_video_opt.py 19.8 KB
Newer Older
1

Francisco Massa's avatar
Francisco Massa committed
2
import math
3
4
5
6
7
import os
import warnings
from fractions import Fraction
from typing import List, Tuple

8
9
import numpy as np
import torch
10

11
from .._register_extension import _get_extension_path
12
13
14


try:
15
16
17
    lib_path = _get_extension_path('video_reader')
    torch.ops.load_library(lib_path)
    _HAS_VIDEO_OPT = True
18
except (ImportError, OSError):
19
    _HAS_VIDEO_OPT = False
20
21
22
23

default_timebase = Fraction(0, 1)


24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
# simple class for torch scripting
# the complex Fraction class from fractions module is not scriptable
class Timebase(object):
    __annotations__ = {"numerator": int, "denominator": int}
    __slots__ = ["numerator", "denominator"]

    def __init__(
        self,
        numerator,  # type: int
        denominator,  # type: int
    ):
        # type: (...) -> None
        self.numerator = numerator
        self.denominator = denominator


class VideoMetaData(object):
    __annotations__ = {
        "has_video": bool,
        "video_timebase": Timebase,
        "video_duration": float,
        "video_fps": float,
        "has_audio": bool,
        "audio_timebase": Timebase,
        "audio_duration": float,
        "audio_sample_rate": float,
    }
    __slots__ = [
        "has_video",
        "video_timebase",
        "video_duration",
        "video_fps",
        "has_audio",
        "audio_timebase",
        "audio_duration",
        "audio_sample_rate",
    ]

    def __init__(self):
        self.has_video = False
        self.video_timebase = Timebase(0, 1)
        self.video_duration = 0.0
        self.video_fps = 0.0
        self.has_audio = False
        self.audio_timebase = Timebase(0, 1)
        self.audio_duration = 0.0
        self.audio_sample_rate = 0.0


73
def _validate_pts(pts_range):
74
75
    # type: (List[int]) -> None

76
    if pts_range[1] > 0:
77
78
79
        assert (
            pts_range[0] <= pts_range[1]
        ), """Start pts should not be smaller than end pts, got
80
            start pts: {0:d} and end pts: {1:d}""".format(
81
82
83
            pts_range[0],
            pts_range[1],
        )
84
85


86
def _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration):
87
88
89
90
91
    # type: (torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor,torch.Tensor) -> VideoMetaData
    """
    Build update VideoMetaData struct with info about the video
    """
    meta = VideoMetaData()
92
    if vtimebase.numel() > 0:
93
94
95
96
        meta.video_timebase = Timebase(
            int(vtimebase[0].item()), int(vtimebase[1].item())
        )
        timebase = vtimebase[0].item() / float(vtimebase[1].item())
97
        if vduration.numel() > 0:
98
99
            meta.has_video = True
            meta.video_duration = float(vduration.item()) * timebase
100
    if vfps.numel() > 0:
101
        meta.video_fps = float(vfps.item())
102
    if atimebase.numel() > 0:
103
104
105
106
        meta.audio_timebase = Timebase(
            int(atimebase[0].item()), int(atimebase[1].item())
        )
        timebase = atimebase[0].item() / float(atimebase[1].item())
107
        if aduration.numel() > 0:
108
109
            meta.has_audio = True
            meta.audio_duration = float(aduration.item()) * timebase
110
    if asample_rate.numel() > 0:
111
        meta.audio_sample_rate = float(asample_rate.item())
112

113
    return meta
114
115
116


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
117
    # type: (torch.Tensor, torch.Tensor, List[int]) -> torch.Tensor
118
119
120
121
122
123
124
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
125
    if audio_pts_range[1] != -1 and end > audio_pts_range[1]:
126
127
128
129
130
131
132
133
134
135
136
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
137
    video_max_dimension=0,
138
139
140
141
142
143
144
145
146
147
148
149
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    Args:
    filename (str): path to the video file
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise. Thus,
        when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase (Fraction, optional): a Fraction rational number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase (Fraction, optional): a Fraction rational number which denotes time base in audio stream
187
188

    Returns
189
190
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
191
            `K` is the number of audio_channels
192
193
        info (Dict): metadata for the video and audio. Can contain the fields video_fps (float)
            and audio_fps (int)
194
195
196
197
198
199
200
201
202
203
204
205
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
206
        video_max_dimension,
207
208
209
210
211
212
213
214
215
216
217
218
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
219
220
221
222
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
223
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
244
        0,  # video_max_dimension
245
246
247
248
249
250
251
252
253
254
255
256
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
257
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
258
        _aframes, aframe_pts, atimebase, asample_rate, aduration = result
259
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
260
261
262
263
264
265

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


266
267
def _probe_video_from_file(filename):
    """
268
    Probe a video file and return VideoMetaData with info about the video
269
270
271
272
273
274
275
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


276
def _read_video_from_memory(
277
278
279
280
281
282
    video_data,  # type: torch.Tensor
    seek_frame_margin=0.25,  # type: float
    read_video_stream=1,  # type: int
    video_width=0,  # type: int
    video_height=0,  # type: int
    video_min_dimension=0,  # type: int
283
    video_max_dimension=0,  # type: int
284
285
286
287
288
289
290
291
292
    video_pts_range=(0, -1),  # type: List[int]
    video_timebase_numerator=0,  # type: int
    video_timebase_denominator=1,  # type: int
    read_audio_stream=1,  # type: int
    audio_samples=0,  # type: int
    audio_channels=0,  # type: int
    audio_pts_range=(0, -1),  # type: List[int]
    audio_timebase_numerator=0,  # type: int
    audio_timebase_denominator=1,  # type: int
293
):
294
    # type: (...) -> Tuple[torch.Tensor, torch.Tensor]
295
296
297
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames
298
    This function is torchscriptable.
299

300
301
    Args:
    video_data (data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes):
302
        compressed video content stored in either 1) torch.Tensor 2) python bytes
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    seek_frame_margin (double, optional): seeking frame in the stream is imprecise.
        Thus, when video_start_pts is specified, we seek the pts earlier by seek_frame_margin seconds
    read_video_stream (int, optional): whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension/video_max_dimension (int): together decide
        the size of decoded frames:

            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the original frame resolution
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension = 0, keep the aspect ratio and resize the
                frame so that shorter edge size is video_min_dimension
            - When video_width = 0, video_height = 0, video_min_dimension = 0,
                and video_max_dimension != 0, keep the aspect ratio and resize
                the frame so that longer edge size is video_max_dimension
            - When video_width = 0, video_height = 0, video_min_dimension != 0,
                and video_max_dimension != 0, resize the frame so that shorter
                edge size is video_min_dimension, and longer edge size is
                video_max_dimension. The aspect ratio may not be preserved
            - When video_width = 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_height is $video_height
            - When video_width != 0, video_height == 0, video_min_dimension = 0,
                and video_max_dimension = 0, keep the aspect ratio and resize
                the frame so that frame video_width is $video_width
            - When video_width != 0, video_height != 0, video_min_dimension = 0,
                and video_max_dimension = 0, resize the frame so that frame
                video_width and  video_height are set to $video_width and
                $video_height, respectively
    video_pts_range (list(int), optional): the start and end presentation timestamp of video stream
    video_timebase_numerator / video_timebase_denominator (float, optional): a rational
        number which denotes timebase in video stream
    read_audio_stream (int, optional): whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples (int, optional): audio sampling rate
    audio_channels (int optional): audio audio_channels
    audio_pts_range (list(int), optional): the start and end presentation timestamp of audio stream
    audio_timebase_numerator / audio_timebase_denominator (float, optional):
339
        a rational number which denotes time base in audio stream
340

341
342
343
    Returns:
        vframes (Tensor[T, H, W, C]): the `T` video frames
        aframes (Tensor[L, K]): the audio frames, where `L` is the number of points and
344
345
346
347
348
349
            `K` is the number of channels
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

350
351
352
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))

353
    result = torch.ops.video_reader.read_video_from_memory(
354
        video_data,
355
356
357
358
359
360
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
361
        video_max_dimension,
362
363
        video_pts_range[0],
        video_pts_range[1],
364
365
        video_timebase_numerator,
        video_timebase_denominator,
366
367
368
369
370
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
371
372
        audio_timebase_numerator,
        audio_timebase_denominator,
373
374
    )

375
376
377
378
379
    vframes, _vframe_pts, vtimebase, vfps, vduration, \
        aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )

380
381
382
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
383
384

    return vframes, aframes
385
386


387
def _read_video_timestamps_from_memory(video_data):
388
389
390
391
392
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
393
394
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
395
    result = torch.ops.video_reader.read_video_from_memory(
396
        video_data,
397
398
399
400
401
402
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
403
        0,  # video_max_dimension
404
405
406
407
408
409
410
411
412
413
414
415
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
416
417
418
419
    _vframes, vframe_pts, vtimebase, vfps, vduration, \
        _aframes, aframe_pts, atimebase, asample_rate, aduration = (
            result
        )
420
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
421
422
423
424

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
425
426
427


def _probe_video_from_memory(video_data):
428
    # type: (torch.Tensor) -> VideoMetaData
429
    """
430
431
    Probe a video in memory and return VideoMetaData with info about the video
    This function is torchscriptable
432
433
434
435
436
437
438
    """
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info
Francisco Massa's avatar
Francisco Massa committed
439
440


441
442
443
444
445
446
447
448
def _convert_to_sec(start_pts, end_pts, pts_unit, time_base):
    if pts_unit == 'pts':
        start_pts = float(start_pts * time_base)
        end_pts = float(end_pts * time_base)
        pts_unit = 'sec'
    return start_pts, end_pts, pts_unit


449
def _read_video(filename, start_pts=0, end_pts=None, pts_unit="pts"):
Francisco Massa's avatar
Francisco Massa committed
450
451
452
    if end_pts is None:
        end_pts = float("inf")

453
454
455
456
457
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
458
459
460

    info = _probe_video_from_file(filename)

461
462
    has_video = info.has_video
    has_audio = info.has_audio
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
    video_pts_range = (0, -1)
    video_timebase = default_timebase
    audio_pts_range = (0, -1)
    audio_timebase = default_timebase
    time_base = default_timebase

    if has_video:
        video_timebase = Fraction(
            info.video_timebase.numerator, info.video_timebase.denominator
        )
        time_base = video_timebase

    if has_audio:
        audio_timebase = Fraction(
            info.audio_timebase.numerator, info.audio_timebase.denominator
        )
        time_base = time_base if time_base else audio_timebase

    # video_timebase is the default time_base
    start_pts_sec, end_pts_sec, pts_unit = _convert_to_sec(
        start_pts, end_pts, pts_unit, time_base)
Francisco Massa's avatar
Francisco Massa committed
484
485

    def get_pts(time_base):
486
487
        start_offset = start_pts_sec
        end_offset = end_pts_sec
488
        if pts_unit == "sec":
489
            start_offset = int(math.floor(start_pts_sec * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
490
            if end_offset != float("inf"):
491
                end_offset = int(math.ceil(end_pts_sec * (1 / time_base)))
Francisco Massa's avatar
Francisco Massa committed
492
493
494
495
496
497
498
499
500
501
        if end_offset == float("inf"):
            end_offset = -1
        return start_offset, end_offset

    if has_video:
        video_pts_range = get_pts(video_timebase)

    if has_audio:
        audio_pts_range = get_pts(audio_timebase)

502
    vframes, aframes, info = _read_video_from_file(
Francisco Massa's avatar
Francisco Massa committed
503
504
505
506
507
508
509
510
        filename,
        read_video_stream=True,
        video_pts_range=video_pts_range,
        video_timebase=video_timebase,
        read_audio_stream=True,
        audio_pts_range=audio_pts_range,
        audio_timebase=audio_timebase,
    )
511
512
    _info = {}
    if has_video:
513
        _info["video_fps"] = info.video_fps
514
    if has_audio:
515
        _info["audio_fps"] = info.audio_sample_rate
516
517

    return vframes, aframes, _info
Francisco Massa's avatar
Francisco Massa committed
518
519


520
521
522
523
524
525
def _read_video_timestamps(filename, pts_unit="pts"):
    if pts_unit == "pts":
        warnings.warn(
            "The pts_unit 'pts' gives wrong results and will be removed in a "
            + "follow-up version. Please use pts_unit 'sec'."
        )
Francisco Massa's avatar
Francisco Massa committed
526
527
528

    pts, _, info = _read_video_timestamps_from_file(filename)

529
530
531
532
    if pts_unit == "sec":
        video_time_base = Fraction(
            info.video_timebase.numerator, info.video_timebase.denominator
        )
Francisco Massa's avatar
Francisco Massa committed
533
534
        pts = [x * video_time_base for x in pts]

535
    video_fps = info.video_fps if info.has_video else None
Francisco Massa's avatar
Francisco Massa committed
536
537

    return pts, video_fps