test_datasets.py 89.9 KB
Newer Older
1
import bz2
2
import contextlib
Philip Meier's avatar
Philip Meier committed
3
import csv
4
import io
Philip Meier's avatar
Philip Meier committed
5
import itertools
6
import json
7
import os
8
9
import pathlib
import pickle
Philip Meier's avatar
Philip Meier committed
10
import random
11
import shutil
Philip Meier's avatar
Philip Meier committed
12
import string
13
14
import unittest
import xml.etree.ElementTree as ET
15
import zipfile
16

17
18
import datasets_utils
import numpy as np
19
import PIL
20
import pytest
21
22
23
import torch
import torch.nn.functional as F
from torchvision import datasets
24

25

26
27
class STL10TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.STL10
28
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test", "unlabeled", "train+unlabeled"))
29

30
31
32
33
    @staticmethod
    def _make_binary_file(num_elements, root, name):
        file_name = os.path.join(root, name)
        np.zeros(num_elements, dtype=np.uint8).tofile(file_name)
34

35
36
37
    @staticmethod
    def _make_image_file(num_images, root, name, num_channels=3, height=96, width=96):
        STL10TestCase._make_binary_file(num_images * num_channels * height * width, root, name)
38

39
40
41
    @staticmethod
    def _make_label_file(num_images, root, name):
        STL10TestCase._make_binary_file(num_images, root, name)
42

43
44
45
46
47
    @staticmethod
    def _make_class_names_file(root, name="class_names.txt"):
        with open(os.path.join(root, name), "w") as fh:
            for cname in ("airplane", "bird"):
                fh.write(f"{cname}\n")
48

49
50
51
52
53
54
55
56
57
    @staticmethod
    def _make_fold_indices_file(root):
        num_folds = 10
        offset = 0
        with open(os.path.join(root, "fold_indices.txt"), "w") as fh:
            for fold in range(num_folds):
                line = " ".join([str(idx) for idx in range(offset, offset + fold + 1)])
                fh.write(f"{line}\n")
                offset += fold + 1
58

59
        return tuple(range(1, num_folds + 1))
60

61
62
63
64
    @staticmethod
    def _make_train_files(root, num_unlabeled_images=1):
        num_images_in_fold = STL10TestCase._make_fold_indices_file(root)
        num_train_images = sum(num_images_in_fold)
65

66
67
68
        STL10TestCase._make_image_file(num_train_images, root, "train_X.bin")
        STL10TestCase._make_label_file(num_train_images, root, "train_y.bin")
        STL10TestCase._make_image_file(1, root, "unlabeled_X.bin")
69

70
        return dict(train=num_train_images, unlabeled=num_unlabeled_images)
71

72
73
74
75
    @staticmethod
    def _make_test_files(root, num_images=2):
        STL10TestCase._make_image_file(num_images, root, "test_X.bin")
        STL10TestCase._make_label_file(num_images, root, "test_y.bin")
76

77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
        return dict(test=num_images)

    def inject_fake_data(self, tmpdir, config):
        root_folder = os.path.join(tmpdir, "stl10_binary")
        os.mkdir(root_folder)

        num_images_in_split = self._make_train_files(root_folder)
        num_images_in_split.update(self._make_test_files(root_folder))
        self._make_class_names_file(root_folder)

        return sum(num_images_in_split[part] for part in config["split"].split("+"))

    def test_folds(self):
        for fold in range(10):
            with self.create_dataset(split="train", folds=fold) as (dataset, _):
92
                assert len(dataset) == fold + 1
93
94

    def test_unlabeled(self):
95
        with self.create_dataset(split="unlabeled") as (dataset, _):
96
            labels = [dataset[idx][1] for idx in range(len(dataset))]
97
            assert all(label == -1 for label in labels)
98

99
    def test_invalid_folds1(self):
100
        with pytest.raises(ValueError):
101
102
            with self.create_dataset(folds=10):
                pass
103

104
    def test_invalid_folds2(self):
105
        with pytest.raises(ValueError):
106
107
            with self.create_dataset(folds="0"):
                pass
108
109


110
111
112
113
class Caltech101TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Caltech101
    FEATURE_TYPES = (PIL.Image.Image, (int, np.ndarray, tuple))

114
115
116
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
        target_type=("category", "annotation", ["category", "annotation"])
    )
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
    REQUIRED_PACKAGES = ("scipy",)

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "caltech101"
        images = root / "101_ObjectCategories"
        annotations = root / "Annotations"

        categories = (("Faces", "Faces_2"), ("helicopter", "helicopter"), ("ying_yang", "ying_yang"))
        num_images_per_category = 2

        for image_category, annotation_category in categories:
            datasets_utils.create_image_folder(
                root=images,
                name=image_category,
                file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )
            self._create_annotation_folder(
                root=annotations,
                name=annotation_category,
                file_name_fn=lambda idx: f"annotation_{idx + 1:04d}.mat",
                num_examples=num_images_per_category,
            )

        # This is included in the original archive, but is removed by the dataset. Thus, an empty directory suffices.
        os.makedirs(images / "BACKGROUND_Google")

        return num_images_per_category * len(categories)

    def _create_annotation_folder(self, root, name, file_name_fn, num_examples):
        root = pathlib.Path(root) / name
        os.makedirs(root)

        for idx in range(num_examples):
            self._create_annotation_file(root, file_name_fn(idx))

    def _create_annotation_file(self, root, name):
        mdict = dict(obj_contour=torch.rand((2, torch.randint(3, 6, size=())), dtype=torch.float64).numpy())
        datasets_utils.lazy_importer.scipy.io.savemat(str(pathlib.Path(root) / name), mdict)

    def test_combined_targets(self):
        target_types = ["category", "annotation"]

        individual_targets = []
        for target_type in target_types:
            with self.create_dataset(target_type=target_type) as (dataset, _):
                _, target = dataset[0]
                individual_targets.append(target)

        with self.create_dataset(target_type=target_types) as (dataset, _):
            _, combined_targets = dataset[0]

        actual = len(individual_targets)
        expected = len(combined_targets)
171
172
173
174
        assert (
            actual == expected
        ), "The number of the returned combined targets does not match the the number targets if requested "
        f"individually: {actual} != {expected}",
175
176
177
178
179

        for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
            with self.subTest(target_type=target_type):
                actual = type(combined_target)
                expected = type(individual_target)
180
181
182
183
                assert (
                    actual is expected
                ), "Type of the combined target does not match the type of the corresponding individual target: "
                f"{actual} is not {expected}",
184
185


186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
class Caltech256TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Caltech256

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / "caltech256" / "256_ObjectCategories"

        categories = ((1, "ak47"), (127, "laptop-101"), (257, "clutter"))
        num_images_per_category = 2

        for idx, category in categories:
            datasets_utils.create_image_folder(
                tmpdir,
                name=f"{idx:03d}.{category}",
                file_name_fn=lambda image_idx: f"{idx:03d}_{image_idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )

        return num_images_per_category * len(categories)


206
207
208
class WIDERFaceTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.WIDERFace
    FEATURE_TYPES = (PIL.Image.Image, (dict, type(None)))  # test split returns None as target
209
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val", "test"))
210
211

    def inject_fake_data(self, tmpdir, config):
212
213
        widerface_dir = pathlib.Path(tmpdir) / "widerface"
        annotations_dir = widerface_dir / "wider_face_split"
214
215
216
217
218
219
220
221
222
        os.makedirs(annotations_dir)

        split_to_idx = split_to_num_examples = {
            "train": 1,
            "val": 2,
            "test": 3,
        }

        # We need to create all folders regardless of the split in config
223
        for split in ("train", "val", "test"):
224
225
226
227
228
            split_idx = split_to_idx[split]
            num_examples = split_to_num_examples[split]

            datasets_utils.create_image_folder(
                root=tmpdir,
229
                name=widerface_dir / f"WIDER_{split}" / "images" / "0--Parade",
230
231
232
233
234
                file_name_fn=lambda image_idx: f"0_Parade_marchingband_1_{split_idx + image_idx}.jpg",
                num_examples=num_examples,
            )

            annotation_file_name = {
235
236
237
                "train": annotations_dir / "wider_face_train_bbx_gt.txt",
                "val": annotations_dir / "wider_face_val_bbx_gt.txt",
                "test": annotations_dir / "wider_face_test_filelist.txt",
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
            }[split]

            annotation_content = {
                "train": "".join(
                    f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n449 330 122 149 0 0 0 0 0 0\n"
                    for image_idx in range(num_examples)
                ),
                "val": "".join(
                    f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n1\n501 160 285 443 0 0 0 0 0 0\n"
                    for image_idx in range(num_examples)
                ),
                "test": "".join(
                    f"0--Parade/0_Parade_marchingband_1_{split_idx + image_idx}.jpg\n"
                    for image_idx in range(num_examples)
                ),
            }[split]

            with open(annotation_file_name, "w") as annotation_file:
                annotation_file.write(annotation_content)

        return split_to_num_examples[config["split"]]


261
262
263
264
265
266
267
268
269
class CityScapesTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Cityscapes
    TARGET_TYPES = (
        "instance",
        "semantic",
        "polygon",
        "color",
    )
    ADDITIONAL_CONFIGS = (
270
        *datasets_utils.combinations_grid(mode=("fine",), split=("train", "test", "val"), target_type=TARGET_TYPES),
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        *datasets_utils.combinations_grid(
            mode=("coarse",),
            split=("train", "train_extra", "val"),
            target_type=TARGET_TYPES,
        ),
    )
    FEATURE_TYPES = (PIL.Image.Image, (dict, PIL.Image.Image))

    def inject_fake_data(self, tmpdir, config):

        tmpdir = pathlib.Path(tmpdir)

        mode_to_splits = {
            "Coarse": ["train", "train_extra", "val"],
            "Fine": ["train", "test", "val"],
        }

        if config["split"] == "train":  # just for coverage of the number of samples
            cities = ["bochum", "bremen"]
        else:
            cities = ["bochum"]

        polygon_target = {
            "imgHeight": 1024,
            "imgWidth": 2048,
            "objects": [
                {
                    "label": "sky",
                    "polygon": [
                        [1241, 0],
                        [1234, 156],
                        [1478, 197],
                        [1611, 172],
                        [1606, 0],
                    ],
                },
                {
                    "label": "road",
                    "polygon": [
                        [0, 448],
                        [1331, 274],
                        [1473, 265],
                        [2047, 605],
                        [2047, 1023],
                        [0, 1023],
                    ],
                },
            ],
        }

        for mode in ["Coarse", "Fine"]:
            gt_dir = tmpdir / f"gt{mode}"
            for split in mode_to_splits[mode]:
                for city in cities:
325

326
327
328
329
330
331
332
333
                    def make_image(name, size=10):
                        datasets_utils.create_image_folder(
                            root=gt_dir / split,
                            name=city,
                            file_name_fn=lambda _: name,
                            size=size,
                            num_examples=1,
                        )
334

335
336
337
338
339
340
341
342
343
                    make_image(f"{city}_000000_000000_gt{mode}_instanceIds.png")
                    make_image(f"{city}_000000_000000_gt{mode}_labelIds.png")
                    make_image(f"{city}_000000_000000_gt{mode}_color.png", size=(4, 10, 10))

                    polygon_target_name = gt_dir / split / city / f"{city}_000000_000000_gt{mode}_polygons.json"
                    with open(polygon_target_name, "w") as outfile:
                        json.dump(polygon_target, outfile)

        # Create leftImg8bit folder
344
        for split in ["test", "train_extra", "train", "val"]:
345
346
347
348
349
350
351
352
            for city in cities:
                datasets_utils.create_image_folder(
                    root=tmpdir / "leftImg8bit" / split,
                    name=city,
                    file_name_fn=lambda _: f"{city}_000000_000000_leftImg8bit.png",
                    num_examples=1,
                )

353
354
355
        info = {"num_examples": len(cities)}
        if config["target_type"] == "polygon":
            info["expected_polygon_target"] = polygon_target
356
357
358
        return info

    def test_combined_targets(self):
359
        target_types = ["semantic", "polygon", "color"]
360
361
362

        with self.create_dataset(target_type=target_types) as (dataset, _):
            output = dataset[0]
363
364
365
366
367
368
369
370
            assert isinstance(output, tuple)
            assert len(output) == 2
            assert isinstance(output[0], PIL.Image.Image)
            assert isinstance(output[1], tuple)
            assert len(output[1]) == 3
            assert isinstance(output[1][0], PIL.Image.Image)  # semantic
            assert isinstance(output[1][1], dict)  # polygon
            assert isinstance(output[1][2], PIL.Image.Image)  # color
371
372

    def test_feature_types_target_color(self):
373
        with self.create_dataset(target_type="color") as (dataset, _):
374
            color_img, color_target = dataset[0]
375
376
            assert isinstance(color_img, PIL.Image.Image)
            assert np.array(color_target).shape[2] == 4
377
378

    def test_feature_types_target_polygon(self):
379
        with self.create_dataset(target_type="polygon") as (dataset, info):
380
            polygon_img, polygon_target = dataset[0]
381
            assert isinstance(polygon_img, PIL.Image.Image)
382
            (polygon_target, info["expected_polygon_target"])
383
384


385
386
class ImageNetTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.ImageNet
387
388
    REQUIRED_PACKAGES = ("scipy",)
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val"))
389
390
391
392

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

393
394
        wnid = "n01234567"
        if config["split"] == "train":
395
396
397
            num_examples = 3
            datasets_utils.create_image_folder(
                root=tmpdir,
398
                name=tmpdir / "train" / wnid / wnid,
399
400
401
402
403
404
405
                file_name_fn=lambda image_idx: f"{wnid}_{image_idx}.JPEG",
                num_examples=num_examples,
            )
        else:
            num_examples = 1
            datasets_utils.create_image_folder(
                root=tmpdir,
406
                name=tmpdir / "val" / wnid,
407
408
409
410
411
                file_name_fn=lambda image_ifx: "ILSVRC2012_val_0000000{image_idx}.JPEG",
                num_examples=num_examples,
            )

        wnid_to_classes = {wnid: [1]}
412
        torch.save((wnid_to_classes, None), tmpdir / "meta.bin")
413
414
415
        return num_examples


416
417
class CIFAR10TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CIFAR10
418
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False))
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446

    _VERSION_CONFIG = dict(
        base_folder="cifar-10-batches-py",
        train_files=tuple(f"data_batch_{idx}" for idx in range(1, 6)),
        test_files=("test_batch",),
        labels_key="labels",
        meta_file="batches.meta",
        num_categories=10,
        categories_key="label_names",
    )

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / self._VERSION_CONFIG["base_folder"]
        os.makedirs(tmpdir)

        num_images_per_file = 1
        for name in itertools.chain(self._VERSION_CONFIG["train_files"], self._VERSION_CONFIG["test_files"]):
            self._create_batch_file(tmpdir, name, num_images_per_file)

        categories = self._create_meta_file(tmpdir)

        return dict(
            num_examples=num_images_per_file
            * len(self._VERSION_CONFIG["train_files"] if config["train"] else self._VERSION_CONFIG["test_files"]),
            categories=categories,
        )

    def _create_batch_file(self, root, name, num_images):
447
        np_rng = np.random.RandomState(0)
448
        data = datasets_utils.create_image_or_video_tensor((num_images, 32 * 32 * 3))
449
        labels = np_rng.randint(0, self._VERSION_CONFIG["num_categories"], size=num_images).tolist()
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
        self._create_binary_file(root, name, {"data": data, self._VERSION_CONFIG["labels_key"]: labels})

    def _create_meta_file(self, root):
        categories = [
            f"{idx:0{len(str(self._VERSION_CONFIG['num_categories'] - 1))}d}"
            for idx in range(self._VERSION_CONFIG["num_categories"])
        ]
        self._create_binary_file(
            root, self._VERSION_CONFIG["meta_file"], {self._VERSION_CONFIG["categories_key"]: categories}
        )
        return categories

    def _create_binary_file(self, root, name, content):
        with open(pathlib.Path(root) / name, "wb") as fh:
            pickle.dump(content, fh)

    def test_class_to_idx(self):
        with self.create_dataset() as (dataset, info):
            expected = {category: label for label, category in enumerate(info["categories"])}
            actual = dataset.class_to_idx
470
            assert actual == expected
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486


class CIFAR100(CIFAR10TestCase):
    DATASET_CLASS = datasets.CIFAR100

    _VERSION_CONFIG = dict(
        base_folder="cifar-100-python",
        train_files=("train",),
        test_files=("test",),
        labels_key="fine_labels",
        meta_file="meta",
        num_categories=100,
        categories_key="fine_label_names",
    )


Philip Meier's avatar
Philip Meier committed
487
488
489
490
class CelebATestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CelebA
    FEATURE_TYPES = (PIL.Image.Image, (torch.Tensor, int, tuple, type(None)))

491
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
Philip Meier's avatar
Philip Meier committed
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
        split=("train", "valid", "test", "all"),
        target_type=("attr", "identity", "bbox", "landmarks", ["attr", "identity"]),
    )

    _SPLIT_TO_IDX = dict(train=0, valid=1, test=2)

    def inject_fake_data(self, tmpdir, config):
        base_folder = pathlib.Path(tmpdir) / "celeba"
        os.makedirs(base_folder)

        num_images, num_images_per_split = self._create_split_txt(base_folder)

        datasets_utils.create_image_folder(
            base_folder, "img_align_celeba", lambda idx: f"{idx + 1:06d}.jpg", num_images
        )
        attr_names = self._create_attr_txt(base_folder, num_images)
        self._create_identity_txt(base_folder, num_images)
        self._create_bbox_txt(base_folder, num_images)
        self._create_landmarks_txt(base_folder, num_images)

        return dict(num_examples=num_images_per_split[config["split"]], attr_names=attr_names)

    def _create_split_txt(self, root):
515
        num_images_per_split = dict(train=4, valid=3, test=2)
Philip Meier's avatar
Philip Meier committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573

        data = [
            [self._SPLIT_TO_IDX[split]] for split, num_images in num_images_per_split.items() for _ in range(num_images)
        ]
        self._create_txt(root, "list_eval_partition.txt", data)

        num_images_per_split["all"] = num_images = sum(num_images_per_split.values())
        return num_images, num_images_per_split

    def _create_attr_txt(self, root, num_images):
        header = ("5_o_Clock_Shadow", "Young")
        data = torch.rand((num_images, len(header))).ge(0.5).int().mul(2).sub(1).tolist()
        self._create_txt(root, "list_attr_celeba.txt", data, header=header, add_num_examples=True)
        return header

    def _create_identity_txt(self, root, num_images):
        data = torch.randint(1, 4, size=(num_images, 1)).tolist()
        self._create_txt(root, "identity_CelebA.txt", data)

    def _create_bbox_txt(self, root, num_images):
        header = ("x_1", "y_1", "width", "height")
        data = torch.randint(10, size=(num_images, len(header))).tolist()
        self._create_txt(
            root, "list_bbox_celeba.txt", data, header=header, add_num_examples=True, add_image_id_to_header=True
        )

    def _create_landmarks_txt(self, root, num_images):
        header = ("lefteye_x", "rightmouth_y")
        data = torch.randint(10, size=(num_images, len(header))).tolist()
        self._create_txt(root, "list_landmarks_align_celeba.txt", data, header=header, add_num_examples=True)

    def _create_txt(self, root, name, data, header=None, add_num_examples=False, add_image_id_to_header=False):
        with open(pathlib.Path(root) / name, "w") as fh:
            if add_num_examples:
                fh.write(f"{len(data)}\n")

            if header:
                if add_image_id_to_header:
                    header = ("image_id", *header)
                fh.write(f"{' '.join(header)}\n")

            for idx, line in enumerate(data, 1):
                fh.write(f"{' '.join((f'{idx:06d}.jpg', *[str(value) for value in line]))}\n")

    def test_combined_targets(self):
        target_types = ["attr", "identity", "bbox", "landmarks"]

        individual_targets = []
        for target_type in target_types:
            with self.create_dataset(target_type=target_type) as (dataset, _):
                _, target = dataset[0]
                individual_targets.append(target)

        with self.create_dataset(target_type=target_types) as (dataset, _):
            _, combined_targets = dataset[0]

        actual = len(individual_targets)
        expected = len(combined_targets)
574
575
576
577
        assert (
            actual == expected
        ), "The number of the returned combined targets does not match the the number targets if requested "
        f"individually: {actual} != {expected}",
Philip Meier's avatar
Philip Meier committed
578
579
580
581
582

        for target_type, combined_target, individual_target in zip(target_types, combined_targets, individual_targets):
            with self.subTest(target_type=target_type):
                actual = type(combined_target)
                expected = type(individual_target)
583
584
585
586
                assert (
                    actual is expected
                ), "Type of the combined target does not match the type of the corresponding individual target: "
                f"{actual} is not {expected}",
Philip Meier's avatar
Philip Meier committed
587
588
589
590
591

    def test_no_target(self):
        with self.create_dataset(target_type=[]) as (dataset, _):
            _, target = dataset[0]

592
        assert target is None
Philip Meier's avatar
Philip Meier committed
593
594
595

    def test_attr_names(self):
        with self.create_dataset() as (dataset, info):
596
            assert tuple(dataset.attr_names) == info["attr_names"]
Philip Meier's avatar
Philip Meier committed
597

598
    def test_images_names_split(self):
599
        with self.create_dataset(split="all") as (dataset, _):
600
601
602
603
604
605
606
607
608
            all_imgs_names = set(dataset.filename)

        merged_imgs_names = set()
        for split in ["train", "valid", "test"]:
            with self.create_dataset(split=split) as (dataset, _):
                merged_imgs_names.update(dataset.filename)

        assert merged_imgs_names == all_imgs_names

Philip Meier's avatar
Philip Meier committed
609

610
611
612
613
class VOCSegmentationTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.VOCSegmentation
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image)

614
    ADDITIONAL_CONFIGS = (
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
        *datasets_utils.combinations_grid(
            year=[f"20{year:02d}" for year in range(7, 13)], image_set=("train", "val", "trainval")
        ),
        dict(year="2007", image_set="test"),
        dict(year="2007-test", image_set="test"),
    )

    def inject_fake_data(self, tmpdir, config):
        year, is_test_set = (
            ("2007", True)
            if config["year"] == "2007-test" or config["image_set"] == "test"
            else (config["year"], False)
        )
        image_set = config["image_set"]

        base_dir = pathlib.Path(tmpdir)
        if year == "2011":
            base_dir /= "TrainVal"
        base_dir = base_dir / "VOCdevkit" / f"VOC{year}"
        os.makedirs(base_dir)

        num_images, num_images_per_image_set = self._create_image_set_files(base_dir, "ImageSets", is_test_set)
        datasets_utils.create_image_folder(base_dir, "JPEGImages", lambda idx: f"{idx:06d}.jpg", num_images)

        datasets_utils.create_image_folder(base_dir, "SegmentationClass", lambda idx: f"{idx:06d}.png", num_images)
        annotation = self._create_annotation_files(base_dir, "Annotations", num_images)

        return dict(num_examples=num_images_per_image_set[image_set], annotation=annotation)

    def _create_image_set_files(self, root, name, is_test_set):
        root = pathlib.Path(root) / name
        src = pathlib.Path(root) / "Main"
        os.makedirs(src, exist_ok=True)

        idcs = dict(train=(0, 1, 2), val=(3, 4), test=(5,))
        idcs["trainval"] = (*idcs["train"], *idcs["val"])

        for image_set in ("test",) if is_test_set else ("train", "val", "trainval"):
            self._create_image_set_file(src, image_set, idcs[image_set])

        shutil.copytree(src, root / "Segmentation")

        num_images = max(itertools.chain(*idcs.values())) + 1
658
        num_images_per_image_set = {image_set: len(idcs_) for image_set, idcs_ in idcs.items()}
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
        return num_images, num_images_per_image_set

    def _create_image_set_file(self, root, image_set, idcs):
        with open(pathlib.Path(root) / f"{image_set}.txt", "w") as fh:
            fh.writelines([f"{idx:06d}\n" for idx in idcs])

    def _create_annotation_files(self, root, name, num_images):
        root = pathlib.Path(root) / name
        os.makedirs(root)

        for idx in range(num_images):
            annotation = self._create_annotation_file(root, f"{idx:06d}.xml")

        return annotation

    def _create_annotation_file(self, root, name):
        def add_child(parent, name, text=None):
            child = ET.SubElement(parent, name)
            child.text = text
            return child

        def add_name(obj, name="dog"):
            add_child(obj, "name", name)
            return name

        def add_bndbox(obj, bndbox=None):
            if bndbox is None:
                bndbox = {"xmin": "1", "xmax": "2", "ymin": "3", "ymax": "4"}

            obj = add_child(obj, "bndbox")
            for name, text in bndbox.items():
                add_child(obj, name, text)

            return bndbox

        annotation = ET.Element("annotation")
        obj = add_child(annotation, "object")
        data = dict(name=add_name(obj), bndbox=add_bndbox(obj))

        with open(pathlib.Path(root) / name, "wb") as fh:
            fh.write(ET.tostring(annotation))

        return data


class VOCDetectionTestCase(VOCSegmentationTestCase):
    DATASET_CLASS = datasets.VOCDetection
    FEATURE_TYPES = (PIL.Image.Image, dict)

    def test_annotations(self):
        with self.create_dataset() as (dataset, info):
            _, target = dataset[0]

712
            assert "annotation" in target
713
714
            annotation = target["annotation"]

715
            assert "object" in annotation
716
717
            objects = annotation["object"]

718
            assert len(objects) == 1
719
720
            object = objects[0]

721
            assert object == info["annotation"]
722
723


Philip Meier's avatar
Philip Meier committed
724
725
726
727
728
729
class CocoDetectionTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CocoDetection
    FEATURE_TYPES = (PIL.Image.Image, list)

    REQUIRED_PACKAGES = ("pycocotools",)

730
731
732
733
734
735
736
737
738
739
    _IMAGE_FOLDER = "images"
    _ANNOTATIONS_FOLDER = "annotations"
    _ANNOTATIONS_FILE = "annotations.json"

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._IMAGE_FOLDER
        annotation_file = tmpdir / self._ANNOTATIONS_FOLDER / self._ANNOTATIONS_FILE
        return root, annotation_file

Philip Meier's avatar
Philip Meier committed
740
741
742
743
744
745
746
    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

        num_images = 3
        num_annotations_per_image = 2

        files = datasets_utils.create_image_folder(
747
            tmpdir, name=self._IMAGE_FOLDER, file_name_fn=lambda idx: f"{idx:012d}.jpg", num_examples=num_images
Philip Meier's avatar
Philip Meier committed
748
        )
749
        file_names = [file.relative_to(tmpdir / self._IMAGE_FOLDER) for file in files]
Philip Meier's avatar
Philip Meier committed
750

751
        annotation_folder = tmpdir / self._ANNOTATIONS_FOLDER
Philip Meier's avatar
Philip Meier committed
752
        os.makedirs(annotation_folder)
753
754
755
        info = self._create_annotation_file(
            annotation_folder, self._ANNOTATIONS_FILE, file_names, num_annotations_per_image
        )
Philip Meier's avatar
Philip Meier committed
756
757

        info["num_examples"] = num_images
758
        return info
Philip Meier's avatar
Philip Meier committed
759

760
    def _create_annotation_file(self, root, name, file_names, num_annotations_per_image):
Philip Meier's avatar
Philip Meier committed
761
762
763
764
        image_ids = [int(file_name.stem) for file_name in file_names]
        images = [dict(file_name=str(file_name), id=id) for file_name, id in zip(file_names, image_ids)]

        annotations, info = self._create_annotations(image_ids, num_annotations_per_image)
765
        self._create_json(root, name, dict(images=images, annotations=annotations))
Philip Meier's avatar
Philip Meier committed
766

767
        return info
Philip Meier's avatar
Philip Meier committed
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796

    def _create_annotations(self, image_ids, num_annotations_per_image):
        annotations = datasets_utils.combinations_grid(
            image_id=image_ids, bbox=([1.0, 2.0, 3.0, 4.0],) * num_annotations_per_image
        )
        for id, annotation in enumerate(annotations):
            annotation["id"] = id
        return annotations, dict()

    def _create_json(self, root, name, content):
        file = pathlib.Path(root) / name
        with open(file, "w") as fh:
            json.dump(content, fh)
        return file


class CocoCaptionsTestCase(CocoDetectionTestCase):
    DATASET_CLASS = datasets.CocoCaptions

    def _create_annotations(self, image_ids, num_annotations_per_image):
        captions = [str(idx) for idx in range(num_annotations_per_image)]
        annotations = datasets_utils.combinations_grid(image_id=image_ids, caption=captions)
        for id, annotation in enumerate(annotations):
            annotation["id"] = id
        return annotations, dict(captions=captions)

    def test_captions(self):
        with self.create_dataset() as (dataset, info):
            _, captions = dataset[0]
797
            assert tuple(captions) == tuple(info["captions"])
Philip Meier's avatar
Philip Meier committed
798
799


Philip Meier's avatar
Philip Meier committed
800
801
802
class UCF101TestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.UCF101

803
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False))
Philip Meier's avatar
Philip Meier committed
804

805
806
807
808
809
810
811
812
813
    _VIDEO_FOLDER = "videos"
    _ANNOTATIONS_FOLDER = "annotations"

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._VIDEO_FOLDER
        annotation_path = tmpdir / self._ANNOTATIONS_FOLDER
        return root, annotation_path

Philip Meier's avatar
Philip Meier committed
814
815
816
    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

817
        video_folder = tmpdir / self._VIDEO_FOLDER
Philip Meier's avatar
Philip Meier committed
818
819
820
        os.makedirs(video_folder)
        video_files = self._create_videos(video_folder)

821
        annotations_folder = tmpdir / self._ANNOTATIONS_FOLDER
Philip Meier's avatar
Philip Meier committed
822
823
824
        os.makedirs(annotations_folder)
        num_examples = self._create_annotation_files(annotations_folder, video_files, config["fold"], config["train"])

825
        return num_examples
Philip Meier's avatar
Philip Meier committed
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859

    def _create_videos(self, root, num_examples_per_class=3):
        def file_name_fn(cls, idx, clips_per_group=2):
            return f"v_{cls}_g{(idx // clips_per_group) + 1:02d}_c{(idx % clips_per_group) + 1:02d}.avi"

        video_files = [
            datasets_utils.create_video_folder(root, cls, lambda idx: file_name_fn(cls, idx), num_examples_per_class)
            for cls in ("ApplyEyeMakeup", "YoYo")
        ]
        return [path.relative_to(root) for path in itertools.chain(*video_files)]

    def _create_annotation_files(self, root, video_files, fold, train):
        current_videos = random.sample(video_files, random.randrange(1, len(video_files) - 1))
        current_annotation = self._annotation_file_name(fold, train)
        self._create_annotation_file(root, current_annotation, current_videos)

        other_videos = set(video_files) - set(current_videos)
        other_annotations = [
            self._annotation_file_name(fold, train) for fold, train in itertools.product((1, 2, 3), (True, False))
        ]
        other_annotations.remove(current_annotation)
        for name in other_annotations:
            self._create_annotation_file(root, name, other_videos)

        return len(current_videos)

    def _annotation_file_name(self, fold, train):
        return f"{'train' if train else 'test'}list{fold:02d}.txt"

    def _create_annotation_file(self, root, name, video_files):
        with open(pathlib.Path(root) / name, "w") as fh:
            fh.writelines(f"{file}\n" for file in sorted(video_files))


Philip Meier's avatar
Philip Meier committed
860
861
862
863
class LSUNTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.LSUN

    REQUIRED_PACKAGES = ("lmdb",)
864
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
Philip Meier's avatar
Philip Meier committed
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
        classes=("train", "test", "val", ["bedroom_train", "church_outdoor_train"])
    )

    _CATEGORIES = (
        "bedroom",
        "bridge",
        "church_outdoor",
        "classroom",
        "conference_room",
        "dining_room",
        "kitchen",
        "living_room",
        "restaurant",
        "tower",
    )

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir)

        num_images = 0
        for cls in self._parse_classes(config["classes"]):
            num_images += self._create_lmdb(root, cls)

        return num_images

    @contextlib.contextmanager
891
    def create_dataset(self, *args, **kwargs):
Philip Meier's avatar
Philip Meier committed
892
893
894
        with super().create_dataset(*args, **kwargs) as output:
            yield output
            # Currently datasets.LSUN caches the keys in the current directory rather than in the root directory. Thus,
895
            # this creates a number of _cache_* files in the current directory that will not be removed together
Philip Meier's avatar
Philip Meier committed
896
897
898
            # with the temporary directory
            for file in os.listdir(os.getcwd()):
                if file.startswith("_cache_"):
899
900
901
902
903
904
905
                    try:
                        os.remove(file)
                    except FileNotFoundError:
                        # When the same test is run in parallel (in fb internal tests), a thread may remove another
                        # thread's file. We should be able to remove the try/except when
                        # https://github.com/pytorch/vision/issues/825 is fixed.
                        pass
Philip Meier's avatar
Philip Meier committed
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

    def _parse_classes(self, classes):
        if not isinstance(classes, str):
            return classes

        split = classes
        if split == "test":
            return [split]

        return [f"{category}_{split}" for category in self._CATEGORIES]

    def _create_lmdb(self, root, cls):
        lmdb = datasets_utils.lazy_importer.lmdb
        hexdigits_lowercase = string.digits + string.ascii_lowercase[:6]

        folder = f"{cls}_lmdb"

        num_images = torch.randint(1, 4, size=()).item()
924
        format = "png"
Philip Meier's avatar
Philip Meier committed
925
926
927
928
929
930
931
        files = datasets_utils.create_image_folder(root, folder, lambda idx: f"{idx}.{format}", num_images)

        with lmdb.open(str(root / folder)) as env, env.begin(write=True) as txn:
            for file in files:
                key = "".join(random.choice(hexdigits_lowercase) for _ in range(40)).encode()

                buffer = io.BytesIO()
932
                PIL.Image.open(file).save(buffer, format)
Philip Meier's avatar
Philip Meier committed
933
934
935
936
937
938
939
940
941
                buffer.seek(0)
                value = buffer.read()

                txn.put(key, value)

                os.remove(file)

        return num_images

942
943
944
    def test_not_found_or_corrupted(self):
        # LSUN does not raise built-in exception, but a custom one. It is expressive enough to not 'cast' it to
        # RuntimeError or FileNotFoundError that are normally checked by this test.
945
        with pytest.raises(datasets_utils.lazy_importer.lmdb.Error):
946
947
948
            super().test_not_found_or_corrupted()


949
950
class KineticsTestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.Kinetics
951
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val"), num_classes=("400", "600", "700"))
952
953
954
955

    def inject_fake_data(self, tmpdir, config):
        classes = ("Abseiling", "Zumba")
        num_videos_per_class = 2
956
        tmpdir = pathlib.Path(tmpdir) / config["split"]
957
958
959
960
961
962
963
964
965
966
967
        digits = string.ascii_letters + string.digits + "-_"
        for cls in classes:
            datasets_utils.create_video_folder(
                tmpdir,
                cls,
                lambda _: f"{datasets_utils.create_random_string(11, digits)}.mp4",
                num_videos_per_class,
            )
        return num_videos_per_class * len(classes)


968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
class Kinetics400TestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.Kinetics400

    def inject_fake_data(self, tmpdir, config):
        classes = ("Abseiling", "Zumba")
        num_videos_per_class = 2

        digits = string.ascii_letters + string.digits + "-_"
        for cls in classes:
            datasets_utils.create_video_folder(
                tmpdir,
                cls,
                lambda _: f"{datasets_utils.create_random_string(11, digits)}.avi",
                num_videos_per_class,
            )

        return num_videos_per_class * len(classes)

Philip Meier's avatar
Philip Meier committed
986

987
988
989
class HMDB51TestCase(datasets_utils.VideoDatasetTestCase):
    DATASET_CLASS = datasets.HMDB51

990
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(fold=(1, 2, 3), train=(True, False))
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046

    _VIDEO_FOLDER = "videos"
    _SPLITS_FOLDER = "splits"
    _CLASSES = ("brush_hair", "wave")

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._VIDEO_FOLDER
        annotation_path = tmpdir / self._SPLITS_FOLDER
        return root, annotation_path

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

        video_folder = tmpdir / self._VIDEO_FOLDER
        os.makedirs(video_folder)
        video_files = self._create_videos(video_folder)

        splits_folder = tmpdir / self._SPLITS_FOLDER
        os.makedirs(splits_folder)
        num_examples = self._create_split_files(splits_folder, video_files, config["fold"], config["train"])

        return num_examples

    def _create_videos(self, root, num_examples_per_class=3):
        def file_name_fn(cls, idx, clips_per_group=2):
            return f"{cls}_{(idx // clips_per_group) + 1:d}_{(idx % clips_per_group) + 1:d}.avi"

        return [
            (
                cls,
                datasets_utils.create_video_folder(
                    root,
                    cls,
                    lambda idx: file_name_fn(cls, idx),
                    num_examples_per_class,
                ),
            )
            for cls in self._CLASSES
        ]

    def _create_split_files(self, root, video_files, fold, train):
        num_videos = num_train_videos = 0

        for cls, videos in video_files:
            num_videos += len(videos)

            train_videos = set(random.sample(videos, random.randrange(1, len(videos) - 1)))
            num_train_videos += len(train_videos)

            with open(pathlib.Path(root) / f"{cls}_test_split{fold}.txt", "w") as fh:
                fh.writelines(f"{file.name} {1 if file in train_videos else 2}\n" for file in videos)

        return num_train_videos if train else (num_videos - num_train_videos)


1047
1048
1049
class OmniglotTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Omniglot

1050
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(background=(True, False))
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

    def inject_fake_data(self, tmpdir, config):
        target_folder = (
            pathlib.Path(tmpdir) / "omniglot-py" / f"images_{'background' if config['background'] else 'evaluation'}"
        )
        os.makedirs(target_folder)

        num_images = 0
        for name in ("Alphabet_of_the_Magi", "Tifinagh"):
            num_images += self._create_alphabet_folder(target_folder, name)

        return num_images

    def _create_alphabet_folder(self, root, name):
        num_images_total = 0
        for idx in range(torch.randint(1, 4, size=()).item()):
            num_images = torch.randint(1, 4, size=()).item()
            num_images_total += num_images

            datasets_utils.create_image_folder(
                root / name, f"character{idx:02d}", lambda image_idx: f"{image_idx:02d}.png", num_images
            )

        return num_images_total


1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
class SBUTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SBU
    FEATURE_TYPES = (PIL.Image.Image, str)

    def inject_fake_data(self, tmpdir, config):
        num_images = 3

        dataset_folder = pathlib.Path(tmpdir) / "dataset"
        images = datasets_utils.create_image_folder(tmpdir, "dataset", self._create_file_name, num_images)

        self._create_urls_txt(dataset_folder, images)
        self._create_captions_txt(dataset_folder, num_images)

        return num_images

    def _create_file_name(self, idx):
        part1 = datasets_utils.create_random_string(10, string.digits)
        part2 = datasets_utils.create_random_string(10, string.ascii_lowercase, string.digits[:6])
        return f"{part1}_{part2}.jpg"

    def _create_urls_txt(self, root, images):
        with open(root / "SBU_captioned_photo_dataset_urls.txt", "w") as fh:
            for image in images:
                fh.write(
                    f"http://static.flickr.com/{datasets_utils.create_random_string(4, string.digits)}/{image.name}\n"
                )

    def _create_captions_txt(self, root, num_images):
        with open(root / "SBU_captioned_photo_dataset_captions.txt", "w") as fh:
            for _ in range(num_images):
                fh.write(f"{datasets_utils.create_random_string(10)}\n")


1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
class SEMEIONTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SEMEION

    def inject_fake_data(self, tmpdir, config):
        num_images = 3

        images = torch.rand(num_images, 256)
        labels = F.one_hot(torch.randint(10, size=(num_images,)))
        with open(pathlib.Path(tmpdir) / "semeion.data", "w") as fh:
            for image, one_hot_labels in zip(images, labels):
                image_columns = " ".join([f"{pixel.item():.4f}" for pixel in image])
                labels_columns = " ".join([str(label.item()) for label in one_hot_labels])
                fh.write(f"{image_columns} {labels_columns}\n")

        return num_images


1127
1128
1129
class USPSTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.USPS

1130
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False))
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145

    def inject_fake_data(self, tmpdir, config):
        num_images = 2 if config["train"] else 1

        images = torch.rand(num_images, 256) * 2 - 1
        labels = torch.randint(1, 11, size=(num_images,))

        with bz2.open(pathlib.Path(tmpdir) / f"usps{'.t' if not config['train'] else ''}.bz2", "w") as fh:
            for image, label in zip(images, labels):
                line = " ".join((str(label.item()), *[f"{idx}:{pixel:.6f}" for idx, pixel in enumerate(image, 1)]))
                fh.write(f"{line}\n".encode())

        return num_images


Philip Meier's avatar
Philip Meier committed
1146
1147
1148
1149
1150
1151
class SBDatasetTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SBDataset
    FEATURE_TYPES = (PIL.Image.Image, (np.ndarray, PIL.Image.Image))

    REQUIRED_PACKAGES = ("scipy.io", "scipy.sparse")

1152
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
Philip Meier's avatar
Philip Meier committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
        image_set=("train", "val", "train_noval"), mode=("boundaries", "segmentation")
    )

    _NUM_CLASSES = 20

    def inject_fake_data(self, tmpdir, config):
        num_images, num_images_per_image_set = self._create_split_files(tmpdir)

        sizes = self._create_target_folder(tmpdir, "cls", num_images)

        datasets_utils.create_image_folder(
            tmpdir, "img", lambda idx: f"{self._file_stem(idx)}.jpg", num_images, size=lambda idx: sizes[idx]
        )

        return num_images_per_image_set[config["image_set"]]

    def _create_split_files(self, root):
        root = pathlib.Path(root)

        splits = dict(train=(0, 1, 2), train_noval=(0, 2), val=(3,))

        for split, idcs in splits.items():
            self._create_split_file(root, split, idcs)

        num_images = max(itertools.chain(*splits.values())) + 1
1178
        num_images_per_split = {split: len(idcs) for split, idcs in splits.items()}
Philip Meier's avatar
Philip Meier committed
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
        return num_images, num_images_per_split

    def _create_split_file(self, root, name, idcs):
        with open(root / f"{name}.txt", "w") as fh:
            fh.writelines(f"{self._file_stem(idx)}\n" for idx in idcs)

    def _create_target_folder(self, root, name, num_images):
        io = datasets_utils.lazy_importer.scipy.io

        target_folder = pathlib.Path(root) / name
        os.makedirs(target_folder)

        sizes = [torch.randint(1, 4, size=(2,)).tolist() for _ in range(num_images)]
        for idx, size in enumerate(sizes):
            content = dict(
                GTcls=dict(Boundaries=self._create_boundaries(size), Segmentation=self._create_segmentation(size))
            )
            io.savemat(target_folder / f"{self._file_stem(idx)}.mat", content)

        return sizes

    def _create_boundaries(self, size):
        sparse = datasets_utils.lazy_importer.scipy.sparse
        return [
            [sparse.csc_matrix(torch.randint(0, 2, size=size, dtype=torch.uint8).numpy())]
            for _ in range(self._NUM_CLASSES)
        ]

    def _create_segmentation(self, size):
        return torch.randint(0, self._NUM_CLASSES + 1, size=size, dtype=torch.uint8).numpy()

    def _file_stem(self, idx):
        return f"2008_{idx:06d}"


1214
1215
class FakeDataTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.FakeData
1216
    FEATURE_TYPES = (PIL.Image.Image, int)
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227

    def dataset_args(self, tmpdir, config):
        return ()

    def inject_fake_data(self, tmpdir, config):
        return config["size"]

    def test_not_found_or_corrupted(self):
        self.skipTest("The data is generated at creation and thus cannot be non-existent or corrupted.")


1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
class PhotoTourTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.PhotoTour

    # The PhotoTour dataset returns examples with different features with respect to the 'train' parameter. Thus,
    # we overwrite 'FEATURE_TYPES' with a dummy value to satisfy the initial checks of the base class. Furthermore, we
    # overwrite the 'test_feature_types()' method to select the correct feature types before the test is run.
    FEATURE_TYPES = ()
    _TRAIN_FEATURE_TYPES = (torch.Tensor,)
    _TEST_FEATURE_TYPES = (torch.Tensor, torch.Tensor, torch.Tensor)

1238
    datasets_utils.combinations_grid(train=(True, False))
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305

    _NAME = "liberty"

    def dataset_args(self, tmpdir, config):
        return tmpdir, self._NAME

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)

        # In contrast to the original data, the fake images injected here comprise only a single patch. Thus,
        # num_images == num_patches.
        num_patches = 5

        image_files = self._create_images(tmpdir, self._NAME, num_patches)
        point_ids, info_file = self._create_info_file(tmpdir / self._NAME, num_patches)
        num_matches, matches_file = self._create_matches_file(tmpdir / self._NAME, num_patches, point_ids)

        self._create_archive(tmpdir, self._NAME, *image_files, info_file, matches_file)

        return num_patches if config["train"] else num_matches

    def _create_images(self, root, name, num_images):
        # The images in the PhotoTour dataset comprises of multiple grayscale patches of 64 x 64 pixels. Thus, the
        # smallest fake image is 64 x 64 pixels and comprises a single patch.
        return datasets_utils.create_image_folder(
            root, name, lambda idx: f"patches{idx:04d}.bmp", num_images, size=(1, 64, 64)
        )

    def _create_info_file(self, root, num_images):
        point_ids = torch.randint(num_images, size=(num_images,)).tolist()

        file = root / "info.txt"
        with open(file, "w") as fh:
            fh.writelines([f"{point_id} 0\n" for point_id in point_ids])

        return point_ids, file

    def _create_matches_file(self, root, num_patches, point_ids):
        lines = [
            f"{patch_id1} {point_ids[patch_id1]} 0 {patch_id2} {point_ids[patch_id2]} 0\n"
            for patch_id1, patch_id2 in itertools.combinations(range(num_patches), 2)
        ]

        file = root / "m50_100000_100000_0.txt"
        with open(file, "w") as fh:
            fh.writelines(lines)

        return len(lines), file

    def _create_archive(self, root, name, *files):
        archive = root / f"{name}.zip"
        with zipfile.ZipFile(archive, "w") as zip:
            for file in files:
                zip.write(file, arcname=file.relative_to(root))

        return archive

    @datasets_utils.test_all_configs
    def test_feature_types(self, config):
        feature_types = self.FEATURE_TYPES
        self.FEATURE_TYPES = self._TRAIN_FEATURE_TYPES if config["train"] else self._TEST_FEATURE_TYPES
        try:
            super().test_feature_types.__wrapped__(self, config)
        finally:
            self.FEATURE_TYPES = feature_types


1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
class Flickr8kTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Flickr8k

    FEATURE_TYPES = (PIL.Image.Image, list)

    _IMAGES_FOLDER = "images"
    _ANNOTATIONS_FILE = "captions.html"

    def dataset_args(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir)
        root = tmpdir / self._IMAGES_FOLDER
        ann_file = tmpdir / self._ANNOTATIONS_FILE
        return str(root), str(ann_file)

    def inject_fake_data(self, tmpdir, config):
        num_images = 3
        num_captions_per_image = 3

        tmpdir = pathlib.Path(tmpdir)

        images = self._create_images(tmpdir, self._IMAGES_FOLDER, num_images)
        self._create_annotations_file(tmpdir, self._ANNOTATIONS_FILE, images, num_captions_per_image)

        return dict(num_examples=num_images, captions=self._create_captions(num_captions_per_image))

    def _create_images(self, root, name, num_images):
        return datasets_utils.create_image_folder(root, name, self._image_file_name, num_images)

    def _image_file_name(self, idx):
        id = datasets_utils.create_random_string(10, string.digits)
        checksum = datasets_utils.create_random_string(10, string.digits, string.ascii_lowercase[:6])
        size = datasets_utils.create_random_string(1, "qwcko")
        return f"{id}_{checksum}_{size}.jpg"

    def _create_annotations_file(self, root, name, images, num_captions_per_image):
        with open(root / name, "w") as fh:
            fh.write("<table>")
            for image in (None, *images):
                self._add_image(fh, image, num_captions_per_image)
            fh.write("</table>")

    def _add_image(self, fh, image, num_captions_per_image):
        fh.write("<tr>")
        self._add_image_header(fh, image)
        fh.write("</tr><tr><td><ul>")
        self._add_image_captions(fh, num_captions_per_image)
        fh.write("</ul></td></tr>")

    def _add_image_header(self, fh, image=None):
        if image:
            url = f"http://www.flickr.com/photos/user/{image.name.split('_')[0]}/"
            data = f'<a href="{url}">{url}</a>'
        else:
            data = "Image Not Found"
        fh.write(f"<td>{data}</td>")

    def _add_image_captions(self, fh, num_captions_per_image):
        for caption in self._create_captions(num_captions_per_image):
            fh.write(f"<li>{caption}")

    def _create_captions(self, num_captions_per_image):
        return [str(idx) for idx in range(num_captions_per_image)]

    def test_captions(self):
        with self.create_dataset() as (dataset, info):
            _, captions = dataset[0]
1372
1373
            assert len(captions) == len(info["captions"])
            assert all([a == b for a, b in zip(captions, info["captions"])])
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393


class Flickr30kTestCase(Flickr8kTestCase):
    DATASET_CLASS = datasets.Flickr30k

    FEATURE_TYPES = (PIL.Image.Image, list)

    _ANNOTATIONS_FILE = "captions.token"

    def _image_file_name(self, idx):
        return f"{idx}.jpg"

    def _create_annotations_file(self, root, name, images, num_captions_per_image):
        with open(root / name, "w") as fh:
            for image, (idx, caption) in itertools.product(
                images, enumerate(self._create_captions(num_captions_per_image))
            ):
                fh.write(f"{image.name}#{idx}\t{caption}\n")


1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
class MNISTTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.MNIST

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False))

    _MAGIC_DTYPES = {
        torch.uint8: 8,
        torch.int8: 9,
        torch.int16: 11,
        torch.int32: 12,
        torch.float32: 13,
        torch.float64: 14,
    }

    _IMAGES_SIZE = (28, 28)
    _IMAGES_DTYPE = torch.uint8

    _LABELS_SIZE = ()
    _LABELS_DTYPE = torch.uint8

    def inject_fake_data(self, tmpdir, config):
        raw_dir = pathlib.Path(tmpdir) / self.DATASET_CLASS.__name__ / "raw"
        os.makedirs(raw_dir, exist_ok=True)

        num_images = self._num_images(config)
        self._create_binary_file(
            raw_dir, self._images_file(config), (num_images, *self._IMAGES_SIZE), self._IMAGES_DTYPE
        )
        self._create_binary_file(
            raw_dir, self._labels_file(config), (num_images, *self._LABELS_SIZE), self._LABELS_DTYPE
        )
        return num_images

    def _num_images(self, config):
        return 2 if config["train"] else 1

    def _images_file(self, config):
        return f"{self._prefix(config)}-images-idx3-ubyte"

    def _labels_file(self, config):
        return f"{self._prefix(config)}-labels-idx1-ubyte"

    def _prefix(self, config):
        return "train" if config["train"] else "t10k"

    def _create_binary_file(self, root, filename, size, dtype):
        with open(pathlib.Path(root) / filename, "wb") as fh:
            for meta in (self._magic(dtype, len(size)), *size):
                fh.write(self._encode(meta))

            # If ever an MNIST variant is added that uses floating point data, this should be adapted.
            data = torch.randint(0, torch.iinfo(dtype).max + 1, size, dtype=dtype)
            fh.write(data.numpy().tobytes())

    def _magic(self, dtype, dims):
        return self._MAGIC_DTYPES[dtype] * 256 + dims

    def _encode(self, v):
        return torch.tensor(v, dtype=torch.int32).numpy().tobytes()[::-1]


class FashionMNISTTestCase(MNISTTestCase):
    DATASET_CLASS = datasets.FashionMNIST


class KMNISTTestCase(MNISTTestCase):
    DATASET_CLASS = datasets.KMNIST


class EMNISTTestCase(MNISTTestCase):
    DATASET_CLASS = datasets.EMNIST

    DEFAULT_CONFIG = dict(split="byclass")
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
        split=("byclass", "bymerge", "balanced", "letters", "digits", "mnist"), train=(True, False)
    )

    def _prefix(self, config):
        return f"emnist-{config['split']}-{'train' if config['train'] else 'test'}"


class QMNISTTestCase(MNISTTestCase):
    DATASET_CLASS = datasets.QMNIST

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(what=("train", "test", "test10k", "nist"))

    _LABELS_SIZE = (8,)
    _LABELS_DTYPE = torch.int32

    def _num_images(self, config):
        if config["what"] == "nist":
            return 3
        elif config["what"] == "train":
            return 2
        elif config["what"] == "test50k":
            # The split 'test50k' is defined as the last 50k images beginning at index 10000. Thus, we need to create
            # more than 10000 images for the dataset to not be empty. Since this takes significantly longer than the
            # creation of all other splits, this is excluded from the 'ADDITIONAL_CONFIGS' and is tested only once in
            # 'test_num_examples_test50k'.
            return 10001
        else:
            return 1

    def _labels_file(self, config):
        return f"{self._prefix(config)}-labels-idx2-int"

    def _prefix(self, config):
        if config["what"] == "nist":
            return "xnist"

        if config["what"] is None:
            what = "train" if config["train"] else "test"
        elif config["what"].startswith("test"):
            what = "test"
        else:
            what = config["what"]

        return f"qmnist-{what}"

    def test_num_examples_test50k(self):
        with self.create_dataset(what="test50k") as (dataset, info):
            # Since the split 'test50k' selects all images beginning from the index 10000, we subtract the number of
            # created examples by this.
1517
            assert len(dataset) == info["num_examples"] - 10000
1518
1519


1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
class DatasetFolderTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.DatasetFolder

    # The dataset has no fixed return type since it is defined by the loader parameter. For testing, we use a loader
    # that simply returns the path as type 'str' instead of loading anything. See the 'dataset_args()' method.
    FEATURE_TYPES = (str, int)

    _IMAGE_EXTENSIONS = ("jpg", "png")
    _VIDEO_EXTENSIONS = ("avi", "mp4")
    _EXTENSIONS = (*_IMAGE_EXTENSIONS, *_VIDEO_EXTENSIONS)

    # DatasetFolder has two mutually exclusive parameters: 'extensions' and 'is_valid_file'. One of both is required.
    # We only iterate over different 'extensions' here and handle the tests for 'is_valid_file' in the
    # 'test_is_valid_file()' method.
    DEFAULT_CONFIG = dict(extensions=_EXTENSIONS)
    ADDITIONAL_CONFIGS = (
        *datasets_utils.combinations_grid(extensions=[(ext,) for ext in _IMAGE_EXTENSIONS]),
        dict(extensions=_IMAGE_EXTENSIONS),
        *datasets_utils.combinations_grid(extensions=[(ext,) for ext in _VIDEO_EXTENSIONS]),
        dict(extensions=_VIDEO_EXTENSIONS),
    )

    def dataset_args(self, tmpdir, config):
        return tmpdir, lambda x: x

    def inject_fake_data(self, tmpdir, config):
        extensions = config["extensions"] or self._is_valid_file_to_extensions(config["is_valid_file"])

        num_examples_total = 0
        classes = []
        for ext, cls in zip(self._EXTENSIONS, string.ascii_letters):
            if ext not in extensions:
                continue

            create_example_folder = (
                datasets_utils.create_image_folder
                if ext in self._IMAGE_EXTENSIONS
                else datasets_utils.create_video_folder
            )

            num_examples = torch.randint(1, 3, size=()).item()
            create_example_folder(tmpdir, cls, lambda idx: self._file_name_fn(cls, ext, idx), num_examples)

            num_examples_total += num_examples
            classes.append(cls)

        return dict(num_examples=num_examples_total, classes=classes)

    def _file_name_fn(self, cls, ext, idx):
        return f"{cls}_{idx}.{ext}"

    def _is_valid_file_to_extensions(self, is_valid_file):
        return {ext for ext in self._EXTENSIONS if is_valid_file(f"foo.{ext}")}

    @datasets_utils.test_all_configs
    def test_is_valid_file(self, config):
        extensions = config.pop("extensions")
        # We need to explicitly pass extensions=None here or otherwise it would be filled by the value from the
        # DEFAULT_CONFIG.
        with self.create_dataset(
1580
            config, extensions=None, is_valid_file=lambda file: pathlib.Path(file).suffix[1:] in extensions
1581
        ) as (dataset, info):
1582
            assert len(dataset) == info["num_examples"]
1583
1584
1585
1586

    @datasets_utils.test_all_configs
    def test_classes(self, config):
        with self.create_dataset(config) as (dataset, info):
1587
1588
            assert len(dataset.classes) == len(info["classes"])
            assert all([a == b for a, b in zip(dataset.classes, info["classes"])])
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607


class ImageFolderTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.ImageFolder

    def inject_fake_data(self, tmpdir, config):
        num_examples_total = 0
        classes = ("a", "b")
        for cls in classes:
            num_examples = torch.randint(1, 3, size=()).item()
            num_examples_total += num_examples

            datasets_utils.create_image_folder(tmpdir, cls, lambda idx: f"{cls}_{idx}.png", num_examples)

        return dict(num_examples=num_examples_total, classes=classes)

    @datasets_utils.test_all_configs
    def test_classes(self, config):
        with self.create_dataset(config) as (dataset, info):
1608
1609
            assert len(dataset.classes) == len(info["classes"])
            assert all([a == b for a, b in zip(dataset.classes, info["classes"])])
1610
1611


Prabhat Roy's avatar
Prabhat Roy committed
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
class KittiTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Kitti
    FEATURE_TYPES = (PIL.Image.Image, (list, type(None)))  # test split returns None as target
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False))

    def inject_fake_data(self, tmpdir, config):
        kitti_dir = os.path.join(tmpdir, "Kitti", "raw")
        os.makedirs(kitti_dir)

        split_to_num_examples = {
            True: 1,
            False: 2,
        }

        # We need to create all folders(training and testing).
        for is_training in (True, False):
            num_examples = split_to_num_examples[is_training]

            datasets_utils.create_image_folder(
                root=kitti_dir,
                name=os.path.join("training" if is_training else "testing", "image_2"),
                file_name_fn=lambda image_idx: f"{image_idx:06d}.png",
                num_examples=num_examples,
            )
            if is_training:
                for image_idx in range(num_examples):
                    target_file_dir = os.path.join(kitti_dir, "training", "label_2")
                    os.makedirs(target_file_dir)
                    target_file_name = os.path.join(target_file_dir, f"{image_idx:06d}.txt")
                    target_contents = "Pedestrian 0.00 0 -0.20 712.40 143.00 810.73 307.92 1.89 0.48 1.20 1.84 1.47 8.41 0.01\n"  # noqa
                    with open(target_file_name, "w") as target_file:
                        target_file.write(target_contents)

        return split_to_num_examples[config["train"]]


1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
class SvhnTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.SVHN
    REQUIRED_PACKAGES = ("scipy",)
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test", "extra"))

    def inject_fake_data(self, tmpdir, config):
        import scipy.io as sio

        split = config["split"]
        num_examples = {
            "train": 2,
            "test": 3,
            "extra": 4,
        }.get(split)

        file = f"{split}_32x32.mat"
        images = np.zeros((32, 32, 3, num_examples), dtype=np.uint8)
        targets = np.zeros((num_examples,), dtype=np.uint8)
1666
        sio.savemat(os.path.join(tmpdir, file), {"X": images, "y": targets})
1667
1668
1669
        return num_examples


1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
class Places365TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Places365
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
        split=("train-standard", "train-challenge", "val"),
        small=(False, True),
    )
    _CATEGORIES = "categories_places365.txt"
    # {split: file}
    _FILE_LISTS = {
        "train-standard": "places365_train_standard.txt",
        "train-challenge": "places365_train_challenge.txt",
        "val": "places365_val.txt",
    }
    # {(split, small): folder_name}
    _IMAGES = {
        ("train-standard", False): "data_large_standard",
        ("train-challenge", False): "data_large_challenge",
        ("val", False): "val_large",
        ("train-standard", True): "data_256_standard",
        ("train-challenge", True): "data_256_challenge",
        ("val", True): "val_256",
    }
    # (class, idx)
    _CATEGORIES_CONTENT = (
        ("/a/airfield", 0),
        ("/a/apartment_building/outdoor", 8),
        ("/b/badlands", 30),
    )
    # (file, idx)
    _FILE_LIST_CONTENT = (
        ("Places365_val_00000001.png", 0),
1701
        *((f"{category}/Places365_train_00000001.png", idx) for category, idx in _CATEGORIES_CONTENT),
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
    )

    @staticmethod
    def _make_txt(root, name, seq):
        file = os.path.join(root, name)
        with open(file, "w") as fh:
            for text, idx in seq:
                fh.write(f"{text} {idx}\n")

    @staticmethod
    def _make_categories_txt(root, name):
        Places365TestCase._make_txt(root, name, Places365TestCase._CATEGORIES_CONTENT)

    @staticmethod
    def _make_file_list_txt(root, name):
        Places365TestCase._make_txt(root, name, Places365TestCase._FILE_LIST_CONTENT)

    @staticmethod
    def _make_image(file_name, size):
        os.makedirs(os.path.dirname(file_name), exist_ok=True)
        PIL.Image.fromarray(np.zeros((*size, 3), dtype=np.uint8)).save(file_name)

    @staticmethod
    def _make_devkit_archive(root, split):
        Places365TestCase._make_categories_txt(root, Places365TestCase._CATEGORIES)
        Places365TestCase._make_file_list_txt(root, Places365TestCase._FILE_LISTS[split])

    @staticmethod
    def _make_images_archive(root, split, small):
        folder_name = Places365TestCase._IMAGES[(split, small)]
        image_size = (256, 256) if small else (512, random.randint(512, 1024))
        files, idcs = zip(*Places365TestCase._FILE_LIST_CONTENT)
        images = [f.lstrip("/").replace("/", os.sep) for f in files]
        for image in images:
            Places365TestCase._make_image(os.path.join(root, folder_name, image), image_size)

        return [(os.path.join(root, folder_name, image), idx) for image, idx in zip(images, idcs)]

    def inject_fake_data(self, tmpdir, config):
1741
1742
        self._make_devkit_archive(tmpdir, config["split"])
        return len(self._make_images_archive(tmpdir, config["split"], config["small"]))
1743
1744
1745
1746

    def test_classes(self):
        classes = list(map(lambda x: x[0], self._CATEGORIES_CONTENT))
        with self.create_dataset() as (dataset, _):
1747
            assert dataset.classes == classes
1748
1749
1750
1751

    def test_class_to_idx(self):
        class_to_idx = dict(self._CATEGORIES_CONTENT)
        with self.create_dataset() as (dataset, _):
1752
            assert dataset.class_to_idx == class_to_idx
1753
1754

    def test_images_download_preexisting(self):
1755
        with pytest.raises(RuntimeError):
1756
            with self.create_dataset({"download": True}):
1757
1758
1759
                pass


dgenzel2's avatar
dgenzel2 committed
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
class INaturalistTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.INaturalist
    FEATURE_TYPES = (PIL.Image.Image, (int, tuple))

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
        target_type=("kingdom", "full", "genus", ["kingdom", "phylum", "class", "order", "family", "genus", "full"]),
        version=("2021_train",),
    )

    def inject_fake_data(self, tmpdir, config):
        categories = [
            "00000_Akingdom_0phylum_Aclass_Aorder_Afamily_Agenus_Aspecies",
            "00001_Akingdom_1phylum_Aclass_Border_Afamily_Bgenus_Aspecies",
            "00002_Akingdom_2phylum_Cclass_Corder_Cfamily_Cgenus_Cspecies",
        ]

        num_images_per_category = 3
        for category in categories:
            datasets_utils.create_image_folder(
                root=os.path.join(tmpdir, config["version"]),
                name=category,
                file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
                num_examples=num_images_per_category,
            )

        return num_images_per_category * len(categories)

    def test_targets(self):
        target_types = ["kingdom", "phylum", "class", "order", "family", "genus", "full"]

        with self.create_dataset(target_type=target_types, version="2021_valid") as (dataset, _):
            items = [d[1] for d in dataset]
            for i, item in enumerate(items):
1793
1794
1795
                assert dataset.category_name("kingdom", item[0]) == "Akingdom"
                assert dataset.category_name("phylum", item[1]) == f"{i // 3}phylum"
                assert item[6] == i // 3
dgenzel2's avatar
dgenzel2 committed
1796
1797


Muhammed Abdullah's avatar
Muhammed Abdullah committed
1798
1799
1800
1801
class LFWPeopleTestCase(datasets_utils.DatasetTestCase):
    DATASET_CLASS = datasets.LFWPeople
    FEATURE_TYPES = (PIL.Image.Image, int)
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
1802
        split=("10fold", "train", "test"), image_set=("original", "funneled", "deepfunneled")
Muhammed Abdullah's avatar
Muhammed Abdullah committed
1803
    )
1804
1805
    _IMAGES_DIR = {"original": "lfw", "funneled": "lfw_funneled", "deepfunneled": "lfw-deepfunneled"}
    _file_id = {"10fold": "", "train": "DevTrain", "test": "DevTest"}
Muhammed Abdullah's avatar
Muhammed Abdullah committed
1806
1807
1808
1809
1810
1811

    def inject_fake_data(self, tmpdir, config):
        tmpdir = pathlib.Path(tmpdir) / "lfw-py"
        os.makedirs(tmpdir, exist_ok=True)
        return dict(
            num_examples=self._create_images_dir(tmpdir, self._IMAGES_DIR[config["image_set"]], config["split"]),
1812
            split=config["split"],
Muhammed Abdullah's avatar
Muhammed Abdullah committed
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
        )

    def _create_images_dir(self, root, idir, split):
        idir = os.path.join(root, idir)
        os.makedirs(idir, exist_ok=True)
        n, flines = (10, ["10\n"]) if split == "10fold" else (1, [])
        num_examples = 0
        names = []
        for _ in range(n):
            num_people = random.randint(2, 5)
            flines.append(f"{num_people}\n")
            for i in range(num_people):
                name = self._create_random_id()
                no = random.randint(1, 10)
                flines.append(f"{name}\t{no}\n")
                names.append(f"{name}\t{no}\n")
                datasets_utils.create_image_folder(idir, name, lambda n: f"{name}_{n+1:04d}.jpg", no, 250)
                num_examples += no
        with open(pathlib.Path(root) / f"people{self._file_id[split]}.txt", "w") as f:
            f.writelines(flines)
        with open(pathlib.Path(root) / "lfw-names.txt", "w") as f:
            f.writelines(sorted(names))

        return num_examples

    def _create_random_id(self):
        part1 = datasets_utils.create_random_string(random.randint(5, 7))
        part2 = datasets_utils.create_random_string(random.randint(4, 7))
        return f"{part1}_{part2}"


class LFWPairsTestCase(LFWPeopleTestCase):
    DATASET_CLASS = datasets.LFWPairs
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, int)

    def _create_images_dir(self, root, idir, split):
        idir = os.path.join(root, idir)
        os.makedirs(idir, exist_ok=True)
        num_pairs = 7  # effectively 7*2*n = 14*n
        n, self.flines = (10, [f"10\t{num_pairs}"]) if split == "10fold" else (1, [str(num_pairs)])
        for _ in range(n):
            self._inject_pairs(idir, num_pairs, True)
            self._inject_pairs(idir, num_pairs, False)
            with open(pathlib.Path(root) / f"pairs{self._file_id[split]}.txt", "w") as f:
                f.writelines(self.flines)

        return num_pairs * 2 * n

    def _inject_pairs(self, root, num_pairs, same):
        for i in range(num_pairs):
            name1 = self._create_random_id()
            name2 = name1 if same else self._create_random_id()
            no1, no2 = random.randint(1, 100), random.randint(1, 100)
            if same:
                self.flines.append(f"\n{name1}\t{no1}\t{no2}")
            else:
                self.flines.append(f"\n{name1}\t{no1}\t{name2}\t{no2}")

            datasets_utils.create_image_folder(root, name1, lambda _: f"{name1}_{no1:04d}.jpg", 1, 250)
            datasets_utils.create_image_folder(root, name2, lambda _: f"{name2}_{no2:04d}.jpg", 1, 250)


1875
1876
class SintelTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Sintel
1877
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test"), pass_name=("clean", "final", "both"))
1878
1879
1880
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))

    FLOW_H, FLOW_W = 3, 4
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "Sintel"

        num_images_per_scene = 3 if config["split"] == "train" else 4
        num_scenes = 2

        for split_dir in ("training", "test"):
            for pass_name in ("clean", "final"):
                image_root = root / split_dir / pass_name

                for scene_id in range(num_scenes):
                    scene_dir = image_root / f"scene_{scene_id}"
                    datasets_utils.create_image_folder(
                        image_root,
                        name=str(scene_dir),
                        file_name_fn=lambda image_idx: f"frame_000{image_idx}.png",
                        num_examples=num_images_per_scene,
                    )

        flow_root = root / "training" / "flow"
        for scene_id in range(num_scenes):
            scene_dir = flow_root / f"scene_{scene_id}"
            os.makedirs(scene_dir)
            for i in range(num_images_per_scene - 1):
1906
1907
                file_name = str(scene_dir / f"frame_000{i}.flo")
                datasets_utils.make_fake_flo_file(h=self.FLOW_H, w=self.FLOW_W, file_name=file_name)
1908
1909
1910
1911
1912

        # with e.g. num_images_per_scene = 3, for a single scene with have 3 images
        # which are frame_0000, frame_0001 and frame_0002
        # They will be consecutively paired as (frame_0000, frame_0001), (frame_0001, frame_0002),
        # that is 3 - 1 = 2 examples. Hence the formula below
1913
1914
        num_passes = 2 if config["pass_name"] == "both" else 1
        num_examples = (num_images_per_scene - 1) * num_scenes * num_passes
1915
1916
1917
1918
        return num_examples

    def test_flow(self):
        # Make sure flow exists for train split, and make sure there are as many flow values as (pairs of) images
1919
1920
        h, w = self.FLOW_H, self.FLOW_W
        expected_flow = np.arange(2 * h * w).reshape(h, w, 2).transpose(2, 0, 1)
1921
1922
1923
        with self.create_dataset(split="train") as (dataset, _):
            assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
            for _, _, flow in dataset:
1924
1925
                assert flow.shape == (2, h, w)
                np.testing.assert_allclose(flow, expected_flow)
1926
1927
1928
1929
1930
1931
1932
1933

        # Make sure flow is always None for test split
        with self.create_dataset(split="test") as (dataset, _):
            assert dataset._image_list and not dataset._flow_list
            for _, _, flow in dataset:
                assert flow is None

    def test_bad_input(self):
1934
        with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
1935
1936
1937
            with self.create_dataset(split="bad"):
                pass

1938
        with pytest.raises(ValueError, match="Unknown value 'bad' for argument pass_name"):
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
            with self.create_dataset(pass_name="bad"):
                pass


class KittiFlowTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.KittiFlow
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test"))
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)), (np.ndarray, type(None)))

    def inject_fake_data(self, tmpdir, config):
1949
        root = pathlib.Path(tmpdir) / "KittiFlow"
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

        num_examples = 2 if config["split"] == "train" else 3
        for split_dir in ("training", "testing"):

            datasets_utils.create_image_folder(
                root / split_dir,
                name="image_2",
                file_name_fn=lambda image_idx: f"{image_idx}_10.png",
                num_examples=num_examples,
            )
            datasets_utils.create_image_folder(
                root / split_dir,
                name="image_2",
                file_name_fn=lambda image_idx: f"{image_idx}_11.png",
                num_examples=num_examples,
            )

        # For kitti the ground truth flows are encoded as 16-bits pngs.
        # create_image_folder() will actually create 8-bits pngs, but it doesn't
        # matter much: the flow reader will still be able to read the files, it
        # will just be garbage flow value - but we don't care about that here.
        datasets_utils.create_image_folder(
            root / "training",
            name="flow_occ",
            file_name_fn=lambda image_idx: f"{image_idx}_10.png",
            num_examples=num_examples,
        )

        return num_examples

    def test_flow_and_valid(self):
        # Make sure flow exists for train split, and make sure there are as many flow values as (pairs of) images
        # Also assert flow and valid are of the expected shape
        with self.create_dataset(split="train") as (dataset, _):
            assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
            for _, _, flow, valid in dataset:
                two, h, w = flow.shape
                assert two == 2
                assert valid.shape == (h, w)

        # Make sure flow and valid are always None for test split
        with self.create_dataset(split="test") as (dataset, _):
            assert dataset._image_list and not dataset._flow_list
            for _, _, flow, valid in dataset:
                assert flow is None
                assert valid is None

    def test_bad_input(self):
1998
        with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
1999
2000
2001
2002
            with self.create_dataset(split="bad"):
                pass


2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
class FlyingChairsTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.FlyingChairs
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val"))
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))

    FLOW_H, FLOW_W = 3, 4

    def _make_split_file(self, root, num_examples):
        # We create a fake split file here, but users are asked to download the real one from the authors website
        split_ids = [1] * num_examples["train"] + [2] * num_examples["val"]
        random.shuffle(split_ids)
        with open(str(root / "FlyingChairs_train_val.txt"), "w+") as split_file:
            for split_id in split_ids:
                split_file.write(f"{split_id}\n")

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "FlyingChairs"

        num_examples = {"train": 5, "val": 3}
        num_examples_total = sum(num_examples.values())

        datasets_utils.create_image_folder(  # img1
            root,
            name="data",
            file_name_fn=lambda image_idx: f"00{image_idx}_img1.ppm",
            num_examples=num_examples_total,
        )
        datasets_utils.create_image_folder(  # img2
            root,
            name="data",
            file_name_fn=lambda image_idx: f"00{image_idx}_img2.ppm",
            num_examples=num_examples_total,
        )
        for i in range(num_examples_total):
            file_name = str(root / "data" / f"00{i}_flow.flo")
            datasets_utils.make_fake_flo_file(h=self.FLOW_H, w=self.FLOW_W, file_name=file_name)

        self._make_split_file(root, num_examples)

        return num_examples[config["split"]]

    @datasets_utils.test_all_configs
    def test_flow(self, config):
        # Make sure flow always exists, and make sure there are as many flow values as (pairs of) images
        # Also make sure the flow is properly decoded
2048
2049
2050

        h, w = self.FLOW_H, self.FLOW_W
        expected_flow = np.arange(2 * h * w).reshape(h, w, 2).transpose(2, 0, 1)
2051
2052
2053
        with self.create_dataset(config=config) as (dataset, _):
            assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
            for _, _, flow in dataset:
2054
2055
                assert flow.shape == (2, h, w)
                np.testing.assert_allclose(flow, expected_flow)
2056
2057


2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
class FlyingThings3DTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.FlyingThings3D
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
        split=("train", "test"), pass_name=("clean", "final", "both"), camera=("left", "right", "both")
    )
    FEATURE_TYPES = (PIL.Image.Image, PIL.Image.Image, (np.ndarray, type(None)))

    FLOW_H, FLOW_W = 3, 4

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "FlyingThings3D"

        num_images_per_camera = 3 if config["split"] == "train" else 4
        passes = ("frames_cleanpass", "frames_finalpass")
        splits = ("TRAIN", "TEST")
        letters = ("A", "B", "C")
        subfolders = ("0000", "0001")
        cameras = ("left", "right")
        for pass_name, split, letter, subfolder, camera in itertools.product(
            passes, splits, letters, subfolders, cameras
        ):
            current_folder = root / pass_name / split / letter / subfolder
            datasets_utils.create_image_folder(
                current_folder,
                name=camera,
                file_name_fn=lambda image_idx: f"00{image_idx}.png",
                num_examples=num_images_per_camera,
            )

        directions = ("into_future", "into_past")
        for split, letter, subfolder, direction, camera in itertools.product(
            splits, letters, subfolders, directions, cameras
        ):
            current_folder = root / "optical_flow" / split / letter / subfolder / direction / camera
            os.makedirs(str(current_folder), exist_ok=True)
            for i in range(num_images_per_camera):
                datasets_utils.make_fake_pfm_file(self.FLOW_H, self.FLOW_W, file_name=str(current_folder / f"{i}.pfm"))

        num_cameras = 2 if config["camera"] == "both" else 1
        num_passes = 2 if config["pass_name"] == "both" else 1
        num_examples = (
            (num_images_per_camera - 1) * num_cameras * len(subfolders) * len(letters) * len(splits) * num_passes
        )
        return num_examples

    @datasets_utils.test_all_configs
    def test_flow(self, config):
2105
2106
2107
2108
2109
        h, w = self.FLOW_H, self.FLOW_W
        expected_flow = np.arange(3 * h * w).reshape(h, w, 3).transpose(2, 0, 1)
        expected_flow = np.flip(expected_flow, axis=1)
        expected_flow = expected_flow[:2, :, :]

2110
2111
2112
2113
        with self.create_dataset(config=config) as (dataset, _):
            assert dataset._flow_list and len(dataset._flow_list) == len(dataset._image_list)
            for _, _, flow in dataset:
                assert flow.shape == (2, self.FLOW_H, self.FLOW_W)
2114
                np.testing.assert_allclose(flow, expected_flow)
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129

    def test_bad_input(self):
        with pytest.raises(ValueError, match="Unknown value 'bad' for argument split"):
            with self.create_dataset(split="bad"):
                pass

        with pytest.raises(ValueError, match="Unknown value 'bad' for argument pass_name"):
            with self.create_dataset(pass_name="bad"):
                pass

        with pytest.raises(ValueError, match="Unknown value 'bad' for argument camera"):
            with self.create_dataset(camera="bad"):
                pass


2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
class HD1KTestCase(KittiFlowTestCase):
    DATASET_CLASS = datasets.HD1K

    def inject_fake_data(self, tmpdir, config):
        root = pathlib.Path(tmpdir) / "hd1k"

        num_sequences = 4 if config["split"] == "train" else 3
        num_examples_per_train_sequence = 3

        for seq_idx in range(num_sequences):
            # Training data
            datasets_utils.create_image_folder(
                root / "hd1k_input",
                name="image_2",
                file_name_fn=lambda image_idx: f"{seq_idx:06d}_{image_idx}.png",
                num_examples=num_examples_per_train_sequence,
            )
            datasets_utils.create_image_folder(
                root / "hd1k_flow_gt",
                name="flow_occ",
                file_name_fn=lambda image_idx: f"{seq_idx:06d}_{image_idx}.png",
                num_examples=num_examples_per_train_sequence,
            )

            # Test data
            datasets_utils.create_image_folder(
                root / "hd1k_challenge",
                name="image_2",
                file_name_fn=lambda _: f"{seq_idx:06d}_10.png",
                num_examples=1,
            )
            datasets_utils.create_image_folder(
                root / "hd1k_challenge",
                name="image_2",
                file_name_fn=lambda _: f"{seq_idx:06d}_11.png",
                num_examples=1,
            )

        num_examples_per_sequence = num_examples_per_train_sequence if config["split"] == "train" else 2
        return num_sequences * (num_examples_per_sequence - 1)


Joao Gomes's avatar
Joao Gomes committed
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
class Food101TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.Food101
    FEATURE_TYPES = (PIL.Image.Image, int)

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test"))

    def inject_fake_data(self, tmpdir: str, config):
        root_folder = pathlib.Path(tmpdir) / "food-101"
        image_folder = root_folder / "images"
        meta_folder = root_folder / "meta"

        image_folder.mkdir(parents=True)
        meta_folder.mkdir()

        num_images_per_class = 5

        metadata = {}
        n_samples_per_class = 3 if config["split"] == "train" else 2
        sampled_classes = ("apple_pie", "crab_cakes", "gyoza")
        for cls in sampled_classes:
            im_fnames = datasets_utils.create_image_folder(
                image_folder,
                cls,
                file_name_fn=lambda idx: f"{idx}.jpg",
                num_examples=num_images_per_class,
            )
            metadata[cls] = [
                "/".join(fname.relative_to(image_folder).with_suffix("").parts)
                for fname in random.choices(im_fnames, k=n_samples_per_class)
            ]

        with open(meta_folder / f"{config['split']}.json", "w") as file:
            file.write(json.dumps(metadata))

        return len(sampled_classes * n_samples_per_class)


Philip Meier's avatar
Philip Meier committed
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
class DTDTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.DTD
    FEATURE_TYPES = (PIL.Image.Image, int)

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
        split=("train", "test", "val"),
        # There is no need to test the whole matrix here, since each fold is treated exactly the same
        partition=(1, 5, 10),
    )

    def inject_fake_data(self, tmpdir: str, config):
        data_folder = pathlib.Path(tmpdir) / "dtd" / "dtd"

        num_images_per_class = 3
        image_folder = data_folder / "images"
        image_files = []
        for cls in ("banded", "marbled", "zigzagged"):
            image_files.extend(
                datasets_utils.create_image_folder(
                    image_folder,
                    cls,
                    file_name_fn=lambda idx: f"{cls}_{idx:04d}.jpg",
                    num_examples=num_images_per_class,
                )
            )

        meta_folder = data_folder / "labels"
        meta_folder.mkdir()
        image_ids = [str(path.relative_to(path.parents[1])).replace(os.sep, "/") for path in image_files]
        image_ids_in_config = random.choices(image_ids, k=len(image_files) // 2)
        with open(meta_folder / f"{config['split']}{config['partition']}.txt", "w") as file:
            file.write("\n".join(image_ids_in_config) + "\n")

        return len(image_ids_in_config)


Philip Meier's avatar
Philip Meier committed
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
class FER2013TestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.FER2013
    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "test"))

    FEATURE_TYPES = (PIL.Image.Image, (int, type(None)))

    def inject_fake_data(self, tmpdir, config):
        base_folder = os.path.join(tmpdir, "fer2013")
        os.makedirs(base_folder)

        num_samples = 5
        with open(os.path.join(base_folder, f"{config['split']}.csv"), "w", newline="") as file:
            writer = csv.DictWriter(
                file,
                fieldnames=("emotion", "pixels") if config["split"] == "train" else ("pixels",),
                quoting=csv.QUOTE_NONNUMERIC,
                quotechar='"',
            )
            writer.writeheader()
            for _ in range(num_samples):
                row = dict(
                    pixels=" ".join(
                        str(pixel) for pixel in datasets_utils.create_image_or_video_tensor((48, 48)).view(-1).tolist()
                    )
                )
                if config["split"] == "train":
                    row["emotion"] = str(int(torch.randint(0, 7, ())))

                writer.writerow(row)

        return num_samples


Sumukh Aithal's avatar
Sumukh Aithal committed
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
class GTSRBTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.GTSRB
    FEATURE_TYPES = (PIL.Image.Image, int)

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(train=(True, False))

    def inject_fake_data(self, tmpdir: str, config):
        root_folder = os.path.join(tmpdir, "GTSRB")
        os.makedirs(root_folder, exist_ok=True)

        # Train data
        train_folder = os.path.join(root_folder, "Training")
        os.makedirs(train_folder, exist_ok=True)

        num_examples = 3
        classes = ("00000", "00042", "00012")
        for class_idx in classes:
            datasets_utils.create_image_folder(
                train_folder,
                name=class_idx,
                file_name_fn=lambda image_idx: f"{class_idx}_{image_idx:05d}.ppm",
                num_examples=num_examples,
            )

        total_number_of_examples = num_examples * len(classes)
        # Test data
        test_folder = os.path.join(root_folder, "Final_Test", "Images")
        os.makedirs(test_folder, exist_ok=True)

        with open(os.path.join(root_folder, "GT-final_test.csv"), "w") as csv_file:
            csv_file.write("Filename;Width;Height;Roi.X1;Roi.Y1;Roi.X2;Roi.Y2;ClassId\n")

            for _ in range(total_number_of_examples):
                image_file = datasets_utils.create_random_string(5, string.digits) + ".ppm"
                datasets_utils.create_image_file(test_folder, image_file)
                row = [
                    image_file,
                    torch.randint(1, 100, size=()).item(),
                    torch.randint(1, 100, size=()).item(),
                    torch.randint(1, 100, size=()).item(),
                    torch.randint(1, 100, size=()).item(),
                    torch.randint(1, 100, size=()).item(),
                    torch.randint(1, 100, size=()).item(),
                    torch.randint(0, 43, size=()).item(),
                ]
                csv_file.write(";".join(map(str, row)) + "\n")

        return total_number_of_examples


Philip Meier's avatar
Philip Meier committed
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
class CLEVRClassificationTestCase(datasets_utils.ImageDatasetTestCase):
    DATASET_CLASS = datasets.CLEVRClassification
    FEATURE_TYPES = (PIL.Image.Image, (int, type(None)))

    ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(split=("train", "val", "test"))

    def inject_fake_data(self, tmpdir, config):
        data_folder = pathlib.Path(tmpdir) / "clevr" / "CLEVR_v1.0"

        images_folder = data_folder / "images"
        image_files = datasets_utils.create_image_folder(
            images_folder, config["split"], lambda idx: f"CLEVR_{config['split']}_{idx:06d}.png", num_examples=5
        )

        scenes_folder = data_folder / "scenes"
        scenes_folder.mkdir()
        if config["split"] != "test":
            with open(scenes_folder / f"CLEVR_{config['split']}_scenes.json", "w") as file:
                json.dump(
                    dict(
                        info=dict(),
                        scenes=[
                            dict(image_filename=image_file.name, objects=[dict()] * int(torch.randint(10, ())))
                            for image_file in image_files
                        ],
                    ),
                    file,
                )

        return len(image_files)


2360
if __name__ == "__main__":
2361
    unittest.main()