resnet.py 13.3 KB
Newer Older
1
import torch
2
import torch.nn as nn
3
from .utils import load_state_dict_from_url
4
5
6


__all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet50', 'resnet101',
7
8
           'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
           'wide_resnet50_2', 'wide_resnet101_2']
9
10
11


model_urls = {
12
13
14
15
16
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
17
18
    'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
    'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
19
20
    'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
    'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
21
22
23
}


24
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
25
    """3x3 convolution with padding"""
26
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
27
                     padding=dilation, groups=groups, bias=False, dilation=dilation)
28
29


30
31
32
33
34
def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


Soumith Chintala's avatar
Soumith Chintala committed
35
class BasicBlock(nn.Module):
36
    expansion = 1
37
    __constants__ = ['downsample']
38

39
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
40
                 base_width=64, dilation=1, norm_layer=None):
41
        super(BasicBlock, self).__init__()
42
43
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
44
45
        if groups != 1 or base_width != 64:
            raise ValueError('BasicBlock only supports groups=1 and base_width=64')
46
47
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
48
        # Both self.conv1 and self.downsample layers downsample the input when stride != 1
49
        self.conv1 = conv3x3(inplanes, planes, stride)
50
        self.bn1 = norm_layer(planes)
51
52
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
53
        self.bn2 = norm_layer(planes)
54
55
56
57
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
58
        identity = x
59
60
61
62
63
64
65
66
67

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
68
            identity = self.downsample(x)
69

70
        out += identity
71
72
73
74
75
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
76
class Bottleneck(nn.Module):
77
78
    expansion = 4

79
    def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
80
                 base_width=64, dilation=1, norm_layer=None):
81
        super(Bottleneck, self).__init__()
82
83
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
84
        width = int(planes * (base_width / 64.)) * groups
85
        # Both self.conv2 and self.downsample layers downsample the input when stride != 1
86
87
        self.conv1 = conv1x1(inplanes, width)
        self.bn1 = norm_layer(width)
88
        self.conv2 = conv3x3(width, width, stride, groups, dilation)
89
90
        self.bn2 = norm_layer(width)
        self.conv3 = conv1x1(width, planes * self.expansion)
91
        self.bn3 = norm_layer(planes * self.expansion)
92
93
94
95
96
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
97
        identity = x
98
99
100
101
102
103
104
105
106
107
108
109
110

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
111
            identity = self.downsample(x)
112

113
        out += identity
114
115
116
117
118
        out = self.relu(out)

        return out


Soumith Chintala's avatar
Soumith Chintala committed
119
class ResNet(nn.Module):
120

121
    def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
122
123
                 groups=1, width_per_group=64, replace_stride_with_dilation=None,
                 norm_layer=None):
124
        super(ResNet, self).__init__()
125
126
        if norm_layer is None:
            norm_layer = nn.BatchNorm2d
127
        self._norm_layer = norm_layer
128
129

        self.inplanes = 64
130
131
132
133
134
135
136
137
        self.dilation = 1
        if replace_stride_with_dilation is None:
            # each element in the tuple indicates if we should replace
            # the 2x2 stride with a dilated convolution instead
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError("replace_stride_with_dilation should be None "
                             "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
138
139
140
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
141
                               bias=False)
142
        self.bn1 = norm_layer(self.inplanes)
143
144
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
145
146
147
148
149
150
151
        self.layer1 = self._make_layer(block, 64, layers[0])
        self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
                                       dilate=replace_stride_with_dilation[0])
        self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
                                       dilate=replace_stride_with_dilation[1])
        self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
                                       dilate=replace_stride_with_dilation[2])
152
        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
153
        self.fc = nn.Linear(512 * block.expansion, num_classes)
154
155
156

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
157
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
158
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
159
160
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)
161

162
163
164
165
166
167
168
169
170
171
        # Zero-initialize the last BN in each residual branch,
        # so that the residual branch starts with zeros, and each residual block behaves like an identity.
        # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, Bottleneck):
                    nn.init.constant_(m.bn3.weight, 0)
                elif isinstance(m, BasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

172
173
    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        norm_layer = self._norm_layer
174
        downsample = None
175
176
177
178
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
179
180
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
181
                conv1x1(self.inplanes, planes * block.expansion, stride),
182
                norm_layer(planes * block.expansion),
183
184
185
            )

        layers = []
186
        layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
187
                            self.base_width, previous_dilation, norm_layer))
188
        self.inplanes = planes * block.expansion
189
        for _ in range(1, blocks):
190
            layers.append(block(self.inplanes, planes, groups=self.groups,
191
192
                                base_width=self.base_width, dilation=self.dilation,
                                norm_layer=norm_layer))
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207

        return nn.Sequential(*layers)

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        x = self.avgpool(x)
208
        x = torch.flatten(x, 1)
209
210
211
212
213
        x = self.fc(x)

        return x


214
215
def _resnet(arch, block, layers, pretrained, progress, **kwargs):
    model = ResNet(block, layers, **kwargs)
216
217
218
219
220
221
222
223
    if pretrained:
        state_dict = load_state_dict_from_url(model_urls[arch],
                                              progress=progress)
        model.load_state_dict(state_dict)
    return model


def resnet18(pretrained=False, progress=True, **kwargs):
224
    r"""ResNet-18 model from
225
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
226
227
228

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
229
        progress (bool): If True, displays a progress bar of the download to stderr
230
    """
231
232
    return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
                   **kwargs)
233
234


235
def resnet34(pretrained=False, progress=True, **kwargs):
236
    r"""ResNet-34 model from
237
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
238
239
240

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
241
        progress (bool): If True, displays a progress bar of the download to stderr
242
    """
243
244
    return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)
245
246


247
def resnet50(pretrained=False, progress=True, **kwargs):
248
    r"""ResNet-50 model from
249
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
250
251
252

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
253
        progress (bool): If True, displays a progress bar of the download to stderr
254
    """
255
256
    return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
                   **kwargs)
257
258


259
def resnet101(pretrained=False, progress=True, **kwargs):
260
    r"""ResNet-101 model from
261
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
262
263
264

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
265
        progress (bool): If True, displays a progress bar of the download to stderr
266
    """
267
268
    return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
                   **kwargs)
269
270


271
def resnet152(pretrained=False, progress=True, **kwargs):
272
    r"""ResNet-152 model from
273
    `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
274
275
276

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
277
        progress (bool): If True, displays a progress bar of the download to stderr
278
    """
279
280
    return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
                   **kwargs)
281
282


283
def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
284
285
    r"""ResNeXt-50 32x4d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
286
287
288
289
290

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
291
292
293
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 4
    return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
294
                   pretrained, progress, **kwargs)
295
296


297
def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
298
299
    r"""ResNeXt-101 32x8d model from
    `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
300
301
302
303
304

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
305
306
307
    kwargs['groups'] = 32
    kwargs['width_per_group'] = 8
    return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
308
                   pretrained, progress, **kwargs)
309
310
311


def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
312
313
    r"""Wide ResNet-50-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
                   pretrained, progress, **kwargs)


def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
330
331
    r"""Wide ResNet-101-2 model from
    `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
332
333
334
335
336
337
338
339
340
341
342
343
344

    The model is the same as ResNet except for the bottleneck number of channels
    which is twice larger in every block. The number of channels in outer 1x1
    convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
    channels, and in Wide ResNet-50-2 has 2048-1024-2048.

    Args:
        pretrained (bool): If True, returns a model pre-trained on ImageNet
        progress (bool): If True, displays a progress bar of the download to stderr
    """
    kwargs['width_per_group'] = 64 * 2
    return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
                   pretrained, progress, **kwargs)