_video_opt.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from fractions import Fraction
import numpy as np
import os
import torch
import imp
import warnings


_HAS_VIDEO_OPT = False

try:
    lib_dir = os.path.join(os.path.dirname(__file__), '..')
    _, path, description = imp.find_module("video_reader", [lib_dir])
    torch.ops.load_library(path)
    _HAS_VIDEO_OPT = True
except (ImportError, OSError):
    warnings.warn("video reader based on ffmpeg c++ ops not available")

default_timebase = Fraction(0, 1)


def _validate_pts(pts_range):
    if pts_range[1] > 0:
        assert pts_range[0] <= pts_range[1], \
            """Start pts should not be smaller than end pts, got
            start pts: %d and end pts: %d""" % (pts_range[0], pts_range[1])


def _fill_info(vtimebase, vfps, atimebase, asample_rate):
    info = {}
    if vtimebase.numel() > 0:
        info["video_timebase"] = Fraction(vtimebase[0].item(), vtimebase[1].item())
    if vfps.numel() > 0:
        info["video_fps"] = vfps.item()
    if atimebase.numel() > 0:
        info["audio_timebase"] = Fraction(atimebase[0].item(), atimebase[1].item())
    if asample_rate.numel() > 0:
        info["audio_sample_rate"] = asample_rate.item()

    return info


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
    if end > audio_pts_range[1]:
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

    Args
    ----------
    filename : str
        path to the video file
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension: int
        together decide the size of decoded frames
        - when video_width = 0, video_height = 0, and video_min_dimension = 0, keep the orignal frame resolution
        - when video_width = 0, video_height = 0, and video_min_dimension != 0, keep the aspect ratio and resize
            the frame so that shorter edge size is video_min_dimension
        - When video_width = 0, and video_height != 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_height
        - When video_width != 0, and video_height == 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_width
        - When video_width != 0, and video_height != 0, resize the frame so that frame video_width and video_height
            are set to $video_width and $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of audio_channels
    info : Dict
        metadata for the video and audio. Can contain the fields video_fps (float)
        and audio_fps (int)
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
    vframes, _vframe_pts, vtimebase, vfps, aframes, aframe_pts, atimebase, asample_rate = result
    info = _fill_info(vtimebase, vfps, atimebase, asample_rate)
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
    _vframes, vframe_pts, vtimebase, vfps, _aframes, aframe_pts, atimebase, asample_rate = result
    info = _fill_info(vtimebase, vfps, atimebase, asample_rate)

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


def _read_video_from_memory(
    file_buffer,
    seek_frame_margin=0.25,
    read_video_stream=1,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=1,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames

    Args
    ----------
    file_buffer : buffer
        buffer of compressed video content
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension: int
        together decide the size of decoded frames
        - when video_width = 0, video_height = 0, and video_min_dimension = 0, keep the orignal frame resolution
        - when video_width = 0, video_height = 0, and video_min_dimension != 0, keep the aspect ratio and resize
            the frame so that shorter edge size is video_min_dimension
        - When video_width = 0, and video_height != 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_height
        - When video_width != 0, and video_height == 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_width
        - When video_width != 0, and video_height != 0, resize the frame so that frame video_width and video_height
            are set to $video_width and $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio audio_channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of channels
    info : Dict
        metadata for the video and audio. Can contain the fields video fps (float)
        and audio sample rate (int)
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    video_tensor = torch.from_numpy(np.frombuffer(file_buffer, dtype=np.uint8))

    result = torch.ops.video_reader.read_video_from_memory(
        video_tensor,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )

    vframes, _vframe_pts, vtimebase, vfps, aframes, aframe_pts, atimebase, asample_rate = result
    info = _fill_info(vtimebase, vfps, atimebase, asample_rate)
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_memory(file_buffer):
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """

    video_tensor = torch.from_numpy(np.frombuffer(file_buffer, dtype=np.uint8))
    result = torch.ops.video_reader.read_video_from_memory(
        video_tensor,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
    _vframes, vframe_pts, vtimebase, vfps, _aframes, aframe_pts, atimebase, asample_rate = result
    info = _fill_info(vtimebase, vfps, atimebase, asample_rate)

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info