"llama/llama.cpp/tools/vscode:/vscode.git/clone" did not exist on "544b6739dde2a6b156b1673c72d94949c1940be7"
resnet.py 13.4 KB
Newer Older
1
import torch
2
import torch.nn as nn
3
from .utils import load_state_dict_from_url
4
5
6


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
7
8
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
           'wide_resnet50_2', 'wide_resnet101_2']
9
10
11


model_urls = {
12
13
14
15
16
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
17
18
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
19
20
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
21
22
23
}


24
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
25
    """3x3 convolution with padding"""
26
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
27
                     padding=dilation, groups=groups, bias=False, dilation=dilation)
28
29


30
31
32
33
34
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
35
class BasicBlock(nn.Module):
36
    expansion = 1
37
    __constants__ = ['downsample']
38

39
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
40
                 base_width=64, dilation=1, norm_layer=None):
41
        super(BasicBlock, self).__init__()
42
43
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
44
45
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
46
47
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
48
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
49
        self.conv1 = conv3x3(inplanes, planes, stride)
50
        self.bn1 = norm_layer(planes)
51
52
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
53
        self.bn2 = norm_layer(planes)
54
55
56
57
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
58
        identity = x
59
60
61
62
63
64
65
66
67

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
68
            identity = self.downsample(x)
69

70
        out += identity
71
72
73
74
75
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
76
class Bottleneck(nn.Module):
77
    expansion = 4
eellison's avatar
eellison committed
78
    __constants__ = ['downsample']
79

80
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
81
                 base_width=64, dilation=1, norm_layer=None):
82
        super(Bottleneck, self).__init__()
83
84
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
85
        width = int(planes * (base_width / 64.)) * groups
86
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
87
88
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
89
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
90
91
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
92
        self.bn3 = norm_layer(planes * self.expansion)
93
94
95
96
97
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
98
        identity = x
99
100
101
102
103
104
105
106
107
108
109
110
111

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
112
            identity = self.downsample(x)
113

114
        out += identity
115
116
117
118
119
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
120
class ResNet(nn.Module):
121

122
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
123
124
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None):
125
        super(ResNet, self).__init__()
126
127
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
128
        self._norm_layer = norm_layer
129
130

        self.inplanes = 64
131
132
133
134
135
136
137
138
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
139
140
141
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
142
                               bias=False)
143
        self.bn1 = norm_layer(self.inplanes)
144
145
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
146
147
148
149
150
151
152
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
153
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
154
        self.fc = nn.Linear(512 * block.expansion, num_classes)
155
156
157

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
158
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
159
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
160
161
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
162

163
164
165
166
167
168
169
170
171
172
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

173
174
    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
175
        downsample = None
176
177
178
179
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
180
181
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
182
                conv1x1(self.inplanes, planes * block.expansion, stride),
183
                norm_layer(planes * block.expansion),
184
185
186
            )

        layers = []
187
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
188
                            self.base_width, previous_dilation, norm_layer))
189
        self.inplanes = planes * block.expansion
190
        for _ in range(1, blocks):
191
            layers.append(block(self.inplanes, planes, groups=self.groups,
192
193
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))
194
195
196

        return nn.Sequential(*layers)

197
    def _forward(self, x):
198
199
200
201
202
203
204
205
206
207
208
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
209
        x = torch.flatten(x, 1)
210
211
212
213
        x = self.fc(x)

        return x

214
215
216
    # Allow for accessing forward method in a inherited class
    forward = _forward

217

218
219
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
    model = ResNet(block, layers, **kwargs)
220
221
222
223
224
225
226
227
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model


def resnet18(pretrained=False, progress=True, **kwargs):
228
    r"""ResNet-18 model from
229
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
230
231
232

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
233
        progress (bool): If True, displays a progress bar of the download to stderr
234
    """
235
236
    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
                   **kwargs)
237
238


239
def resnet34(pretrained=False, progress=True, **kwargs):
240
    r"""ResNet-34 model from
241
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
242
243
244

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
245
        progress (bool): If True, displays a progress bar of the download to stderr
246
    """
247
248
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)
249
250


251
def resnet50(pretrained=False, progress=True, **kwargs):
252
    r"""ResNet-50 model from
253
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
254
255
256

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
257
        progress (bool): If True, displays a progress bar of the download to stderr
258
    """
259
260
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)
261
262


263
def resnet101(pretrained=False, progress=True, **kwargs):
264
    r"""ResNet-101 model from
265
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
266
267
268

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
269
        progress (bool): If True, displays a progress bar of the download to stderr
270
    """
271
272
    return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
                   **kwargs)
273
274


275
def resnet152(pretrained=False, progress=True, **kwargs):
276
    r"""ResNet-152 model from
277
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
278
279
280

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
281
        progress (bool): If True, displays a progress bar of the download to stderr
282
    """
283
284
    return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
                   **kwargs)
285
286


287
def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
288
289
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
290
291
292
293
294

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
295
296
297
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 4
    return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
298
                   pretrained, progress, **kwargs)
299
300


301
def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
302
303
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
304
305
306
307
308

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
309
310
311
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 8
    return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
312
                   pretrained, progress, **kwargs)
313
314
315


def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
316
317
    r"""Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
                   pretrained, progress, **kwargs)


def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
334
335
    r"""Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
336
337
338
339
340
341
342
343
344
345
346
347
348

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
                   pretrained, progress, **kwargs)