faster_rcnn.py 36.1 KB
Newer Older
1
from typing import Any, Callable, List, Optional, Tuple, Union
2

3
import torch
4
import torch.nn.functional as F
5
from torch import nn
6
7
from torchvision.ops import MultiScaleRoIAlign

8
from ...ops import misc as misc_nn_ops
9
from ...transforms._presets import ObjectDetection
10
from .._api import register_model, Weights, WeightsEnum
11
from .._meta import _COCO_CATEGORIES
12
13
14
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights
from ..resnet import resnet50, ResNet50_Weights
15
from ._utils import overwrite_eps
16
from .anchor_utils import AnchorGenerator
17
from .backbone_utils import _mobilenet_extractor, _resnet_fpn_extractor, _validate_trainable_layers
18
19
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
20
from .rpn import RegionProposalNetwork, RPNHead
21
22
23
24
from .transform import GeneralizedRCNNTransform


__all__ = [
25
    "FasterRCNN",
26
    "FasterRCNN_ResNet50_FPN_Weights",
27
    "FasterRCNN_ResNet50_FPN_V2_Weights",
28
29
    "FasterRCNN_MobileNet_V3_Large_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights",
30
    "fasterrcnn_resnet50_fpn",
31
    "fasterrcnn_resnet50_fpn_v2",
32
    "fasterrcnn_mobilenet_v3_large_fpn",
33
    "fasterrcnn_mobilenet_v3_large_320_fpn",
34
35
36
]


37
38
39
40
41
42
def _default_anchorgen():
    anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
    return AnchorGenerator(anchor_sizes, aspect_ratios)


43
class FasterRCNN(GeneralizedRCNN):
44
45
46
47
48
49
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

50
    The behavior of the model changes depending on if it is in training or evaluation mode.
51

52
    During training, the model expects both the input tensors and targets (list of dictionary),
53
    containing:
54
55
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
56
        - labels (Int64Tensor[N]): the class label for each ground-truth box
57

58
59
60
61
62
63
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
64
65
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
66
        - labels (Int64Tensor[N]): the predicted labels for each image
67
        - scores (Tensor[N]): the scores or each prediction
68

69
    Args:
70
        backbone (nn.Module): the network used to compute the features for the model.
71
            It should contain an out_channels attribute, which indicates the number of output
72
73
74
75
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
76
77
78
79
80
81
        min_size (int): Images are rescaled before feeding them to the backbone:
            we attempt to preserve the aspect ratio and scale the shorter edge
            to ``min_size``. If the resulting longer edge exceeds ``max_size``,
            then downscale so that the longer edge does not exceed ``max_size``.
            This may result in the shorter edge beeing lower than ``min_size``.
        max_size (int): See ``min_size``.
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
103
        rpn_score_thresh (float): only return proposals with an objectness score greater than rpn_score_thresh
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
126
        >>> import torch
127
128
129
130
131
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
132
        >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
133
        >>> # FasterRCNN needs to know the number of
134
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280,
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
150
        >>> # be ['0']. More generally, the backbone should return an
151
152
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
153
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
154
155
156
157
158
159
160
161
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
162
163
164
165
166
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
201
        **kwargs,
202
    ):
203
204
205
206
207

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
208
209
                "same for all the levels)"
            )
210

211
212
213
214
215
216
217
218
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
219
220
221
222
223
224

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
225
                raise ValueError("num_classes should not be None when box_predictor is not specified")
226
227
228
229

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
230
            rpn_anchor_generator = _default_anchorgen()
231
        if rpn_head is None:
232
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
233
234
235
236
237

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
238
239
240
241
242
243
244
245
246
247
248
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
249
250

        if box_roi_pool is None:
251
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
252
253
254
255

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
256
            box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
257
258
259

        if box_predictor is None:
            representation_size = 1024
260
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
261
262
263

        roi_heads = RoIHeads(
            # Box
264
265
266
267
268
269
270
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
271
            bbox_reg_weights,
272
273
274
275
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
276
277
278
279
280

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
281
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
282

283
        super().__init__(backbone, rpn, roi_heads, transform)
284
285
286
287


class TwoMLPHead(nn.Module):
    """
288
289
    Standard heads for FPN-based models

290
    Args:
291
292
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
293
294
295
    """

    def __init__(self, in_channels, representation_size):
296
        super().__init__()
297
298
299
300
301
302
303
304
305
306
307
308
309

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
class FastRCNNConvFCHead(nn.Sequential):
    def __init__(
        self,
        input_size: Tuple[int, int, int],
        conv_layers: List[int],
        fc_layers: List[int],
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ):
        """
        Args:
            input_size (Tuple[int, int, int]): the input size in CHW format.
            conv_layers (list): feature dimensions of each Convolution layer
            fc_layers (list): feature dimensions of each FCN layer
            norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
        """
        in_channels, in_height, in_width = input_size

        blocks = []
        previous_channels = in_channels
        for current_channels in conv_layers:
            blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
            previous_channels = current_channels
        blocks.append(nn.Flatten())
        previous_channels = previous_channels * in_height * in_width
        for current_channels in fc_layers:
            blocks.append(nn.Linear(previous_channels, current_channels))
            blocks.append(nn.ReLU(inplace=True))
            previous_channels = current_channels

        super().__init__(*blocks)
        for layer in self.modules():
            if isinstance(layer, nn.Conv2d):
                nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
                if layer.bias is not None:
                    nn.init.zeros_(layer.bias)


347
class FastRCNNPredictor(nn.Module):
348
349
350
351
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

352
    Args:
353
354
355
356
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

357
    def __init__(self, in_channels, num_classes):
358
        super().__init__()
359
360
361
362
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
363
        if x.dim() == 4:
364
365
366
367
            torch._assert(
                list(x.shape[2:]) == [1, 1],
                f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
            )
368
369
370
371
372
373
374
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


375
376
_COMMON_META = {
    "categories": _COCO_CATEGORIES,
377
    "min_size": (1, 1),
378
379
380
}


381
382
383
384
385
386
387
388
class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 41755286,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
389
390
391
392
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 37.0,
                }
393
            },
394
            "_ops": 134.38,
Nicolas Hug's avatar
Nicolas Hug committed
395
            "_file_size": 159.743,
396
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
397
398
399
400
401
        },
    )
    DEFAULT = COCO_V1


402
class FasterRCNN_ResNet50_FPN_V2_Weights(WeightsEnum):
403
404
405
406
407
408
409
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_v2_coco-dd69338a.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 43712278,
            "recipe": "https://github.com/pytorch/vision/pull/5763",
410
411
412
413
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 46.7,
                }
414
            },
415
            "_ops": 280.371,
Nicolas Hug's avatar
Nicolas Hug committed
416
            "_file_size": 167.104,
417
            "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""",
418
419
420
        },
    )
    DEFAULT = COCO_V1
421
422


423
424
425
426
427
428
429
430
class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
431
432
433
434
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 32.8,
                }
435
            },
436
            "_ops": 4.494,
Nicolas Hug's avatar
Nicolas Hug committed
437
            "_file_size": 74.239,
438
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
439
440
441
442
443
444
445
446
447
448
449
450
451
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
452
453
454
455
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 22.8,
                }
456
            },
457
            "_ops": 0.719,
Nicolas Hug's avatar
Nicolas Hug committed
458
            "_file_size": 74.239,
459
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
460
461
462
463
464
        },
    )
    DEFAULT = COCO_V1


465
@register_model()
466
467
468
469
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
470
def fasterrcnn_resnet50_fpn(
471
472
473
474
475
476
477
478
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
479
    """
480
    Faster R-CNN model with a ResNet-50-FPN backbone from the `Faster R-CNN: Towards Real-Time Object
481
    Detection with Region Proposal Networks <https://arxiv.org/abs/1506.01497>`__
482
    paper.
483

484
485
    .. betastatus:: detection module

486
487
488
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

489
    The behavior of the model changes depending on if it is in training or evaluation mode.
490

491
    During training, the model expects both the input tensors and a targets (list of dictionary),
492
    containing:
493

494
495
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
496
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
497
498
499
500
501
502

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
503
    follows, where ``N`` is the number of detections:
504

505
506
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
507
508
509
510
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
511

512
513
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

514
515
    Example::

516
        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
517
518
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
519
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
520
        >>> labels = torch.randint(1, 91, (4, 11))
521
        >>> images = list(image for image in images)
522
        >>> targets = []
523
524
525
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
526
        >>>     d['labels'] = labels[i]
527
        >>>     targets.append(d)
528
529
530
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
531
532
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
533
534
535
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
536

537
    Args:
538
539
540
541
542
543
544
        weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
545
        num_classes (int, optional): number of output classes of the model (including the background)
546
547
548
549
550
551
552
553
554
555
556
557
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights
        :members:
558
    """
559
560
561
562
563
    weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
564
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
565
566
567
568
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
569
570
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
571

572
    backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
573
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
574
575
576
    model = FasterRCNN(backbone, num_classes=num_classes, **kwargs)

    if weights is not None:
577
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
578
579
580
        if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
            overwrite_eps(model, 0.0)

581
    return model
582
583


584
@register_model()
585
586
587
588
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
589
590
591
592
593
594
595
596
597
598
def fasterrcnn_resnet50_fpn_v2(
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_V2_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = None,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
    """
599
600
    Constructs an improved Faster R-CNN model with a ResNet-50-FPN backbone from `Benchmarking Detection
    Transfer Learning with Vision Transformers <https://arxiv.org/abs/2111.11429>`__ paper.
601

602
603
    .. betastatus:: detection module

604
605
606
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
607
608

    Args:
609
610
611
612
613
614
615
        weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
616
        num_classes (int, optional): number of output classes of the model (including the background)
617
618
619
620
621
622
623
624
625
626
627
628
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights
        :members:
629
630
631
632
633
634
    """
    weights = FasterRCNN_ResNet50_FPN_V2_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
635
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)

    backbone = resnet50(weights=weights_backbone, progress=progress)
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers, norm_layer=nn.BatchNorm2d)
    rpn_anchor_generator = _default_anchorgen()
    rpn_head = RPNHead(backbone.out_channels, rpn_anchor_generator.num_anchors_per_location()[0], conv_depth=2)
    box_head = FastRCNNConvFCHead(
        (backbone.out_channels, 7, 7), [256, 256, 256, 256], [1024], norm_layer=nn.BatchNorm2d
    )
    model = FasterRCNN(
        backbone,
        num_classes=num_classes,
        rpn_anchor_generator=rpn_anchor_generator,
        rpn_head=rpn_head,
        box_head=box_head,
        **kwargs,
    )

    if weights is not None:
659
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
660
661
662
663

    return model


664
def _fasterrcnn_mobilenet_v3_large_fpn(
665
666
667
668
669
670
671
672
673
674
    *,
    weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]],
    progress: bool,
    num_classes: Optional[int],
    weights_backbone: Optional[MobileNet_V3_Large_Weights],
    trainable_backbone_layers: Optional[int],
    **kwargs: Any,
) -> FasterRCNN:
    if weights is not None:
        weights_backbone = None
675
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
676
677
678
679
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
680
681
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
682

683
    backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
684
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
685
686
687
688
689
690
691
692
693
    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
694
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
695
696
697
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
698
699

    if weights is not None:
700
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
701

702
703
704
    return model


705
@register_model()
706
707
708
709
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
710
def fasterrcnn_mobilenet_v3_large_320_fpn(
711
712
713
714
715
716
717
718
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
719
    """
720
    Low resolution Faster R-CNN model with a MobileNetV3-Large backbone tuned for mobile use cases.
721

722
723
    .. betastatus:: detection module

724
725
726
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
727
728
729

    Example::

730
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
731
732
733
734
735
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
736
737
738
739
740
741
742
        weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
743
        num_classes (int, optional): number of output classes of the model (including the background)
744
745
746
747
748
749
750
751
752
753
754
755
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights
        :members:
756
    """
757
758
759
    weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

760
761
762
763
764
765
766
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
767

768
    kwargs = {**defaults, **kwargs}
769
    return _fasterrcnn_mobilenet_v3_large_fpn(
770
        weights=weights,
771
772
        progress=progress,
        num_classes=num_classes,
773
        weights_backbone=weights_backbone,
774
775
776
777
778
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


779
@register_model()
780
781
782
783
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
784
def fasterrcnn_mobilenet_v3_large_fpn(
785
786
787
788
789
790
791
792
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
793
794
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
795
796
797

    .. betastatus:: detection module

798
799
800
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
801
802
803

    Example::

804
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
805
806
807
808
809
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
810
811
812
813
814
815
816
        weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
817
        num_classes (int, optional): number of output classes of the model (including the background)
818
819
820
821
822
823
824
825
826
827
828
829
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights
        :members:
830
    """
831
832
833
    weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

834
835
836
837
838
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
839
    return _fasterrcnn_mobilenet_v3_large_fpn(
840
        weights=weights,
841
842
        progress=progress,
        num_classes=num_classes,
843
        weights_backbone=weights_backbone,
844
845
846
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )