_video_opt.py 20.1 KB
Newer Older
1

2
import importlib
Francisco Massa's avatar
Francisco Massa committed
3
import math
4
5
6
7
8
import os
import warnings
from fractions import Fraction
from typing import List, Tuple

9
10
import numpy as np
import torch
11
12
13
14
15


_HAS_VIDEO_OPT = False

try:
16
    lib_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
17
18
19
20
21
22
23
24

    loader_details = (
        importlib.machinery.ExtensionFileLoader,
        importlib.machinery.EXTENSION_SUFFIXES
    )

    extfinder = importlib.machinery.FileFinder(lib_dir, loader_details)
    ext_specs = extfinder.find_spec("video_reader")
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    if os.name == 'nt':
        # Load the video_reader extension using LoadLibraryExW
        import ctypes
        import sys

        kernel32 = ctypes.WinDLL('kernel32.dll', use_last_error=True)
        with_load_library_flags = hasattr(kernel32, 'AddDllDirectory')
        prev_error_mode = kernel32.SetErrorMode(0x0001)

        if with_load_library_flags:
            kernel32.LoadLibraryExW.restype = ctypes.c_void_p

        if ext_specs is not None:
            res = kernel32.LoadLibraryExW(ext_specs.origin, None, 0x00001100)
            if res is None:
                err = ctypes.WinError(ctypes.get_last_error())
                err.strerror += (f' Error loading "{ext_specs.origin}" or any or '
                                 'its dependencies.')
                raise err

        kernel32.SetErrorMode(prev_error_mode)

48
49
50
    if ext_specs is not None:
        torch.ops.load_library(ext_specs.origin)
        _HAS_VIDEO_OPT = True
51
52
except (ImportError, OSError):
    pass
53
54
55
56
57


default_timebase = Fraction(0, 1)


58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
class Timebase(object):
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
        numerator,  # type: int
        denominator,  # type: int
    ):
        # type: (...) -> None
        self.numerator = numerator
        self.denominator = denominator


class VideoMetaData(object):
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

    def __init__(self):
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


107
def _validate_pts(pts_range):
108
109
    # type: (List[int]) -> None

110
    if pts_range[1] > 0:
111
112
113
        assert (
            pts_range[0] <= pts_range[1]
        ), """Start pts should not be smaller than end pts, got
114
            start pts: {0:d} and end pts: {1:d}""".format(
115
116
117
            pts_range[0],
            pts_range[1],
        )
118
119


120
def _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration):
121
122
123
124
125
    # type: (torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor) -> VideoMetaData
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
126
    if vtimebase.numel() > 0:
127
128
129
130
        meta.video_timebase = Timebase(
            int(vtimebase[0].item()), int(vtimebase[1].item())
        )
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
131
        if vduration.numel() > 0:
132
133
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
134
    if vfps.numel() > 0:
135
        meta.video_fps = float(vfps.item())
136
    if atimebase.numel() > 0:
137
138
139
140
        meta.audio_timebase = Timebase(
            int(atimebase[0].item()), int(atimebase[1].item())
        )
        timebase = atimebase[0].item() / float(atimebase[1].item())
141
        if aduration.numel() > 0:
142
143
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
144
    if asample_rate.numel() > 0:
145
        meta.audio_sample_rate = float(asample_rate.item())
146

147
    return meta
148
149
150


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
151
    # type: (torch.Tensor, torch.Tensor, List[int]) -> torch.Tensor
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
    if end > audio_pts_range[1]:
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
171
    video_max_dimension=0,
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

    Args
    ----------
    filename : str
        path to the video file
    seek_frame_margin: double, optional
189
190
        seeking frame in the stream is imprecise. Thus, when video_start_pts
        is specified, we seek the pts earlier by seek_frame_margin seconds
191
192
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
193
    video_width/video_height/video_min_dimension/video_max_dimension: int
194
        together decide the size of decoded frames
195
        - When video_width = 0, video_height = 0, video_min_dimension = 0,
196
            and video_max_dimension = 0, keep the original frame resolution
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
        - When video_width = 0, video_height = 0, video_min_dimension != 0,
            and video_max_dimension = 0, keep the aspect ratio and resize the
            frame so that shorter edge size is video_min_dimension
        - When video_width = 0, video_height = 0, video_min_dimension = 0,
            and video_max_dimension != 0, keep the aspect ratio and resize
            the frame so that longer edge size is video_max_dimension
        - When video_width = 0, video_height = 0, video_min_dimension != 0,
            and video_max_dimension != 0, resize the frame so that shorter
            edge size is video_min_dimension, and longer edge size is
            video_max_dimension. The aspect ratio may not be preserved
        - When video_width = 0, video_height != 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the aspect ratio and resize
            the frame so that frame video_height is $video_height
        - When video_width != 0, video_height == 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the aspect ratio and resize
            the frame so that frame video_width is $video_width
        - When video_width != 0, video_height != 0, video_min_dimension = 0,
            and video_max_dimension = 0, resize the frame so that frame
            video_width and  video_height are set to $video_width and
            $video_height, respectively
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of audio_channels
    info : Dict
        metadata for the video and audio. Can contain the fields video_fps (float)
        and audio_fps (int)
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
254
        video_max_dimension,
255
256
257
258
259
260
261
262
263
264
265
266
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
267
268
269
270
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
271
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
292
        0,  # video_max_dimension
293
294
295
296
297
298
299
300
301
302
303
304
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
305
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
306
        _aframes, aframe_pts, atimebase, asample_rate, aduration = result
307
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
308
309
310
311
312
313

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


314
315
def _probe_video_from_file(filename):
    """
316
    Probe a video file and return VideoMetaData with info about the video
317
318
319
320
321
322
323
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


324
def _read_video_from_memory(
325
326
327
328
329
330
    video_data,  # type: torch.Tensor
    seek_frame_margin=0.25,  # type: float
    read_video_stream=1,  # type: int
    video_width=0,  # type: int
    video_height=0,  # type: int
    video_min_dimension=0,  # type: int
331
    video_max_dimension=0,  # type: int
332
333
334
335
336
337
338
339
340
    video_pts_range=(0, -1),  # type: List[int]
    video_timebase_numerator=0,  # type: int
    video_timebase_denominator=1,  # type: int
    read_audio_stream=1,  # type: int
    audio_samples=0,  # type: int
    audio_channels=0,  # type: int
    audio_pts_range=(0, -1),  # type: List[int]
    audio_timebase_numerator=0,  # type: int
    audio_timebase_denominator=1,  # type: int
341
):
342
    # type: (...) -> Tuple[torch.Tensor, torch.Tensor]
343
344
345
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
346
    This function is torchscriptable.
347
348
349

    Args
    ----------
350
351
    video_data : data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes
        compressed video content stored in either 1) torch.Tensor 2) python bytes
352
353
354
355
356
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
357
    video_width/video_height/video_min_dimension/video_max_dimension: int
358
        together decide the size of decoded frames
359
        - When video_width = 0, video_height = 0, video_min_dimension = 0,
360
            and video_max_dimension = 0, keep the original frame resolution
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
        - When video_width = 0, video_height = 0, video_min_dimension != 0,
            and video_max_dimension = 0, keep the aspect ratio and resize the
            frame so that shorter edge size is video_min_dimension
        - When video_width = 0, video_height = 0, video_min_dimension = 0,
            and video_max_dimension != 0, keep the aspect ratio and resize
            the frame so that longer edge size is video_max_dimension
        - When video_width = 0, video_height = 0, video_min_dimension != 0,
            and video_max_dimension != 0, resize the frame so that shorter
            edge size is video_min_dimension, and longer edge size is
            video_max_dimension. The aspect ratio may not be preserved
        - When video_width = 0, video_height != 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the aspect ratio and resize
            the frame so that frame video_height is $video_height
        - When video_width != 0, video_height == 0, video_min_dimension = 0,
            and video_max_dimension = 0, keep the aspect ratio and resize
            the frame so that frame video_width is $video_width
        - When video_width != 0, video_height != 0, video_min_dimension = 0,
            and video_max_dimension = 0, resize the frame so that frame
            video_width and  video_height are set to $video_width and
            $video_height, respectively
381
382
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
383
384
    video_timebase_numerator / video_timebase_denominator: optional
        a rational number which denotes timebase in video stream
385
386
387
388
389
390
391
392
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio audio_channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
393
394
    audio_timebase_numerator / audio_timebase_denominator: optional
        a rational number which denotes time base in audio stream
395
396
397
398
399
400
401
402
403
404
405
406
407
408

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of channels
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_memory(
409
        video_data,
410
411
412
413
414
415
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
416
        video_max_dimension,
417
418
        video_pts_range[0],
        video_pts_range[1],
419
420
        video_timebase_numerator,
        video_timebase_denominator,
421
422
423
424
425
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
426
427
        audio_timebase_numerator,
        audio_timebase_denominator,
428
429
    )

430
431
432
433
434
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )

435
436
437
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
438
439

    return vframes, aframes
440
441


442
def _read_video_timestamps_from_memory(video_data):
443
444
445
446
447
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
448
449
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
450
    result = torch.ops.video_reader.read_video_from_memory(
451
        video_data,
452
453
454
455
456
457
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
458
        0,  # video_max_dimension
459
460
461
462
463
464
465
466
467
468
469
470
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
471
472
473
474
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
        _aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
475
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
476
477
478
479

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
480
481
482


def _probe_video_from_memory(video_data):
483
    # type: (torch.Tensor) -> VideoMetaData
484
    """
485
486
    Probe a video in memory and return VideoMetaData with info about the video
    This function is torchscriptable
487
488
489
490
491
492
493
    """
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info
Francisco Massa's avatar
Francisco Massa committed
494
495


496
def _read_video(filename, start_pts=0, end_pts=None, pts_unit="pts"):
Francisco Massa's avatar
Francisco Massa committed
497
498
499
    if end_pts is None:
        end_pts = float("inf")

500
501
502
503
504
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
505
506
507

    info = _probe_video_from_file(filename)

508
509
    has_video = info.has_video
    has_audio = info.has_audio
Francisco Massa's avatar
Francisco Massa committed
510
511
512
513

    def get_pts(time_base):
        start_offset = start_pts
        end_offset = end_pts
514
        if pts_unit == "sec":
Francisco Massa's avatar
Francisco Massa committed
515
516
517
518
519
520
521
522
523
524
            start_offset = int(math.floor(start_pts * (1 / time_base)))
            if end_offset != float("inf"):
                end_offset = int(math.ceil(end_pts * (1 / time_base)))
        if end_offset == float("inf"):
            end_offset = -1
        return start_offset, end_offset

    video_pts_range = (0, -1)
    video_timebase = default_timebase
    if has_video:
525
526
527
        video_timebase = Fraction(
            info.video_timebase.numerator, info.video_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
528
529
530
531
532
        video_pts_range = get_pts(video_timebase)

    audio_pts_range = (0, -1)
    audio_timebase = default_timebase
    if has_audio:
533
534
535
        audio_timebase = Fraction(
            info.audio_timebase.numerator, info.audio_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
536
537
        audio_pts_range = get_pts(audio_timebase)

538
    vframes, aframes, info = _read_video_from_file(
Francisco Massa's avatar
Francisco Massa committed
539
540
541
542
543
544
545
546
        filename,
        read_video_stream=True,
        video_pts_range=video_pts_range,
        video_timebase=video_timebase,
        read_audio_stream=True,
        audio_pts_range=audio_pts_range,
        audio_timebase=audio_timebase,
    )
547
548
    _info = {}
    if has_video:
549
        _info["video_fps"] = info.video_fps
550
    if has_audio:
551
        _info["audio_fps"] = info.audio_sample_rate
552
553

    return vframes, aframes, _info
Francisco Massa's avatar
Francisco Massa committed
554
555


556
557
558
559
560
561
def _read_video_timestamps(filename, pts_unit="pts"):
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
562
563
564

    pts, _, info = _read_video_timestamps_from_file(filename)

565
566
567
568
    if pts_unit == "sec":
        video_time_base = Fraction(
            info.video_timebase.numerator, info.video_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
569
570
        pts = [x * video_time_base for x in pts]

571
    video_fps = info.video_fps if info.has_video else None
Francisco Massa's avatar
Francisco Massa committed
572
573

    return pts, video_fps