_video_opt.py 19.5 KB
Newer Older
Francisco Massa's avatar
Francisco Massa committed
1
import math
2
3
4
5
import warnings
from fractions import Fraction
from typing import List, Tuple

6
import torch
7

8
from .._internally_replaced_utils import _get_extension_path
9
10
11


try:
12
    lib_path = _get_extension_path("video_reader")
13
14
    torch.ops.load_library(lib_path)
    _HAS_VIDEO_OPT = True
15
except (ImportError, OSError):
16
    _HAS_VIDEO_OPT = False
17
18
19
20

default_timebase = Fraction(0, 1)


21
22
# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
23
class Timebase:
24
25
26
27
28
29
30
31
32
33
34
35
36
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
        numerator,  # type: int
        denominator,  # type: int
    ):
        # type: (...) -> None
        self.numerator = numerator
        self.denominator = denominator


37
class VideoMetaData:
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

    def __init__(self):
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


70
def _validate_pts(pts_range):
71
72
    # type: (List[int]) -> None

73
    if pts_range[1] > 0:
74
75
76
        assert (
            pts_range[0] <= pts_range[1]
        ), """Start pts should not be smaller than end pts, got
77
            start pts: {0:d} and end pts: {1:d}""".format(
78
79
80
            pts_range[0],
            pts_range[1],
        )
81
82


83
def _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration):
84
85
86
87
88
    # type: (torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor) -> VideoMetaData
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
89
    if vtimebase.numel() > 0:
90
        meta.video_timebase = Timebase(int(vtimebase[0].item()), int(vtimebase[1].item()))
91
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
92
        if vduration.numel() > 0:
93
94
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
95
    if vfps.numel() > 0:
96
        meta.video_fps = float(vfps.item())
97
    if atimebase.numel() > 0:
98
        meta.audio_timebase = Timebase(int(atimebase[0].item()), int(atimebase[1].item()))
99
        timebase = atimebase[0].item() / float(atimebase[1].item())
100
        if aduration.numel() > 0:
101
102
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
103
    if asample_rate.numel() > 0:
104
        meta.audio_sample_rate = float(asample_rate.item())
105

106
    return meta
107
108
109


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
110
    # type: (torch.Tensor, torch.Tensor, List[int]) -> torch.Tensor
111
112
113
114
115
116
117
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
118
    if audio_pts_range[1] != -1 and end > audio_pts_range[1]:
119
120
121
122
123
124
125
126
127
128
129
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
130
    video_max_dimension=0,
131
132
133
134
135
136
137
138
139
140
141
142
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    Args:
    filename (str): path to the video file
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise. Thus,
        when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase (Fraction, optional): a Fraction rational number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase (Fraction, optional): a Fraction rational number which denotes time base in audio stream
180
181

    Returns
182
183
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
184
            `K` is the number of audio_channels
185
186
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float)
            and audio_fps (int)
187
188
189
190
191
192
193
194
195
196
197
198
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
199
        video_max_dimension,
200
201
202
203
204
205
206
207
208
209
210
211
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
212
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result
213
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
234
        0,  # video_max_dimension
235
236
237
238
239
240
241
242
243
244
245
246
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
247
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result
248
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
249
250
251
252
253
254

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


255
256
def _probe_video_from_file(filename):
    """
257
    Probe a video file and return VideoMetaData with info about the video
258
259
260
261
262
263
264
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


265
def _read_video_from_memory(
266
267
268
269
270
271
    video_data,  # type: torch.Tensor
    seek_frame_margin=0.25,  # type: float
    read_video_stream=1,  # type: int
    video_width=0,  # type: int
    video_height=0,  # type: int
    video_min_dimension=0,  # type: int
272
    video_max_dimension=0,  # type: int
273
274
275
276
277
278
279
280
281
    video_pts_range=(0, -1),  # type: List[int]
    video_timebase_numerator=0,  # type: int
    video_timebase_denominator=1,  # type: int
    read_audio_stream=1,  # type: int
    audio_samples=0,  # type: int
    audio_channels=0,  # type: int
    audio_pts_range=(0, -1),  # type: List[int]
    audio_timebase_numerator=0,  # type: int
    audio_timebase_denominator=1,  # type: int
282
):
283
    # type: (...) -> Tuple[torch.Tensor, torch.Tensor]
284
285
286
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
287
    This function is torchscriptable.
288

289
290
    Args:
    video_data (data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes):
291
        compressed video content stored in either 1) torch.Tensor 2) python bytes
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise.
        Thus, when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase_numerator / video_timebase_denominator (float, optional): a rational
        number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio audio_channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase_numerator / audio_timebase_denominator (float, optional):
328
        a rational number which denotes time base in audio stream
329

330
331
332
    Returns:
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
333
334
335
336
337
338
            `K` is the number of channels
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

339
    if not isinstance(video_data, torch.Tensor):
340
        video_data = torch.frombuffer(video_data, dtype=torch.uint8)
341

342
    result = torch.ops.video_reader.read_video_from_memory(
343
        video_data,
344
345
346
347
348
349
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
350
        video_max_dimension,
351
352
        video_pts_range[0],
        video_pts_range[1],
353
354
        video_timebase_numerator,
        video_timebase_denominator,
355
356
357
358
359
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
360
361
        audio_timebase_numerator,
        audio_timebase_denominator,
362
363
    )

364
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, asample_rate, aduration = result
365

366
367
368
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
369
370

    return vframes, aframes
371
372


373
def _read_video_timestamps_from_memory(video_data):
374
375
376
377
378
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
379
    if not isinstance(video_data, torch.Tensor):
380
        video_data = torch.frombuffer(video_data, dtype=torch.uint8)
381
    result = torch.ops.video_reader.read_video_from_memory(
382
        video_data,
383
384
385
386
387
388
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
389
        0,  # video_max_dimension
390
391
392
393
394
395
396
397
398
399
400
401
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
402
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, asample_rate, aduration = result
403
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
404
405
406
407

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
408
409
410


def _probe_video_from_memory(video_data):
411
    # type: (torch.Tensor) -> VideoMetaData
412
    """
413
414
    Probe a video in memory and return VideoMetaData with info about the video
    This function is torchscriptable
415
416
    """
    if not isinstance(video_data, torch.Tensor):
417
        video_data = torch.frombuffer(video_data, dtype=torch.uint8)
418
419
420
421
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info
Francisco Massa's avatar
Francisco Massa committed
422
423


424
def _convert_to_sec(start_pts, end_pts, pts_unit, time_base):
425
    if pts_unit == "pts":
426
427
        start_pts = float(start_pts * time_base)
        end_pts = float(end_pts * time_base)
428
        pts_unit = "sec"
429
430
431
    return start_pts, end_pts, pts_unit


432
def _read_video(filename, start_pts=0, end_pts=None, pts_unit="pts"):
Francisco Massa's avatar
Francisco Massa committed
433
434
435
    if end_pts is None:
        end_pts = float("inf")

436
437
438
439
440
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
441
442
443

    info = _probe_video_from_file(filename)

444
445
    has_video = info.has_video
    has_audio = info.has_audio
446
447
448
449
450
451
452
    video_pts_range = (0, -1)
    video_timebase = default_timebase
    audio_pts_range = (0, -1)
    audio_timebase = default_timebase
    time_base = default_timebase

    if has_video:
453
        video_timebase = Fraction(info.video_timebase.numerator, info.video_timebase.denominator)
454
455
456
        time_base = video_timebase

    if has_audio:
457
        audio_timebase = Fraction(info.audio_timebase.numerator, info.audio_timebase.denominator)
458
459
460
        time_base = time_base if time_base else audio_timebase

    # video_timebase is the default time_base
461
    start_pts_sec, end_pts_sec, pts_unit = _convert_to_sec(start_pts, end_pts, pts_unit, time_base)
Francisco Massa's avatar
Francisco Massa committed
462
463

    def get_pts(time_base):
464
465
        start_offset = start_pts_sec
        end_offset = end_pts_sec
466
        if pts_unit == "sec":
467
            start_offset = int(math.floor(start_pts_sec * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
468
            if end_offset != float("inf"):
469
                end_offset = int(math.ceil(end_pts_sec * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
470
471
472
473
474
475
476
477
478
479
        if end_offset == float("inf"):
            end_offset = -1
        return start_offset, end_offset

    if has_video:
        video_pts_range = get_pts(video_timebase)

    if has_audio:
        audio_pts_range = get_pts(audio_timebase)

480
    vframes, aframes, info = _read_video_from_file(
Francisco Massa's avatar
Francisco Massa committed
481
482
483
484
485
486
487
488
        filename,
        read_video_stream=True,
        video_pts_range=video_pts_range,
        video_timebase=video_timebase,
        read_audio_stream=True,
        audio_pts_range=audio_pts_range,
        audio_timebase=audio_timebase,
    )
489
490
    _info = {}
    if has_video:
491
        _info["video_fps"] = info.video_fps
492
    if has_audio:
493
        _info["audio_fps"] = info.audio_sample_rate
494
495

    return vframes, aframes, _info
Francisco Massa's avatar
Francisco Massa committed
496
497


498
499
500
501
502
503
def _read_video_timestamps(filename, pts_unit="pts"):
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
504
505
506

    pts, _, info = _read_video_timestamps_from_file(filename)

507
    if pts_unit == "sec":
508
        video_time_base = Fraction(info.video_timebase.numerator, info.video_timebase.denominator)
Francisco Massa's avatar
Francisco Massa committed
509
510
        pts = [x * video_time_base for x in pts]

511
    video_fps = info.video_fps if info.has_video else None
Francisco Massa's avatar
Francisco Massa committed
512
513

    return pts, video_fps