_video_opt.py 17.3 KB
Newer Older
1
2

import imp
Francisco Massa's avatar
Francisco Massa committed
3
import math
4
5
6
7
8
import os
import warnings
from fractions import Fraction
from typing import List, Tuple

9
10
import numpy as np
import torch
11
12
13
14
15
16
17
18
19
20
21


_HAS_VIDEO_OPT = False

try:
    lib_dir = os.path.join(os.path.dirname(__file__), "..")
    _, path, description = imp.find_module("video_reader", [lib_dir])
    torch.ops.load_library(path)
    _HAS_VIDEO_OPT = True
except (ImportError, OSError):
    pass
22
23
24
25
26


default_timebase = Fraction(0, 1)


27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
@torch.jit.script
class Timebase(object):
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
        numerator,  # type: int
        denominator,  # type: int
    ):
        # type: (...) -> None
        self.numerator = numerator
        self.denominator = denominator


@torch.jit.script
class VideoMetaData(object):
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

    def __init__(self):
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


78
def _validate_pts(pts_range):
79
    # type: (List[int])
80
    if pts_range[1] > 0:
81
82
83
84
85
86
87
        assert (
            pts_range[0] <= pts_range[1]
        ), """Start pts should not be smaller than end pts, got
            start pts: %d and end pts: %d""" % (
            pts_range[0],
            pts_range[1],
        )
88
89


90
def _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration):
91
92
93
94
95
    # type: (torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor) -> VideoMetaData
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
96
    if vtimebase.numel() > 0:
97
98
99
100
        meta.video_timebase = Timebase(
            int(vtimebase[0].item()), int(vtimebase[1].item())
        )
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
101
        if vduration.numel() > 0:
102
103
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
104
    if vfps.numel() > 0:
105
        meta.video_fps = float(vfps.item())
106
    if atimebase.numel() > 0:
107
108
109
110
        meta.audio_timebase = Timebase(
            int(atimebase[0].item()), int(atimebase[1].item())
        )
        timebase = atimebase[0].item() / float(atimebase[1].item())
111
        if aduration.numel() > 0:
112
113
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
114
    if asample_rate.numel() > 0:
115
        meta.audio_sample_rate = float(asample_rate.item())
116

117
    return meta
118
119
120


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
121
    # type: (torch.Tensor, torch.Tensor, List[int]) -> torch.Tensor
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
    if end > audio_pts_range[1]:
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

    Args
    ----------
    filename : str
        path to the video file
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension: int
        together decide the size of decoded frames
        - when video_width = 0, video_height = 0, and video_min_dimension = 0, keep the orignal frame resolution
        - when video_width = 0, video_height = 0, and video_min_dimension != 0, keep the aspect ratio and resize
            the frame so that shorter edge size is video_min_dimension
        - When video_width = 0, and video_height != 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_height
        - When video_width != 0, and video_height == 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_width
        - When video_width != 0, and video_height != 0, resize the frame so that frame video_width and video_height
            are set to $video_width and $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of audio_channels
    info : Dict
        metadata for the video and audio. Can contain the fields video_fps (float)
        and audio_fps (int)
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
222
223
224
225
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
226
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
259
260
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
        _aframes, aframe_pts, atimebase, asample_rate, aduration = (result)
261
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
262
263
264
265
266
267

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


268
269
def _probe_video_from_file(filename):
    """
270
    Probe a video file and return VideoMetaData with info about the video
271
272
273
274
275
276
277
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


278
def _read_video_from_memory(
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    video_data,  # type: torch.Tensor
    seek_frame_margin=0.25,  # type: float
    read_video_stream=1,  # type: int
    video_width=0,  # type: int
    video_height=0,  # type: int
    video_min_dimension=0,  # type: int
    video_pts_range=(0, -1),  # type: List[int]
    video_timebase_numerator=0,  # type: int
    video_timebase_denominator=1,  # type: int
    read_audio_stream=1,  # type: int
    audio_samples=0,  # type: int
    audio_channels=0,  # type: int
    audio_pts_range=(0, -1),  # type: List[int]
    audio_timebase_numerator=0,  # type: int
    audio_timebase_denominator=1,  # type: int
294
):
295
    # type: (...) -> Tuple[torch.Tensor, torch.Tensor]
296
297
298
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
299
    This function is torchscriptable.
300
301
302

    Args
    ----------
303
304
    video_data : data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes
        compressed video content stored in either 1) torch.Tensor 2) python bytes
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension: int
        together decide the size of decoded frames
        - when video_width = 0, video_height = 0, and video_min_dimension = 0, keep the orignal frame resolution
        - when video_width = 0, video_height = 0, and video_min_dimension != 0, keep the aspect ratio and resize
            the frame so that shorter edge size is video_min_dimension
        - When video_width = 0, and video_height != 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_height
        - When video_width != 0, and video_height == 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_width
        - When video_width != 0, and video_height != 0, resize the frame so that frame video_width and video_height
            are set to $video_width and $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
323
324
    video_timebase_numerator / video_timebase_denominator: optional
        a rational number which denotes timebase in video stream
325
326
327
328
329
330
331
332
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio audio_channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
333
334
    audio_timebase_numerator / audio_timebase_denominator: optional
        a rational number which denotes time base in audio stream
335
336
337
338
339
340
341
342
343
344
345
346
347
348

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of channels
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_memory(
349
        video_data,
350
351
352
353
354
355
356
357
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_pts_range[0],
        video_pts_range[1],
358
359
        video_timebase_numerator,
        video_timebase_denominator,
360
361
362
363
364
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
365
366
        audio_timebase_numerator,
        audio_timebase_denominator,
367
368
    )

369
370
371
372
373
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )

374
375
376
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
377
378

    return vframes, aframes
379
380


381
def _read_video_timestamps_from_memory(video_data):
382
383
384
385
386
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
387
388
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
389
    result = torch.ops.video_reader.read_video_from_memory(
390
        video_data,
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
409
410
411
412
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
        _aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
413
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
414
415
416
417

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
418
419
420


def _probe_video_from_memory(video_data):
421
    # type: (torch.Tensor) -> VideoMetaData
422
    """
423
424
    Probe a video in memory and return VideoMetaData with info about the video
    This function is torchscriptable
425
426
427
428
429
430
431
    """
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info
Francisco Massa's avatar
Francisco Massa committed
432
433


434
def _read_video(filename, start_pts=0, end_pts=None, pts_unit="pts"):
Francisco Massa's avatar
Francisco Massa committed
435
436
437
    if end_pts is None:
        end_pts = float("inf")

438
439
440
441
442
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
443
444
445

    info = _probe_video_from_file(filename)

446
447
    has_video = info.has_video
    has_audio = info.has_audio
Francisco Massa's avatar
Francisco Massa committed
448
449
450
451

    def get_pts(time_base):
        start_offset = start_pts
        end_offset = end_pts
452
        if pts_unit == "sec":
Francisco Massa's avatar
Francisco Massa committed
453
454
455
456
457
458
459
460
461
462
            start_offset = int(math.floor(start_pts * (1 / time_base)))
            if end_offset != float("inf"):
                end_offset = int(math.ceil(end_pts * (1 / time_base)))
        if end_offset == float("inf"):
            end_offset = -1
        return start_offset, end_offset

    video_pts_range = (0, -1)
    video_timebase = default_timebase
    if has_video:
463
464
465
        video_timebase = Fraction(
            info.video_timebase.numerator, info.video_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
466
467
468
469
470
        video_pts_range = get_pts(video_timebase)

    audio_pts_range = (0, -1)
    audio_timebase = default_timebase
    if has_audio:
471
472
473
        audio_timebase = Fraction(
            info.audio_timebase.numerator, info.audio_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
474
475
        audio_pts_range = get_pts(audio_timebase)

476
    vframes, aframes, info = _read_video_from_file(
Francisco Massa's avatar
Francisco Massa committed
477
478
479
480
481
482
483
484
        filename,
        read_video_stream=True,
        video_pts_range=video_pts_range,
        video_timebase=video_timebase,
        read_audio_stream=True,
        audio_pts_range=audio_pts_range,
        audio_timebase=audio_timebase,
    )
485
486
    _info = {}
    if has_video:
487
        _info["video_fps"] = info.video_fps
488
    if has_audio:
489
        _info["audio_fps"] = info.audio_sample_rate
490
491

    return vframes, aframes, _info
Francisco Massa's avatar
Francisco Massa committed
492
493


494
495
496
497
498
499
def _read_video_timestamps(filename, pts_unit="pts"):
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
500
501
502

    pts, _, info = _read_video_timestamps_from_file(filename)

503
504
505
506
    if pts_unit == "sec":
        video_time_base = Fraction(
            info.video_timebase.numerator, info.video_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
507
508
        pts = [x * video_time_base for x in pts]

509
    video_fps = info.video_fps if info.has_video else None
Francisco Massa's avatar
Francisco Massa committed
510
511

    return pts, video_fps