_video_opt.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
from fractions import Fraction
import numpy as np
import os
import torch
import imp
import warnings


_HAS_VIDEO_OPT = False

try:
    lib_dir = os.path.join(os.path.dirname(__file__), '..')
    _, path, description = imp.find_module("video_reader", [lib_dir])
    torch.ops.load_library(path)
    _HAS_VIDEO_OPT = True
except (ImportError, OSError):
    warnings.warn("video reader based on ffmpeg c++ ops not available")

default_timebase = Fraction(0, 1)


def _validate_pts(pts_range):
    if pts_range[1] > 0:
        assert pts_range[0] <= pts_range[1], \
            """Start pts should not be smaller than end pts, got
            start pts: %d and end pts: %d""" % (pts_range[0], pts_range[1])


29
def _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration):
30
31
32
    info = {}
    if vtimebase.numel() > 0:
        info["video_timebase"] = Fraction(vtimebase[0].item(), vtimebase[1].item())
33
34
35
        if vduration.numel() > 0:
            video_duration = vduration.item() * info["video_timebase"]
            info["video_duration"] = video_duration
36
37
38
39
    if vfps.numel() > 0:
        info["video_fps"] = vfps.item()
    if atimebase.numel() > 0:
        info["audio_timebase"] = Fraction(atimebase[0].item(), atimebase[1].item())
40
41
42
        if aduration.numel() > 0:
            audio_duration = aduration.item() * info["audio_timebase"]
            info["audio_duration"] = audio_duration
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
    if asample_rate.numel() > 0:
        info["audio_sample_rate"] = asample_rate.item()

    return info


def _align_audio_frames(aframes, aframe_pts, audio_pts_range):
    start, end = aframe_pts[0], aframe_pts[-1]
    num_samples = aframes.size(0)
    step_per_aframe = float(end - start + 1) / float(num_samples)
    s_idx = 0
    e_idx = num_samples
    if start < audio_pts_range[0]:
        s_idx = int((audio_pts_range[0] - start) / step_per_aframe)
    if end > audio_pts_range[1]:
        e_idx = int((audio_pts_range[1] - end) / step_per_aframe)
    return aframes[s_idx:e_idx, :]


def _read_video_from_file(
    filename,
    seek_frame_margin=0.25,
    read_video_stream=True,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=True,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from a file, returning both the video frames as well as
    the audio frames

    Args
    ----------
    filename : str
        path to the video file
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension: int
        together decide the size of decoded frames
        - when video_width = 0, video_height = 0, and video_min_dimension = 0, keep the orignal frame resolution
        - when video_width = 0, video_height = 0, and video_min_dimension != 0, keep the aspect ratio and resize
            the frame so that shorter edge size is video_min_dimension
        - When video_width = 0, and video_height != 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_height
        - When video_width != 0, and video_height == 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_width
        - When video_width != 0, and video_height != 0, resize the frame so that frame video_width and video_height
            are set to $video_width and $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of audio_channels
    info : Dict
        metadata for the video and audio. Can contain the fields video_fps (float)
        and audio_fps (int)
    """
    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

    result = torch.ops.video_reader.read_video_from_file(
        filename,
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )
150
151
152
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, atimebase, \
        asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


def _read_video_timestamps_from_file(filename):
    """
    Decode all video- and audio frames in the video. Only pts
    (presentation timestamp) is returned. The actual frame pixel data is not
    copied. Thus, it is much faster than read_video(...)
    """
    result = torch.ops.video_reader.read_video_from_file(
        filename,
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
185
186
187
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, atimebase, \
        asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
188
189
190
191
192
193

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info


194
195
196
197
198
199
200
201
202
203
204
205
206
def _probe_video_from_file(filename):
    """
    Probe a video file.
    Return:
        info [dict]: contain video meta information, including video_timebase,
            video_duration, video_fps, audio_timebase, audio_duration, audio_sample_rate
    """
    result = torch.ops.video_reader.probe_video_from_file(filename)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info


207
def _read_video_from_memory(
208
    video_data,
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    seek_frame_margin=0.25,
    read_video_stream=1,
    video_width=0,
    video_height=0,
    video_min_dimension=0,
    video_pts_range=(0, -1),
    video_timebase=default_timebase,
    read_audio_stream=1,
    audio_samples=0,
    audio_channels=0,
    audio_pts_range=(0, -1),
    audio_timebase=default_timebase,
):
    """
    Reads a video from memory, returning both the video frames as well as
    the audio frames

    Args
    ----------
228
229
    video_data : data type could be 1) torch.Tensor, dtype=torch.int8 or 2) python bytes
        compressed video content stored in either 1) torch.Tensor 2) python bytes
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
    seek_frame_margin: double, optional
        seeking frame in the stream is imprecise. Thus, when video_start_pts is specified,
        we seek the pts earlier by seek_frame_margin seconds
    read_video_stream: int, optional
        whether read video stream. If yes, set to 1. Otherwise, 0
    video_width/video_height/video_min_dimension: int
        together decide the size of decoded frames
        - when video_width = 0, video_height = 0, and video_min_dimension = 0, keep the orignal frame resolution
        - when video_width = 0, video_height = 0, and video_min_dimension != 0, keep the aspect ratio and resize
            the frame so that shorter edge size is video_min_dimension
        - When video_width = 0, and video_height != 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_height
        - When video_width != 0, and video_height == 0, keep the aspect ratio and resize the frame
            so that frame video_height is $video_width
        - When video_width != 0, and video_height != 0, resize the frame so that frame video_width and video_height
            are set to $video_width and $video_height, respectively
    video_pts_range : list(int), optional
        the start and end presentation timestamp of video stream
    video_timebase: Fraction, optional
        a Fraction rational number which denotes timebase in video stream
    read_audio_stream: int, optional
        whether read audio stream. If yes, set to 1. Otherwise, 0
    audio_samples: int, optional
        audio sampling rate
    audio_channels: int optional
        audio audio_channels
    audio_pts_range : list(int), optional
        the start and end presentation timestamp of audio stream
    audio_timebase: Fraction, optional
        a Fraction rational number which denotes time base in audio stream

    Returns
    -------
    vframes : Tensor[T, H, W, C]
        the `T` video frames
    aframes : Tensor[L, K]
        the audio frames, where `L` is the number of points and
            `K` is the number of channels
    info : Dict
        metadata for the video and audio. Can contain the fields video fps (float)
        and audio sample rate (int)
    """

    _validate_pts(video_pts_range)
    _validate_pts(audio_pts_range)

276
277
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
278
279

    result = torch.ops.video_reader.read_video_from_memory(
280
        video_data,
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        seek_frame_margin,
        0,  # getPtsOnly
        read_video_stream,
        video_width,
        video_height,
        video_min_dimension,
        video_pts_range[0],
        video_pts_range[1],
        video_timebase.numerator,
        video_timebase.denominator,
        read_audio_stream,
        audio_samples,
        audio_channels,
        audio_pts_range[0],
        audio_pts_range[1],
        audio_timebase.numerator,
        audio_timebase.denominator,
    )

300
301
302
    vframes, _vframe_pts, vtimebase, vfps, vduration, aframes, aframe_pts, \
        atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
303
304
305
306
307
308
    if aframes.numel() > 0:
        # when audio stream is found
        aframes = _align_audio_frames(aframes, aframe_pts, audio_pts_range)
    return vframes, aframes, info


309
def _read_video_timestamps_from_memory(video_data):
310
311
312
313
314
    """
    Decode all frames in the video. Only pts (presentation timestamp) is returned.
    The actual frame pixel data is not copied. Thus, read_video_timestamps(...)
    is much faster than read_video(...)
    """
315
316
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
317
    result = torch.ops.video_reader.read_video_from_memory(
318
        video_data,
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
        0,  # seek_frame_margin
        1,  # getPtsOnly
        1,  # read_video_stream
        0,  # video_width
        0,  # video_height
        0,  # video_min_dimension
        0,  # video_start_pts
        -1,  # video_end_pts
        0,  # video_timebase_num
        1,  # video_timebase_den
        1,  # read_audio_stream
        0,  # audio_samples
        0,  # audio_channels
        0,  # audio_start_pts
        -1,  # audio_end_pts
        0,  # audio_timebase_num
        1,  # audio_timebase_den
    )
337
338
339
    _vframes, vframe_pts, vtimebase, vfps, vduration, _aframes, aframe_pts, \
        atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
340
341
342
343

    vframe_pts = vframe_pts.numpy().tolist()
    aframe_pts = aframe_pts.numpy().tolist()
    return vframe_pts, aframe_pts, info
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358


def _probe_video_from_memory(video_data):
    """
    Probe a video in memory.
    Return:
        info [dict]: contain video meta information, including video_timebase,
            video_duration, video_fps, audio_timebase, audio_duration, audio_sample_rate
    """
    if not isinstance(video_data, torch.Tensor):
        video_data = torch.from_numpy(np.frombuffer(video_data, dtype=np.uint8))
    result = torch.ops.video_reader.probe_video_from_memory(video_data)
    vtimebase, vfps, vduration, atimebase, asample_rate, aduration = result
    info = _fill_info(vtimebase, vfps, vduration, atimebase, asample_rate, aduration)
    return info