faster_rcnn.py 23.4 KB
Newer Older
1
import torch.nn.functional as F
2
from torch import nn
3
4
from torchvision.ops import MultiScaleRoIAlign

5
from ..._internally_replaced_utils import load_state_dict_from_url
6
7
8
from ...ops import misc as misc_nn_ops
from ..mobilenetv3 import mobilenet_v3_large
from ..resnet import resnet50
9
from ._utils import overwrite_eps
10
from .anchor_utils import AnchorGenerator
11
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, _mobilenet_extractor
12
13
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
14
from .rpn import RPNHead, RegionProposalNetwork
15
16
17
18
from .transform import GeneralizedRCNNTransform


__all__ = [
19
20
21
22
    "FasterRCNN",
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_mobilenet_v3_large_320_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn",
23
24
25
26
]


class FasterRCNN(GeneralizedRCNN):
27
28
29
30
31
32
33
34
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

35
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
36
    containing:
37
38
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
39
        - labels (Int64Tensor[N]): the class label for each ground-truth box
40

41
42
43
44
45
46
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
47
48
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
49
        - labels (Int64Tensor[N]): the predicted labels for each image
50
        - scores (Tensor[N]): the scores or each prediction
51

52
    Args:
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
82
83
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
106
        >>> import torch
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
        >>> backbone = torchvision.models.mobilenet_v2(pretrained=True).features
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
130
        >>> # be ['0']. More generally, the backbone should return an
131
132
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
133
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
134
135
136
137
138
139
140
141
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
142
143
144
145
146
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
    ):
182
183
184
185
186

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
187
188
                "same for all the levels)"
            )
189

190
191
192
193
194
195
196
197
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
198
199
200
201
202
203

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
204
                raise ValueError("num_classes should not be None when box_predictor is not specified")
205
206
207
208
209
210

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
211
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
212
        if rpn_head is None:
213
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
214
215
216
217
218

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
219
220
221
222
223
224
225
226
227
228
229
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
230
231

        if box_roi_pool is None:
232
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
233
234
235
236

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
237
            box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
238
239
240

        if box_predictor is None:
            representation_size = 1024
241
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
242
243
244

        roi_heads = RoIHeads(
            # Box
245
246
247
248
249
250
251
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
252
            bbox_reg_weights,
253
254
255
256
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
257
258
259
260
261
262
263

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

264
        super().__init__(backbone, rpn, roi_heads, transform)
265
266
267
268


class TwoMLPHead(nn.Module):
    """
269
270
    Standard heads for FPN-based models

271
    Args:
272
273
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
274
275
276
    """

    def __init__(self, in_channels, representation_size):
277
        super().__init__()
278
279
280
281
282
283
284
285
286
287
288
289
290
291

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
292
293
294
295
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

296
    Args:
297
298
299
300
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

301
    def __init__(self, in_channels, num_classes):
302
        super().__init__()
303
304
305
306
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
307
        if x.dim() == 4:
308
309
310
311
            if list(x.shape[2:]) != [1, 1]:
                raise ValueError(
                    f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}"
                )
312
313
314
315
316
317
318
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


319
model_urls = {
320
321
322
    "fasterrcnn_resnet50_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
    "fasterrcnn_mobilenet_v3_large_320_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
    "fasterrcnn_mobilenet_v3_large_fpn_coco": "https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
323
324
325
}


326
327
328
def fasterrcnn_resnet50_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
329
330
331
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

332
333
334
    Reference: `"Faster R-CNN: Towards Real-Time Object Detection with
    Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.

335
336
337
338
339
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

340
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
341
    containing:
342

343
344
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
345
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
346
347
348
349
350
351

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
352
    follows, where ``N`` is the number of detections:
353

354
355
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
356
357
358
359
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
360

361
362
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

363
364
365
    Example::

        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
366
367
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
368
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
369
        >>> labels = torch.randint(1, 91, (4, 11))
370
        >>> images = list(image for image in images)
371
        >>> targets = []
372
373
374
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
375
        >>>     d['labels'] = labels[i]
376
        >>>     targets.append(d)
377
378
379
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
380
381
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
382
383
384
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
385

386
    Args:
387
388
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
389
        num_classes (int): number of output classes of the model (including the background)
390
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
391
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
392
393
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
394
    """
395
396
397
    is_trained = pretrained or pretrained_backbone
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
398

399
400
401
    if pretrained:
        # no need to download the backbone if pretrained is set
        pretrained_backbone = False
402

403
    backbone = resnet50(pretrained=pretrained_backbone, progress=progress, norm_layer=norm_layer)
404
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
405
406
    model = FasterRCNN(backbone, num_classes, **kwargs)
    if pretrained:
407
        state_dict = load_state_dict_from_url(model_urls["fasterrcnn_resnet50_fpn_coco"], progress=progress)
408
        model.load_state_dict(state_dict)
409
        overwrite_eps(model, 0.0)
410
    return model
411
412


413
414
415
416
417
418
419
420
421
def _fasterrcnn_mobilenet_v3_large_fpn(
    weights_name,
    pretrained=False,
    progress=True,
    num_classes=91,
    pretrained_backbone=True,
    trainable_backbone_layers=None,
    **kwargs,
):
422
423
424
    is_trained = pretrained or pretrained_backbone
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
425
426
427

    if pretrained:
        pretrained_backbone = False
428

429
    backbone = mobilenet_v3_large(pretrained=pretrained_backbone, progress=progress, norm_layer=norm_layer)
430
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
431
432
433
434
435
436
437
438
439
440

    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
441
442
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)

443
444
445
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
446
447
    if pretrained:
        if model_urls.get(weights_name, None) is None:
448
            raise ValueError(f"No checkpoint is available for model {weights_name}")
449
450
451
452
453
        state_dict = load_state_dict_from_url(model_urls[weights_name], progress=progress)
        model.load_state_dict(state_dict)
    return model


454
455
456
def fasterrcnn_mobilenet_v3_large_320_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
457
    """
458
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
459
460
461
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
462
463
464

    Example::

465
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(pretrained=True)
466
467
468
469
470
471
472
473
474
475
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
476
477
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
478
    """
479
480
481
482
483
484
485
486
    weights_name = "fasterrcnn_mobilenet_v3_large_320_fpn_coco"
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
487

488
    kwargs = {**defaults, **kwargs}
489
490
491
492
493
494
495
496
497
498
499
500
501
502
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights_name,
        pretrained=pretrained,
        progress=progress,
        num_classes=num_classes,
        pretrained_backbone=pretrained_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


def fasterrcnn_mobilenet_v3_large_fpn(
    pretrained=False, progress=True, num_classes=91, pretrained_backbone=True, trainable_backbone_layers=None, **kwargs
):
503
504
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
505
506
507
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
508
509
510
511
512
513
514
515
516
517
518
519
520
521

    Example::

        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(pretrained=True)
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
        pretrained (bool): If True, returns a model pre-trained on COCO train2017
        progress (bool): If True, displays a progress bar of the download to stderr
        num_classes (int): number of output classes of the model (including the background)
        pretrained_backbone (bool): If True, returns a model with backbone pre-trained on Imagenet
        trainable_backbone_layers (int): number of trainable (not frozen) resnet layers starting from final block.
522
523
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
524
525
526
527
528
529
530
    """
    weights_name = "fasterrcnn_mobilenet_v3_large_fpn_coco"
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
531
532
533
534
535
536
537
538
539
    return _fasterrcnn_mobilenet_v3_large_fpn(
        weights_name,
        pretrained=pretrained,
        progress=progress,
        num_classes=num_classes,
        pretrained_backbone=pretrained_backbone,
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )