
939
940
941
942

    Returns:
        PIL Image or Tensor: Rotated image.

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

    """
943
944
945
946
947
948
949
950
951
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
952
953
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
954
955
956
        )
        interpolation = _interpolation_modes_from_int(interpolation)

vfdev's avatar
vfdev committed
957
958
959
960
961
962
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if center is not None and not isinstance(center, (list, tuple)):
        raise TypeError("Argument center should be a sequence")

963
964
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
965

vfdev's avatar
vfdev committed
966
    if not isinstance(img, torch.Tensor):
967
968
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.rotate(img, angle=angle, interpolation=pil_interpolation, expand=expand, center=center, fill=fill)
vfdev's avatar
vfdev committed
969
970
971
972

    center_f = [0.0, 0.0]
    if center is not None:
        img_size = _get_image_size(img)
973
974
975
        # Center values should be in pixel coordinates but translated such that (0, 0) corresponds to image center.
        center_f = [1.0 * (c - s * 0.5) for c, s in zip(center, img_size)]

vfdev's avatar
vfdev committed
976
977
978
    # due to current incoherence of rotation angle direction between affine and rotate implementations
    # we need to set -angle.
    matrix = _get_inverse_affine_matrix(center_f, -angle, [0.0, 0.0], 1.0, [0.0, 0.0])
979
    return F_t.rotate(img, matrix=matrix, interpolation=interpolation.value, expand=expand, fill=fill)
vfdev's avatar
vfdev committed
980
981


vfdev's avatar
vfdev committed
982
983
def affine(
        img: Tensor, angle: float, translate: List[int], scale: float, shear: List[float],
984
985
        interpolation: InterpolationMode = InterpolationMode.NEAREST, fill: Optional[List[float]] = None,
        resample: Optional[int] = None, fillcolor: Optional[List[float]] = None
vfdev's avatar
vfdev committed
986
987
) -> Tensor:
    """Apply affine transformation on the image keeping image center invariant.
988
    If the image is torch Tensor, it is expected
vfdev's avatar
vfdev committed
989
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
990
991

    Args:
vfdev's avatar
vfdev committed
992
        img (PIL Image or Tensor): image to transform.
993
994
        angle (number): rotation angle in degrees between -180 and 180, clockwise direction.
        translate (sequence of integers): horizontal and vertical translations (post-rotation translation)
995
        scale (float): overall scale
996
997
        shear (float or sequence): shear angle value in degrees between -180 to 180, clockwise direction.
            If a sequence is specified, the first value corresponds to a shear parallel to the x axis, while
vfdev's avatar
vfdev committed
998
            the second value corresponds to a shear parallel to the y axis.
999
1000
1001
        interpolation (InterpolationMode): Desired interpolation enum defined by
            :class:`torchvision.transforms.InterpolationMode`. Default is ``InterpolationMode.NEAREST``.
            If input is Tensor, only ``InterpolationMode.NEAREST``, ``InterpolationMode.BILINEAR`` are supported.
1002
            For backward compatibility integer values (e.g. ``PIL.Image.NEAREST``) are still acceptable.
1003
1004
1005
1006
        fill (sequence or number, optional): Pixel fill value for the area outside the transformed
            image. If given a number, the value is used for all bands respectively.
            In torchscript mode single int/float value is not supported, please use a sequence
            of length 1: ``[value, ]``.
1007
1008
            If input is PIL Image, the options is only available for ``Pillow>=5.0.0``.
        fillcolor (sequence, int, float): deprecated argument and will be removed since v0.10.0.
1009
            Please use the ``fill`` parameter instead.
1010
        resample (int, optional): deprecated argument and will be removed since v0.10.0.
1011
            Please use the ``interpolation`` parameter instead.
vfdev's avatar
vfdev committed
1012
1013
1014

    Returns:
        PIL Image or Tensor: Transformed image.
1015
    """
1016
1017
1018
1019
1020
1021
1022
1023
1024
    if resample is not None:
        warnings.warn(
            "Argument resample is deprecated and will be removed since v0.10.0. Please, use interpolation instead"
        )
        interpolation = _interpolation_modes_from_int(resample)

    # Backward compatibility with integer value
    if isinstance(interpolation, int):
        warnings.warn(
1025
1026
            "Argument interpolation should be of type InterpolationMode instead of int. "
            "Please, use InterpolationMode enum."
1027
1028
1029
1030
1031
1032
1033
1034
1035
        )
        interpolation = _interpolation_modes_from_int(interpolation)

    if fillcolor is not None:
        warnings.warn(
            "Argument fillcolor is deprecated and will be removed since v0.10.0. Please, use fill instead"
        )
        fill = fillcolor

vfdev's avatar
vfdev committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
    if not isinstance(angle, (int, float)):
        raise TypeError("Argument angle should be int or float")

    if not isinstance(translate, (list, tuple)):
        raise TypeError("Argument translate should be a sequence")

    if len(translate) != 2:
        raise ValueError("Argument translate should be a sequence of length 2")

    if scale <= 0.0:
        raise ValueError("Argument scale should be positive")

    if not isinstance(shear, (numbers.Number, (list, tuple))):
        raise TypeError("Shear should be either a single value or a sequence of two values")

1051
1052
    if not isinstance(interpolation, InterpolationMode):
        raise TypeError("Argument interpolation should be a InterpolationMode")
1053

vfdev's avatar
vfdev committed
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
    if isinstance(angle, int):
        angle = float(angle)

    if isinstance(translate, tuple):
        translate = list(translate)

    if isinstance(shear, numbers.Number):
        shear = [shear, 0.0]

    if isinstance(shear, tuple):
        shear = list(shear)

    if len(shear) == 1:
        shear = [shear[0], shear[0]]

    if len(shear) != 2:
        raise ValueError("Shear should be a sequence containing two values. Got {}".format(shear))

    img_size = _get_image_size(img)
    if not isinstance(img, torch.Tensor):
        # center = (img_size[0] * 0.5 + 0.5, img_size[1] * 0.5 + 0.5)
        # it is visually better to estimate the center without 0.5 offset
        # otherwise image rotated by 90 degrees is shifted vs output image of torch.rot90 or F_t.affine
        center = [img_size[0] * 0.5, img_size[1] * 0.5]
        matrix = _get_inverse_affine_matrix(center, angle, translate, scale, shear)
1079
1080
        pil_interpolation = pil_modes_mapping[interpolation]
        return F_pil.affine(img, matrix=matrix, interpolation=pil_interpolation, fill=fill)
1081

1082
1083
    translate_f = [1.0 * t for t in translate]
    matrix = _get_inverse_affine_matrix([0.0, 0.0], angle, translate_f, scale, shear)
1084
    return F_t.affine(img, matrix=matrix, interpolation=interpolation.value, fill=fill)
1085
1086


1087
@torch.jit.unused
1088
def to_grayscale(img, num_output_channels=1):
1089
    """Convert PIL image of any mode (RGB, HSV, LAB, etc) to grayscale version of image.
1090
    This transform does not support torch Tensor.
1091
1092

    Args:
1093
        img (PIL Image): PIL Image to be converted to grayscale.
1094
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default is 1.
1095
1096

    Returns:
1097
1098
1099
1100
        PIL Image: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
1101
    """
1102
1103
    if isinstance(img, Image.Image):
        return F_pil.to_grayscale(img, num_output_channels)
1104

1105
1106
1107
1108
1109
    raise TypeError("Input should be PIL Image")


def rgb_to_grayscale(img: Tensor, num_output_channels: int = 1) -> Tensor:
    """Convert RGB image to grayscale version of image.
1110
1111
    If the image is torch Tensor, it is expected
    to have [..., 3, H, W] shape, where ... means an arbitrary number of leading dimensions
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130

    Note:
        Please, note that this method supports only RGB images as input. For inputs in other color spaces,
        please, consider using meth:`~torchvision.transforms.functional.to_grayscale` with PIL Image.

    Args:
        img (PIL Image or Tensor): RGB Image to be converted to grayscale.
        num_output_channels (int): number of channels of the output image. Value can be 1 or 3. Default, 1.

    Returns:
        PIL Image or Tensor: Grayscale version of the image.
            if num_output_channels = 1 : returned image is single channel

            if num_output_channels = 3 : returned image is 3 channel with r = g = b
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.to_grayscale(img, num_output_channels)

    return F_t.rgb_to_grayscale(img, num_output_channels)
1131
1132


1133
def erase(img: Tensor, i: int, j: int, h: int, w: int, v: Tensor, inplace: bool = False) -> Tensor:
1134
    """ Erase the input Tensor Image with given value.
1135
    This transform does not support PIL Image.
1136
1137
1138
1139
1140
1141
1142
1143

    Args:
        img (Tensor Image): Tensor image of size (C, H, W) to be erased
        i (int): i in (i,j) i.e coordinates of the upper left corner.
        j (int): j in (i,j) i.e coordinates of the upper left corner.
        h (int): Height of the erased region.
        w (int): Width of the erased region.
        v: Erasing value.
Zhun Zhong's avatar
Zhun Zhong committed
1144
        inplace(bool, optional): For in-place operations. By default is set False.
1145
1146
1147
1148
1149
1150
1151

    Returns:
        Tensor Image: Erased image.
    """
    if not isinstance(img, torch.Tensor):
        raise TypeError('img should be Tensor Image. Got {}'.format(type(img)))

1152
1153
1154
    if not inplace:
        img = img.clone()

vfdev's avatar
vfdev committed
1155
    img[..., i:i + h, j:j + w] = v
1156
    return img
1157
1158
1159


def gaussian_blur(img: Tensor, kernel_size: List[int], sigma: Optional[List[float]] = None) -> Tensor:
1160
1161
1162
    """Performs Gaussian blurring on the image by given kernel.
    If the image is torch Tensor, it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions.
1163
1164
1165
1166
1167

    Args:
        img (PIL Image or Tensor): Image to be blurred
        kernel_size (sequence of ints or int): Gaussian kernel size. Can be a sequence of integers
            like ``(kx, ky)`` or a single integer for square kernels.
1168
            In torchscript mode kernel_size as single int is not supported, use a sequence of length 1: ``[ksize, ]``.
1169
1170
1171
1172
1173
        sigma (sequence of floats or float, optional): Gaussian kernel standard deviation. Can be a
            sequence of floats like ``(sigma_x, sigma_y)`` or a single float to define the
            same sigma in both X/Y directions. If None, then it is computed using
            ``kernel_size`` as ``sigma = 0.3 * ((kernel_size - 1) * 0.5 - 1) + 0.8``.
            Default, None. In torchscript mode sigma as single float is
1174
            not supported, use a sequence of length 1: ``[sigma, ]``.
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215

    Returns:
        PIL Image or Tensor: Gaussian Blurred version of the image.
    """
    if not isinstance(kernel_size, (int, list, tuple)):
        raise TypeError('kernel_size should be int or a sequence of integers. Got {}'.format(type(kernel_size)))
    if isinstance(kernel_size, int):
        kernel_size = [kernel_size, kernel_size]
    if len(kernel_size) != 2:
        raise ValueError('If kernel_size is a sequence its length should be 2. Got {}'.format(len(kernel_size)))
    for ksize in kernel_size:
        if ksize % 2 == 0 or ksize < 0:
            raise ValueError('kernel_size should have odd and positive integers. Got {}'.format(kernel_size))

    if sigma is None:
        sigma = [ksize * 0.15 + 0.35 for ksize in kernel_size]

    if sigma is not None and not isinstance(sigma, (int, float, list, tuple)):
        raise TypeError('sigma should be either float or sequence of floats. Got {}'.format(type(sigma)))
    if isinstance(sigma, (int, float)):
        sigma = [float(sigma), float(sigma)]
    if isinstance(sigma, (list, tuple)) and len(sigma) == 1:
        sigma = [sigma[0], sigma[0]]
    if len(sigma) != 2:
        raise ValueError('If sigma is a sequence, its length should be 2. Got {}'.format(len(sigma)))
    for s in sigma:
        if s <= 0.:
            raise ValueError('sigma should have positive values. Got {}'.format(sigma))

    t_img = img
    if not isinstance(img, torch.Tensor):
        if not F_pil._is_pil_image(img):
            raise TypeError('img should be PIL Image or Tensor. Got {}'.format(type(img)))

        t_img = to_tensor(img)

    output = F_t.gaussian_blur(t_img, kernel_size, sigma)

    if not isinstance(img, torch.Tensor):
        output = to_pil_image(output)
    return output
1216
1217
1218


def invert(img: Tensor) -> Tensor:
1219
    """Invert the colors of an RGB/grayscale image.
1220
1221
1222

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1223
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1224
1225
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236

    Returns:
        PIL Image or Tensor: Color inverted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.invert(img)

    return F_t.invert(img)


def posterize(img: Tensor, bits: int) -> Tensor:
1237
    """Posterize an image by reducing the number of bits for each color channel.
1238
1239
1240

    Args:
        img (PIL Image or Tensor): Image to have its colors posterized.
1241
            If img is torch Tensor, it should be of type torch.uint8 and
1242
1243
1244
            it is expected to be in [..., 1 or 3, H, W] format, where ... means
            it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
        bits (int): The number of bits to keep for each channel (0-8).
    Returns:
        PIL Image or Tensor: Posterized image.
    """
    if not (0 <= bits <= 8):
        raise ValueError('The number if bits should be between 0 and 8. Got {}'.format(bits))

    if not isinstance(img, torch.Tensor):
        return F_pil.posterize(img, bits)

    return F_t.posterize(img, bits)


def solarize(img: Tensor, threshold: float) -> Tensor:
1259
    """Solarize an RGB/grayscale image by inverting all pixel values above a threshold.
1260
1261
1262

    Args:
        img (PIL Image or Tensor): Image to have its colors inverted.
1263
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1264
1265
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
        threshold (float): All pixels equal or above this value are inverted.
    Returns:
        PIL Image or Tensor: Solarized image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.solarize(img, threshold)

    return F_t.solarize(img, threshold)


def adjust_sharpness(img: Tensor, sharpness_factor: float) -> Tensor:
1277
    """Adjust the sharpness of an image.
1278
1279
1280

    Args:
        img (PIL Image or Tensor): Image to be adjusted.
1281
        If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1282
        where ... means it can have an arbitrary number of leading dimensions.
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
        sharpness_factor (float):  How much to adjust the sharpness. Can be
            any non negative number. 0 gives a blurred image, 1 gives the
            original image while 2 increases the sharpness by a factor of 2.

    Returns:
        PIL Image or Tensor: Sharpness adjusted image.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.adjust_sharpness(img, sharpness_factor)

    return F_t.adjust_sharpness(img, sharpness_factor)


def autocontrast(img: Tensor) -> Tensor:
1297
    """Maximize contrast of an image by remapping its
1298
1299
1300
1301
1302
    pixels per channel so that the lowest becomes black and the lightest
    becomes white.

    Args:
        img (PIL Image or Tensor): Image on which autocontrast is applied.
1303
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1304
1305
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "L" or "RGB".
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316

    Returns:
        PIL Image or Tensor: An image that was autocontrasted.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.autocontrast(img)

    return F_t.autocontrast(img)


def equalize(img: Tensor) -> Tensor:
1317
    """Equalize the histogram of an image by applying
1318
1319
1320
1321
1322
    a non-linear mapping to the input in order to create a uniform
    distribution of grayscale values in the output.

    Args:
        img (PIL Image or Tensor): Image on which equalize is applied.
1323
            If img is torch Tensor, it is expected to be in [..., 1 or 3, H, W] format,
1324
1325
            where ... means it can have an arbitrary number of leading dimensions.
            If img is PIL Image, it is expected to be in mode "P", "L" or "RGB".
1326
1327
1328
1329
1330
1331
1332
1333

    Returns:
        PIL Image or Tensor: An image that was equalized.
    """
    if not isinstance(img, torch.Tensor):
        return F_pil.equalize(img)

    return F_t.equalize(img)