test_transforms_tensor.py 28 KB
Newer Older
1
import os
2
3
4
import torch
from torchvision import transforms as T
from torchvision.transforms import functional as F
5
from torchvision.transforms import InterpolationMode
6
7
8
9

import numpy as np

import unittest
10
from typing import Sequence
11

12
from common_utils import TransformsTester, get_tmp_dir, int_dtypes, float_dtypes
13
14


15
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
16
17


18
class Tester(TransformsTester):
19

20
21
22
    def setUp(self):
        self.device = "cpu"

23
    def _test_functional_op(self, func, fn_kwargs):
24
25
        if fn_kwargs is None:
            fn_kwargs = {}
26
27

        f = getattr(F, func)
28
        tensor, pil_img = self._create_data(height=10, width=10, device=self.device)
29
30
        transformed_tensor = f(tensor, **fn_kwargs)
        transformed_pil_img = f(pil_img, **fn_kwargs)
31
32
        self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

33
    def _test_transform_vs_scripted(self, transform, s_transform, tensor, msg=None):
34
35
36
37
        torch.manual_seed(12)
        out1 = transform(tensor)
        torch.manual_seed(12)
        out2 = s_transform(tensor)
38
        self.assertTrue(out1.equal(out2), msg=msg)
39

40
    def _test_transform_vs_scripted_on_batch(self, transform, s_transform, batch_tensors, msg=None):
41
42
43
44
45
46
47
        torch.manual_seed(12)
        transformed_batch = transform(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img = transform(img_tensor)
48
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]), msg=msg)
49
50
51

        torch.manual_seed(12)
        s_transformed_batch = s_transform(batch_tensors)
52
        self.assertTrue(transformed_batch.equal(s_transformed_batch), msg=msg)
53

54
    def _test_class_op(self, method, meth_kwargs=None, test_exact_match=True, **match_kwargs):
55
56
        if meth_kwargs is None:
            meth_kwargs = {}
vfdev's avatar
vfdev committed
57
58
59
60
61

        # test for class interface
        f = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(f)

62
        tensor, pil_img = self._create_data(26, 34, device=self.device)
vfdev's avatar
vfdev committed
63
64
65
66
67
        # set seed to reproduce the same transformation for tensor and PIL image
        torch.manual_seed(12)
        transformed_tensor = f(tensor)
        torch.manual_seed(12)
        transformed_pil_img = f(pil_img)
68
69
70
71
        if test_exact_match:
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img, **match_kwargs)
        else:
            self.approxEqualTensorToPIL(transformed_tensor.float(), transformed_pil_img, **match_kwargs)
72

vfdev's avatar
vfdev committed
73
74
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
75
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script))
76

77
78
79
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        self._test_transform_vs_scripted_on_batch(f, scripted_fn, batch_tensors)

80
81
82
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_{}.pt".format(method)))

83
84
85
    def _test_op(self, func, method, fn_kwargs=None, meth_kwargs=None):
        self._test_functional_op(func, fn_kwargs)
        self._test_class_op(method, meth_kwargs)
86
87

    def test_random_horizontal_flip(self):
88
        self._test_op('hflip', 'RandomHorizontalFlip')
89
90

    def test_random_vertical_flip(self):
91
        self._test_op('vflip', 'RandomVerticalFlip')
92

93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def test_random_invert(self):
        self._test_op('invert', 'RandomInvert')

    def test_random_posterize(self):
        fn_kwargs = meth_kwargs = {"bits": 4}
        self._test_op(
            'posterize', 'RandomPosterize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_solarize(self):
        fn_kwargs = meth_kwargs = {"threshold": 192.0}
        self._test_op(
            'solarize', 'RandomSolarize', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_adjust_sharpness(self):
        fn_kwargs = meth_kwargs = {"sharpness_factor": 2.0}
        self._test_op(
            'adjust_sharpness', 'RandomAdjustSharpness', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_random_autocontrast(self):
        self._test_op('autocontrast', 'RandomAutocontrast')

    def test_random_equalize(self):
        self._test_op('equalize', 'RandomEqualize')

vfdev's avatar
vfdev committed
120
121
122
    def test_color_jitter(self):

        tol = 1.0 + 1e-10
123
        for f in [0.1, 0.5, 1.0, 1.34, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
124
125
126
127
128
            meth_kwargs = {"brightness": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

129
        for f in [0.2, 0.5, 1.0, 1.5, (0.3, 0.7), [0.4, 0.5]]:
vfdev's avatar
vfdev committed
130
131
132
133
134
            meth_kwargs = {"contrast": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )

135
        for f in [0.5, 0.75, 1.0, 1.25, (0.3, 0.7), [0.3, 0.4]]:
vfdev's avatar
vfdev committed
136
137
138
139
            meth_kwargs = {"saturation": f}
            self._test_class_op(
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
            )
140

141
142
143
        for f in [0.2, 0.5, (-0.2, 0.3), [-0.4, 0.5]]:
            meth_kwargs = {"hue": f}
            self._test_class_op(
vfdev's avatar
vfdev committed
144
                "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=16.1, agg_method="max"
145
146
147
148
149
            )

        # All 4 parameters together
        meth_kwargs = {"brightness": 0.2, "contrast": 0.2, "saturation": 0.2, "hue": 0.2}
        self._test_class_op(
vfdev's avatar
vfdev committed
150
            "ColorJitter", meth_kwargs=meth_kwargs, test_exact_match=False, tol=12.1, agg_method="max"
151
152
        )

153
    def test_pad(self):
154
155
        for m in ["constant", "edge", "reflect", "symmetric"]:
            fill = 127 if m == "constant" else 0
156
            for mul in [1, -1]:
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
                # Test functional.pad (PIL and Tensor) with padding as single int
                self._test_functional_op(
                    "pad", fn_kwargs={"padding": mul * 2, "fill": fill, "padding_mode": m}
                )
                # Test functional.pad and transforms.Pad with padding as [int, ]
                fn_kwargs = meth_kwargs = {"padding": [mul * 2, ], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as list
                fn_kwargs = meth_kwargs = {"padding": [mul * 4, 4], "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
                # Test functional.pad and transforms.Pad with padding as tuple
                fn_kwargs = meth_kwargs = {"padding": (mul * 2, 2, 2, mul * 2), "fill": fill, "padding_mode": m}
                self._test_op(
                    "pad", "Pad", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
                )
176

vfdev's avatar
vfdev committed
177
178
179
180
    def test_crop(self):
        fn_kwargs = {"top": 2, "left": 3, "height": 4, "width": 5}
        # Test transforms.RandomCrop with size and padding as tuple
        meth_kwargs = {"size": (4, 5), "padding": (4, 4), "pad_if_needed": True, }
181
        self._test_op(
vfdev's avatar
vfdev committed
182
183
184
            'crop', 'RandomCrop', fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
185
186
187
188
189
190
191
192
193
194
195
196
197
        sizes = [5, [5, ], [6, 6]]
        padding_configs = [
            {"padding_mode": "constant", "fill": 0},
            {"padding_mode": "constant", "fill": 10},
            {"padding_mode": "constant", "fill": 20},
            {"padding_mode": "edge"},
            {"padding_mode": "reflect"},
        ]

        for size in sizes:
            for padding_config in padding_configs:
                config = dict(padding_config)
                config["size"] = size
198
                self._test_class_op("RandomCrop", config)
vfdev's avatar
vfdev committed
199
200
201
202

    def test_center_crop(self):
        fn_kwargs = {"output_size": (4, 5)}
        meth_kwargs = {"size": (4, 5), }
203
        self._test_op(
vfdev's avatar
vfdev committed
204
205
206
207
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = {"output_size": (5,)}
        meth_kwargs = {"size": (5, )}
208
        self._test_op(
vfdev's avatar
vfdev committed
209
210
            "center_crop", "CenterCrop", fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
211
        tensor = torch.randint(0, 256, (3, 10, 10), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        # Test torchscript of transforms.CenterCrop with size as int
        f = T.CenterCrop(size=5)
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as [int, ]
        f = T.CenterCrop(size=[5, ])
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

        # Test torchscript of transforms.CenterCrop with size as tuple
        f = T.CenterCrop(size=(6, 6))
        scripted_fn = torch.jit.script(f)
        scripted_fn(tensor)

227
228
229
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_center_crop.pt"))

230
    def _test_op_list_output(self, func, method, out_length, fn_kwargs=None, meth_kwargs=None):
vfdev's avatar
vfdev committed
231
232
233
234
        if fn_kwargs is None:
            fn_kwargs = {}
        if meth_kwargs is None:
            meth_kwargs = {}
235
236
237
238

        fn = getattr(F, func)
        scripted_fn = torch.jit.script(fn)

239
        tensor, pil_img = self._create_data(height=20, width=20, device=self.device)
240
241
        transformed_t_list = fn(tensor, **fn_kwargs)
        transformed_p_list = fn(pil_img, **fn_kwargs)
vfdev's avatar
vfdev committed
242
243
244
245
246
247
248
249
250
251
252
253
254
        self.assertEqual(len(transformed_t_list), len(transformed_p_list))
        self.assertEqual(len(transformed_t_list), out_length)
        for transformed_tensor, transformed_pil_img in zip(transformed_t_list, transformed_p_list):
            self.compareTensorToPIL(transformed_tensor, transformed_pil_img)

        transformed_t_list_script = scripted_fn(tensor.detach().clone(), **fn_kwargs)
        self.assertEqual(len(transformed_t_list), len(transformed_t_list_script))
        self.assertEqual(len(transformed_t_list_script), out_length)
        for transformed_tensor, transformed_tensor_script in zip(transformed_t_list, transformed_t_list_script):
            self.assertTrue(transformed_tensor.equal(transformed_tensor_script),
                            msg="{} vs {}".format(transformed_tensor, transformed_tensor_script))

        # test for class interface
255
256
        fn = getattr(T, method)(**meth_kwargs)
        scripted_fn = torch.jit.script(fn)
vfdev's avatar
vfdev committed
257
258
259
        output = scripted_fn(tensor)
        self.assertEqual(len(output), len(transformed_t_list_script))

260
261
262
263
264
265
266
267
268
269
270
271
272
        # test on batch of tensors
        batch_tensors = self._create_data_batch(height=23, width=34, channels=3, num_samples=4, device=self.device)
        torch.manual_seed(12)
        transformed_batch_list = fn(batch_tensors)

        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            torch.manual_seed(12)
            transformed_img_list = fn(img_tensor)
            for transformed_img, transformed_batch in zip(transformed_img_list, transformed_batch_list):
                self.assertTrue(transformed_img.equal(transformed_batch[i, ...]),
                                msg="{} vs {}".format(transformed_img, transformed_batch[i, ...]))

273
274
275
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_op_list_{}.pt".format(method)))

vfdev's avatar
vfdev committed
276
277
    def test_five_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
278
        self._test_op_list_output(
vfdev's avatar
vfdev committed
279
280
281
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
282
        self._test_op_list_output(
vfdev's avatar
vfdev committed
283
284
285
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
286
        self._test_op_list_output(
vfdev's avatar
vfdev committed
287
288
289
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
290
        self._test_op_list_output(
vfdev's avatar
vfdev committed
291
292
293
294
295
            "five_crop", "FiveCrop", out_length=5, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

    def test_ten_crop(self):
        fn_kwargs = meth_kwargs = {"size": (5,)}
296
        self._test_op_list_output(
vfdev's avatar
vfdev committed
297
298
299
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [5, ]}
300
        self._test_op_list_output(
vfdev's avatar
vfdev committed
301
302
303
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": (4, 5)}
304
        self._test_op_list_output(
vfdev's avatar
vfdev committed
305
306
307
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )
        fn_kwargs = meth_kwargs = {"size": [4, 5]}
308
        self._test_op_list_output(
vfdev's avatar
vfdev committed
309
310
311
            "ten_crop", "TenCrop", out_length=10, fn_kwargs=fn_kwargs, meth_kwargs=meth_kwargs
        )

vfdev's avatar
vfdev committed
312
    def test_resize(self):
313
314
315
316
317
318
319
320
321
322
323

        # TODO: Minimal check for bug-fix, improve this later
        x = torch.rand(3, 32, 46)
        t = T.Resize(size=38)
        y = t(x)
        # If size is an int, smaller edge of the image will be matched to this number.
        # i.e, if height > width, then image will be rescaled to (size * height / width, size).
        self.assertTrue(isinstance(y, torch.Tensor))
        self.assertEqual(y.shape[1], 38)
        self.assertEqual(y.shape[2], int(38 * 46 / 32))

324
        tensor, _ = self._create_data(height=34, width=36, device=self.device)
325
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
vfdev's avatar
vfdev committed
326
327
328
329
330

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
331
            for size in [32, 34, [32, ], [32, 32], (32, 32), [34, 35]]:
332
333
334
335
                for max_size in (None, 35, 1000):
                    if max_size is not None and isinstance(size, Sequence) and len(size) != 1:
                        continue  # Not supported
                    for interpolation in [BILINEAR, BICUBIC, NEAREST]:
vfdev's avatar
vfdev committed
336

337
338
339
340
                        if isinstance(size, int):
                            script_size = [size, ]
                        else:
                            script_size = size
vfdev's avatar
vfdev committed
341

342
343
344
345
                        transform = T.Resize(size=script_size, interpolation=interpolation, max_size=max_size)
                        s_transform = torch.jit.script(transform)
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
vfdev's avatar
vfdev committed
346

347
        with get_tmp_dir() as tmp_dir:
348
            s_transform.save(os.path.join(tmp_dir, "t_resize.pt"))
349

350
    def test_resized_crop(self):
351
352
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
353

354
355
        for scale in [(0.7, 1.2), [0.7, 1.2]]:
            for ratio in [(0.75, 1.333), [0.75, 1.333]]:
356
                for size in [(32, ), [44, ], [32, ], [32, 32], (32, 32), [44, 55]]:
357
358
359
360
361
                    for interpolation in [NEAREST, BILINEAR, BICUBIC]:
                        transform = T.RandomResizedCrop(
                            size=size, scale=scale, ratio=ratio, interpolation=interpolation
                        )
                        s_transform = torch.jit.script(transform)
362
363
                        self._test_transform_vs_scripted(transform, s_transform, tensor)
                        self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
364

365
366
367
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_resized_crop.pt"))

368
    def test_random_affine(self):
369
370
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
371
372
373
374
375
376

        for shear in [15, 10.0, (5.0, 10.0), [-15, 15], [-10.0, 10.0, -11.0, 11.0]]:
            for scale in [(0.7, 1.2), [0.7, 1.2]]:
                for translate in [(0.1, 0.2), [0.2, 0.1]]:
                    for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                        for interpolation in [NEAREST, BILINEAR]:
377
378
379
380
381
382
                            for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                                transform = T.RandomAffine(
                                    degrees=degrees, translate=translate,
                                    scale=scale, shear=shear, interpolation=interpolation, fill=fill
                                )
                                s_transform = torch.jit.script(transform)
383

384
385
                                self._test_transform_vs_scripted(transform, s_transform, tensor)
                                self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
386

387
388
389
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_affine.pt"))

390
    def test_random_rotate(self):
391
392
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
393
394
395
396
397

        for center in [(0, 0), [10, 10], None, (56, 44)]:
            for expand in [True, False]:
                for degrees in [45, 35.0, (-45, 45), [-90.0, 90.0]]:
                    for interpolation in [NEAREST, BILINEAR]:
398
399
400
401
402
                        for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                            transform = T.RandomRotation(
                                degrees=degrees, interpolation=interpolation, expand=expand, center=center, fill=fill
                            )
                            s_transform = torch.jit.script(transform)
403

404
405
                            self._test_transform_vs_scripted(transform, s_transform, tensor)
                            self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
406

407
408
409
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_random_rotate.pt"))

410
    def test_random_perspective(self):
411
412
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)
413
414
415

        for distortion_scale in np.linspace(0.1, 1.0, num=20):
            for interpolation in [NEAREST, BILINEAR]:
416
417
418
419
420
421
422
                for fill in [85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
                    transform = T.RandomPerspective(
                        distortion_scale=distortion_scale,
                        interpolation=interpolation,
                        fill=fill
                    )
                    s_transform = torch.jit.script(transform)
423

424
425
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)
426

427
428
429
        with get_tmp_dir() as tmp_dir:
            s_transform.save(os.path.join(tmp_dir, "t_perspective.pt"))

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    def test_to_grayscale(self):

        meth_kwargs = {"num_output_channels": 1}
        tol = 1.0 + 1e-10
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {"num_output_channels": 3}
        self._test_class_op(
            "Grayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

        meth_kwargs = {}
        self._test_class_op(
            "RandomGrayscale", meth_kwargs=meth_kwargs, test_exact_match=False, tol=tol, agg_method="max"
        )

448
449
450
451
452
453
454
455
456
457
458
459
    def test_normalize(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        tensor = tensor.to(dtype=torch.float32) / 255.0
        # test for class interface
        fn = T.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)
        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

460
461
462
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    def test_linear_transformation(self):
        c, h, w = 3, 24, 32

        tensor, _ = self._create_data(h, w, channels=c, device=self.device)

        matrix = torch.rand(c * h * w, c * h * w, device=self.device)
        mean_vector = torch.rand(c * h * w, device=self.device)

        fn = T.LinearTransformation(matrix, mean_vector)
        scripted_fn = torch.jit.script(fn)

        self._test_transform_vs_scripted(fn, scripted_fn, tensor)

        batch_tensors = torch.rand(4, c, h, w, device=self.device)
        # We skip some tests from _test_transform_vs_scripted_on_batch as
        # results for scripted and non-scripted transformations are not exactly the same
        torch.manual_seed(12)
        transformed_batch = fn(batch_tensors)
        torch.manual_seed(12)
        s_transformed_batch = scripted_fn(batch_tensors)
        self.assertTrue(transformed_batch.equal(s_transformed_batch))

485
486
487
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_norm.pt"))

488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
    def test_compose(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.Compose([
            T.CenterCrop(10),
            T.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        ])
        s_transforms = torch.nn.Sequential(*transforms.transforms)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        t = T.Compose([
            lambda x: x,
        ])
        with self.assertRaisesRegex(RuntimeError, r"Could not get name of python class object"):
            torch.jit.script(t)

511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
    def test_random_apply(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        tensor = tensor.to(dtype=torch.float32) / 255.0

        transforms = T.RandomApply([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ], p=0.4)
        s_transforms = T.RandomApply(torch.nn.ModuleList([
            T.RandomHorizontalFlip(),
            T.ColorJitter(),
        ]), p=0.4)

        scripted_fn = torch.jit.script(s_transforms)
        torch.manual_seed(12)
        transformed_tensor = transforms(tensor)
        torch.manual_seed(12)
        transformed_tensor_script = scripted_fn(tensor)
        self.assertTrue(transformed_tensor.equal(transformed_tensor_script), msg="{}".format(transforms))

        if torch.device(self.device).type == "cpu":
            # Can't check this twice, otherwise
            # "Can't redefine method: forward on class: __torch__.torchvision.transforms.transforms.RandomApply"
            transforms = T.RandomApply([
                T.ColorJitter(),
            ], p=0.3)
            with self.assertRaisesRegex(RuntimeError, r"Module 'RandomApply' has no attribute 'transforms'"):
                torch.jit.script(transforms)

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
    def test_gaussian_blur(self):
        tol = 1.0 + 1e-10
        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 3, "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": [0.1, 2.0]},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": 23, "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [3, 3], "sigma": (1.0, 1.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": (3, 3), "sigma": (0.1, 2.0)},
            test_exact_match=False, agg_method="max", tol=tol
        )

        self._test_class_op(
            "GaussianBlur", meth_kwargs={"kernel_size": [23], "sigma": 0.75},
            test_exact_match=False, agg_method="max", tol=tol
        )

vfdev's avatar
vfdev committed
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
    def test_random_erasing(self):
        img = torch.rand(3, 60, 60)

        # Test Set 0: invalid value
        random_erasing = T.RandomErasing(value=(0.1, 0.2, 0.3, 0.4), p=1.0)
        with self.assertRaises(ValueError, msg="If value is a sequence, it should have either a single value or 3"):
            random_erasing(img)

        tensor, _ = self._create_data(24, 32, channels=3, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        test_configs = [
            {"value": 0.2},
            {"value": "random"},
            {"value": (0.2, 0.2, 0.2)},
            {"value": "random", "ratio": (0.1, 0.2)},
        ]

        for config in test_configs:
            fn = T.RandomErasing(**config)
            scripted_fn = torch.jit.script(fn)
            self._test_transform_vs_scripted(fn, scripted_fn, tensor)
            self._test_transform_vs_scripted_on_batch(fn, scripted_fn, batch_tensors)

596
597
598
        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_random_erasing.pt"))

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
    def test_convert_image_dtype(self):
        tensor, _ = self._create_data(26, 34, device=self.device)
        batch_tensors = torch.rand(4, 3, 44, 56, device=self.device)

        for in_dtype in int_dtypes() + float_dtypes():
            in_tensor = tensor.to(in_dtype)
            in_batch_tensors = batch_tensors.to(in_dtype)
            for out_dtype in int_dtypes() + float_dtypes():

                fn = T.ConvertImageDtype(dtype=out_dtype)
                scripted_fn = torch.jit.script(fn)

                if (in_dtype == torch.float32 and out_dtype in (torch.int32, torch.int64)) or \
                        (in_dtype == torch.float64 and out_dtype == torch.int64):
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                    with self.assertRaisesRegex(RuntimeError, r"cannot be performed safely"):
                        self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)
                    continue

                self._test_transform_vs_scripted(fn, scripted_fn, in_tensor)
                self._test_transform_vs_scripted_on_batch(fn, scripted_fn, in_batch_tensors)

        with get_tmp_dir() as tmp_dir:
            scripted_fn.save(os.path.join(tmp_dir, "t_convert_dtype.pt"))

625
626
627
628
    def test_autoaugment(self):
        tensor = torch.randint(0, 256, size=(3, 44, 56), dtype=torch.uint8, device=self.device)
        batch_tensors = torch.randint(0, 256, size=(4, 3, 44, 56), dtype=torch.uint8, device=self.device)

629
        s_transform = None
630
631
        for policy in T.AutoAugmentPolicy:
            for fill in [None, 85, (10, -10, 10), 0.7, [0.0, 0.0, 0.0], [1, ], 1]:
632
633
                transform = T.AutoAugment(policy=policy, fill=fill)
                s_transform = torch.jit.script(transform)
634
635
636
637
                for _ in range(100):
                    self._test_transform_vs_scripted(transform, s_transform, tensor)
                    self._test_transform_vs_scripted_on_batch(transform, s_transform, batch_tensors)

638
639
640
        if s_transform is not None:
            with get_tmp_dir() as tmp_dir:
                s_transform.save(os.path.join(tmp_dir, "t_autoaugment.pt"))
641

642

643
644
645
646
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
647
        torch.set_deterministic(False)
648
649
650
        self.device = "cuda"


651
652
if __name__ == '__main__':
    unittest.main()