Unverified Commit ef711591 authored by dgenzel2's avatar dgenzel2 Committed by GitHub
Browse files

Add iNaturalist dataset (#4123)



* Add iNaturalist dataset

* Add download support

* address comments
Co-authored-by: default avatardgenzel <dgenzel@fb.com>
Co-authored-by: default avatarFrancisco Massa <fvsmassa@gmail.com>
parent ac83a2c0
...@@ -122,6 +122,12 @@ ImageNet ...@@ -122,6 +122,12 @@ ImageNet
.. note :: .. note ::
This requires `scipy` to be installed This requires `scipy` to be installed
iNaturalist
~~~~~~~~~~~
.. autoclass:: INaturalist
:members: __getitem__, category_name
Kinetics-400 Kinetics-400
~~~~~~~~~~~~ ~~~~~~~~~~~~
......
...@@ -1755,5 +1755,43 @@ class Places365TestCase(datasets_utils.ImageDatasetTestCase): ...@@ -1755,5 +1755,43 @@ class Places365TestCase(datasets_utils.ImageDatasetTestCase):
pass pass
class INaturalistTestCase(datasets_utils.ImageDatasetTestCase):
DATASET_CLASS = datasets.INaturalist
FEATURE_TYPES = (PIL.Image.Image, (int, tuple))
ADDITIONAL_CONFIGS = datasets_utils.combinations_grid(
target_type=("kingdom", "full", "genus", ["kingdom", "phylum", "class", "order", "family", "genus", "full"]),
version=("2021_train",),
)
def inject_fake_data(self, tmpdir, config):
categories = [
"00000_Akingdom_0phylum_Aclass_Aorder_Afamily_Agenus_Aspecies",
"00001_Akingdom_1phylum_Aclass_Border_Afamily_Bgenus_Aspecies",
"00002_Akingdom_2phylum_Cclass_Corder_Cfamily_Cgenus_Cspecies",
]
num_images_per_category = 3
for category in categories:
datasets_utils.create_image_folder(
root=os.path.join(tmpdir, config["version"]),
name=category,
file_name_fn=lambda idx: f"image_{idx + 1:04d}.jpg",
num_examples=num_images_per_category,
)
return num_images_per_category * len(categories)
def test_targets(self):
target_types = ["kingdom", "phylum", "class", "order", "family", "genus", "full"]
with self.create_dataset(target_type=target_types, version="2021_valid") as (dataset, _):
items = [d[1] for d in dataset]
for i, item in enumerate(items):
self.assertEqual(dataset.category_name("kingdom", item[0]), "Akingdom")
self.assertEqual(dataset.category_name("phylum", item[1]), f"{i // 3}phylum")
self.assertEqual(item[6], i // 3)
if __name__ == "__main__": if __name__ == "__main__":
unittest.main() unittest.main()
...@@ -25,6 +25,7 @@ from .hmdb51 import HMDB51 ...@@ -25,6 +25,7 @@ from .hmdb51 import HMDB51
from .ucf101 import UCF101 from .ucf101 import UCF101
from .places365 import Places365 from .places365 import Places365
from .kitti import Kitti from .kitti import Kitti
from .inaturalist import INaturalist
__all__ = ('LSUN', 'LSUNClass', __all__ = ('LSUN', 'LSUNClass',
'ImageFolder', 'DatasetFolder', 'FakeData', 'ImageFolder', 'DatasetFolder', 'FakeData',
...@@ -35,5 +36,5 @@ __all__ = ('LSUN', 'LSUNClass', ...@@ -35,5 +36,5 @@ __all__ = ('LSUN', 'LSUNClass',
'VOCSegmentation', 'VOCDetection', 'Cityscapes', 'ImageNet', 'VOCSegmentation', 'VOCDetection', 'Cityscapes', 'ImageNet',
'Caltech101', 'Caltech256', 'CelebA', 'WIDERFace', 'SBDataset', 'Caltech101', 'Caltech256', 'CelebA', 'WIDERFace', 'SBDataset',
'VisionDataset', 'USPS', 'Kinetics400', "Kinetics", 'HMDB51', 'UCF101', 'VisionDataset', 'USPS', 'Kinetics400', "Kinetics", 'HMDB51', 'UCF101',
'Places365', 'Kitti', 'Places365', 'Kitti', "INaturalist"
) )
from PIL import Image
import os
import os.path
from typing import Any, Callable, Dict, List, Optional, Union, Tuple
from .vision import VisionDataset
from .utils import download_and_extract_archive, verify_str_arg
CATEGORIES_2021 = ["kingdom", "phylum", "class", "order", "family", "genus"]
DATASET_URLS = {
'2017': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2017/train_val_images.tar.gz',
'2018': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2018/train_val2018.tar.gz',
'2019': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2019/train_val2019.tar.gz',
'2021_train': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train.tar.gz',
'2021_train_mini': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train_mini.tar.gz',
'2021_valid': 'https://ml-inat-competition-datasets.s3.amazonaws.com/2021/val.tar.gz',
}
DATASET_MD5 = {
'2017': '7c784ea5e424efaec655bd392f87301f',
'2018': 'b1c6952ce38f31868cc50ea72d066cc3',
'2019': 'c60a6e2962c9b8ccbd458d12c8582644',
'2021_train': '38a7bb733f7a09214d44293460ec0021',
'2021_train_mini': 'db6ed8330e634445efc8fec83ae81442',
'2021_valid': 'f6f6e0e242e3d4c9569ba56400938afc',
}
class INaturalist(VisionDataset):
"""`iNaturalist <https://github.com/visipedia/inat_comp>`_ Dataset.
Args:
root (string): Root directory of dataset where the image files are stored.
This class does not require/use annotation files.
version (string, optional): Which version of the dataset to download/use. One of
'2017', '2018', '2019', '2021_train', '2021_train_mini', '2021_valid'.
Default: `2021_train`.
target_type (string or list, optional): Type of target to use, for 2021 versions, one of:
- ``full``: the full category (species)
- ``kingdom``: e.g. "Animalia"
- ``phylum``: e.g. "Arthropoda"
- ``class``: e.g. "Insecta"
- ``order``: e.g. "Coleoptera"
- ``family``: e.g. "Cleridae"
- ``genus``: e.g. "Trichodes"
for 2017-2019 versions, one of:
- ``full``: the full (numeric) category
- ``super``: the super category, e.g. "Amphibians"
Can also be a list to output a tuple with all specified target types.
Defaults to ``full``.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
"""
def __init__(
self,
root: str,
version: str = "2021_train",
target_type: Union[List[str], str] = "full",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
) -> None:
self.version = verify_str_arg(version, "version", DATASET_URLS.keys())
super(INaturalist, self).__init__(os.path.join(root, version),
transform=transform,
target_transform=target_transform)
os.makedirs(root, exist_ok=True)
if download:
self.download()
if not self._check_integrity():
raise RuntimeError('Dataset not found or corrupted.' +
' You can use download=True to download it')
self.all_categories: List[str] = []
# map: category type -> name of category -> index
self.categories_index: Dict[str, Dict[str, int]] = {}
# list indexed by category id, containing mapping from category type -> index
self.categories_map: List[Dict[str, int]] = []
if not isinstance(target_type, list):
target_type = [target_type]
if self.version[:4] == "2021":
self.target_type = [verify_str_arg(t, "target_type", ("full", *CATEGORIES_2021))
for t in target_type]
self._init_2021()
else:
self.target_type = [verify_str_arg(t, "target_type", ("full", "super"))
for t in target_type]
self._init_pre2021()
# index of all files: (full category id, filename)
self.index: List[Tuple[int, str]] = []
for dir_index, dir_name in enumerate(self.all_categories):
files = os.listdir(os.path.join(self.root, dir_name))
for fname in files:
self.index.append((dir_index, fname))
def _init_2021(self) -> None:
"""Initialize based on 2021 layout"""
self.all_categories = sorted(os.listdir(self.root))
# map: category type -> name of category -> index
self.categories_index = {
k: {} for k in CATEGORIES_2021
}
for dir_index, dir_name in enumerate(self.all_categories):
pieces = dir_name.split('_')
if len(pieces) != 8:
raise RuntimeError(f'Unexpected category name {dir_name}, wrong number of pieces')
if pieces[0] != f'{dir_index:05d}':
raise RuntimeError(f'Unexpected category id {pieces[0]}, expecting {dir_index:05d}')
cat_map = {}
for cat, name in zip(CATEGORIES_2021, pieces[1:7]):
if name in self.categories_index[cat]:
cat_id = self.categories_index[cat][name]
else:
cat_id = len(self.categories_index[cat])
self.categories_index[cat][name] = cat_id
cat_map[cat] = cat_id
self.categories_map.append(cat_map)
def _init_pre2021(self) -> None:
"""Initialize based on 2017-2019 layout"""
# map: category type -> name of category -> index
self.categories_index = {'super': {}}
cat_index = 0
super_categories = sorted(os.listdir(self.root))
for sindex, scat in enumerate(super_categories):
self.categories_index["super"][scat] = sindex
subcategories = sorted(os.listdir(os.path.join(self.root, scat)))
for subcat in subcategories:
if self.version == "2017":
# this version does not use ids as directory names
subcat_i = cat_index
cat_index += 1
else:
try:
subcat_i = int(subcat)
except ValueError:
raise RuntimeError(f"Unexpected non-numeric dir name: {subcat}")
if subcat_i >= len(self.categories_map):
old_len = len(self.categories_map)
self.categories_map.extend([{}] * (subcat_i - old_len + 1))
self.all_categories.extend([""] * (subcat_i - old_len + 1))
if self.categories_map[subcat_i]:
raise RuntimeError(f"Duplicate category {subcat}")
self.categories_map[subcat_i] = {'super': sindex}
self.all_categories[subcat_i] = os.path.join(scat, subcat)
# validate the dictionary
for cindex, c in enumerate(self.categories_map):
if not c:
raise RuntimeError(f"Missing category {cindex}")
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where the type of target specified by target_type.
"""
cat_id, fname = self.index[index]
img = Image.open(os.path.join(self.root,
self.all_categories[cat_id],
fname))
target: Any = []
for t in self.target_type:
if t == "full":
target.append(cat_id)
else:
target.append(self.categories_map[cat_id][t])
target = tuple(target) if len(target) > 1 else target[0]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return len(self.index)
def category_name(self, category_type: str, category_id: int) -> str:
"""
Args:
category_type(str): one of "full", "kingdom", "phylum", "class", "order", "family", "genus" or "super"
category_id(int): an index (class id) from this category
Returns:
the name of the category
"""
if category_type == "full":
return self.all_categories[category_id]
else:
if category_type not in self.categories_index:
raise ValueError(f"Invalid category type '{category_type}'")
else:
for name, id in self.categories_index[category_type].items():
if id == category_id:
return name
raise ValueError(f"Invalid category id {category_id} for {category_type}")
def _check_integrity(self) -> bool:
return os.path.exists(self.root) and len(os.listdir(self.root)) > 0
def download(self) -> None:
if self._check_integrity():
raise RuntimeError(
f"The directory {self.root} already exists. "
f"If you want to re-download or re-extract the images, delete the directory."
)
base_root = os.path.dirname(self.root)
download_and_extract_archive(
DATASET_URLS[self.version],
base_root,
filename=f"{self.version}.tgz",
md5=DATASET_MD5[self.version])
orig_dir_name = os.path.join(base_root, os.path.basename(DATASET_URLS[self.version]).rstrip(".tar.gz"))
if not os.path.exists(orig_dir_name):
raise RuntimeError(f"Unable to find downloaded files at {orig_dir_name}")
os.rename(orig_dir_name, self.root)
print(f"Dataset version '{self.version}' has been downloaded and prepared for use")
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment