"csrc/cuda/utils.cuh" did not exist on "eae34d5d1241d7cc5825242885231207f9e031cd"
faster_rcnn.py 35.9 KB
Newer Older
1
from typing import Any, Callable, List, Optional, Tuple, Union
2

3
import torch
4
import torch.nn.functional as F
5
from torch import nn
6
7
from torchvision.ops import MultiScaleRoIAlign

8
from ...ops import misc as misc_nn_ops
9
from ...transforms._presets import ObjectDetection
10
from .._api import register_model, Weights, WeightsEnum
11
from .._meta import _COCO_CATEGORIES
12
13
14
from .._utils import _ovewrite_value_param, handle_legacy_interface
from ..mobilenetv3 import mobilenet_v3_large, MobileNet_V3_Large_Weights
from ..resnet import resnet50, ResNet50_Weights
15
from ._utils import overwrite_eps
16
from .anchor_utils import AnchorGenerator
17
from .backbone_utils import _mobilenet_extractor, _resnet_fpn_extractor, _validate_trainable_layers
18
19
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
20
from .rpn import RegionProposalNetwork, RPNHead
21
22
23
24
from .transform import GeneralizedRCNNTransform


__all__ = [
25
    "FasterRCNN",
26
    "FasterRCNN_ResNet50_FPN_Weights",
27
    "FasterRCNN_ResNet50_FPN_V2_Weights",
28
29
    "FasterRCNN_MobileNet_V3_Large_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights",
30
    "fasterrcnn_resnet50_fpn",
31
    "fasterrcnn_resnet50_fpn_v2",
32
    "fasterrcnn_mobilenet_v3_large_fpn",
33
    "fasterrcnn_mobilenet_v3_large_320_fpn",
34
35
36
]


37
38
39
40
41
42
def _default_anchorgen():
    anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
    return AnchorGenerator(anchor_sizes, aspect_ratios)


43
class FasterRCNN(GeneralizedRCNN):
44
45
46
47
48
49
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

50
    The behavior of the model changes depending on if it is in training or evaluation mode.
51

52
    During training, the model expects both the input tensors and targets (list of dictionary),
53
    containing:
54
55
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
56
        - labels (Int64Tensor[N]): the class label for each ground-truth box
57

58
59
60
61
62
63
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
64
65
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
66
        - labels (Int64Tensor[N]): the predicted labels for each image
67
        - scores (Tensor[N]): the scores or each prediction
68

69
    Args:
70
        backbone (nn.Module): the network used to compute the features for the model.
71
            It should contain an out_channels attribute, which indicates the number of output
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
99
        rpn_score_thresh (float): only return proposals with an objectness score greater than rpn_score_thresh
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
122
        >>> import torch
123
124
125
126
127
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
128
        >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
129
        >>> # FasterRCNN needs to know the number of
130
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280,
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
146
        >>> # be ['0']. More generally, the backbone should return an
147
148
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
149
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
150
151
152
153
154
155
156
157
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
158
159
160
161
162
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
197
        **kwargs,
198
    ):
199
200
201
202
203

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
204
205
                "same for all the levels)"
            )
206

207
208
209
210
211
212
213
214
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
215
216
217
218
219
220

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
221
                raise ValueError("num_classes should not be None when box_predictor is not specified")
222
223
224
225

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
226
            rpn_anchor_generator = _default_anchorgen()
227
        if rpn_head is None:
228
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
229
230
231
232
233

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
234
235
236
237
238
239
240
241
242
243
244
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
245
246

        if box_roi_pool is None:
247
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
248
249
250
251

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
252
            box_head = TwoMLPHead(out_channels * resolution**2, representation_size)
253
254
255

        if box_predictor is None:
            representation_size = 1024
256
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
257
258
259

        roi_heads = RoIHeads(
            # Box
260
261
262
263
264
265
266
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
267
            bbox_reg_weights,
268
269
270
271
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
272
273
274
275
276

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
277
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
278

279
        super().__init__(backbone, rpn, roi_heads, transform)
280
281
282
283


class TwoMLPHead(nn.Module):
    """
284
285
    Standard heads for FPN-based models

286
    Args:
287
288
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
289
290
291
    """

    def __init__(self, in_channels, representation_size):
292
        super().__init__()
293
294
295
296
297
298
299
300
301
302
303
304
305

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
class FastRCNNConvFCHead(nn.Sequential):
    def __init__(
        self,
        input_size: Tuple[int, int, int],
        conv_layers: List[int],
        fc_layers: List[int],
        norm_layer: Optional[Callable[..., nn.Module]] = None,
    ):
        """
        Args:
            input_size (Tuple[int, int, int]): the input size in CHW format.
            conv_layers (list): feature dimensions of each Convolution layer
            fc_layers (list): feature dimensions of each FCN layer
            norm_layer (callable, optional): Module specifying the normalization layer to use. Default: None
        """
        in_channels, in_height, in_width = input_size

        blocks = []
        previous_channels = in_channels
        for current_channels in conv_layers:
            blocks.append(misc_nn_ops.Conv2dNormActivation(previous_channels, current_channels, norm_layer=norm_layer))
            previous_channels = current_channels
        blocks.append(nn.Flatten())
        previous_channels = previous_channels * in_height * in_width
        for current_channels in fc_layers:
            blocks.append(nn.Linear(previous_channels, current_channels))
            blocks.append(nn.ReLU(inplace=True))
            previous_channels = current_channels

        super().__init__(*blocks)
        for layer in self.modules():
            if isinstance(layer, nn.Conv2d):
                nn.init.kaiming_normal_(layer.weight, mode="fan_out", nonlinearity="relu")
                if layer.bias is not None:
                    nn.init.zeros_(layer.bias)


343
class FastRCNNPredictor(nn.Module):
344
345
346
347
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

348
    Args:
349
350
351
352
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

353
    def __init__(self, in_channels, num_classes):
354
        super().__init__()
355
356
357
358
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
359
        if x.dim() == 4:
360
361
362
363
            torch._assert(
                list(x.shape[2:]) == [1, 1],
                f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
            )
364
365
366
367
368
369
370
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


371
372
_COMMON_META = {
    "categories": _COCO_CATEGORIES,
373
    "min_size": (1, 1),
374
375
376
}


377
378
379
380
381
382
383
384
class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 41755286,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
385
386
387
388
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 37.0,
                }
389
            },
390
            "_ops": 134.38,
Nicolas Hug's avatar
Nicolas Hug committed
391
            "_file_size": 159.743,
392
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
393
394
395
396
397
        },
    )
    DEFAULT = COCO_V1


398
class FasterRCNN_ResNet50_FPN_V2_Weights(WeightsEnum):
399
400
401
402
403
404
405
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_v2_coco-dd69338a.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 43712278,
            "recipe": "https://github.com/pytorch/vision/pull/5763",
406
407
408
409
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 46.7,
                }
410
            },
411
            "_ops": 280.371,
Nicolas Hug's avatar
Nicolas Hug committed
412
            "_file_size": 167.104,
413
            "_docs": """These weights were produced using an enhanced training recipe to boost the model accuracy.""",
414
415
416
        },
    )
    DEFAULT = COCO_V1
417
418


419
420
421
422
423
424
425
426
class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
427
428
429
430
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 32.8,
                }
431
            },
432
            "_ops": 4.494,
Nicolas Hug's avatar
Nicolas Hug committed
433
            "_file_size": 74.239,
434
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
435
436
437
438
439
440
441
442
443
444
445
446
447
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
448
449
450
451
            "_metrics": {
                "COCO-val2017": {
                    "box_map": 22.8,
                }
452
            },
453
            "_ops": 0.719,
Nicolas Hug's avatar
Nicolas Hug committed
454
            "_file_size": 74.239,
455
            "_docs": """These weights were produced by following a similar training recipe as on the paper.""",
456
457
458
459
460
        },
    )
    DEFAULT = COCO_V1


461
@register_model()
462
463
464
465
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
466
def fasterrcnn_resnet50_fpn(
467
468
469
470
471
472
473
474
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
475
    """
476
    Faster R-CNN model with a ResNet-50-FPN backbone from the `Faster R-CNN: Towards Real-Time Object
477
    Detection with Region Proposal Networks <https://arxiv.org/abs/1506.01497>`__
478
    paper.
479

480
481
    .. betastatus:: detection module

482
483
484
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

485
    The behavior of the model changes depending on if it is in training or evaluation mode.
486

487
    During training, the model expects both the input tensors and a targets (list of dictionary),
488
    containing:
489

490
491
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
492
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
493
494
495
496
497
498

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
499
    follows, where ``N`` is the number of detections:
500

501
502
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
503
504
505
506
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
507

508
509
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

510
511
    Example::

512
        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
513
514
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
515
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
516
        >>> labels = torch.randint(1, 91, (4, 11))
517
        >>> images = list(image for image in images)
518
        >>> targets = []
519
520
521
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
522
        >>>     d['labels'] = labels[i]
523
        >>>     targets.append(d)
524
525
526
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
527
528
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
529
530
531
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
532

533
    Args:
534
535
536
537
538
539
540
        weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
541
        num_classes (int, optional): number of output classes of the model (including the background)
542
543
544
545
546
547
548
549
550
551
552
553
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights
        :members:
554
    """
555
556
557
558
559
    weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
560
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
561
562
563
564
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
565
566
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
567

568
    backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
569
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
570
571
572
    model = FasterRCNN(backbone, num_classes=num_classes, **kwargs)

    if weights is not None:
573
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
574
575
576
        if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
            overwrite_eps(model, 0.0)

577
    return model
578
579


580
@register_model()
581
582
583
584
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
585
586
587
588
589
590
591
592
593
594
def fasterrcnn_resnet50_fpn_v2(
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_V2_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = None,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
    """
595
596
    Constructs an improved Faster R-CNN model with a ResNet-50-FPN backbone from `Benchmarking Detection
    Transfer Learning with Vision Transformers <https://arxiv.org/abs/2111.11429>`__ paper.
597

598
599
    .. betastatus:: detection module

600
601
602
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
603
604

    Args:
605
606
607
608
609
610
611
        weights (:class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
612
        num_classes (int, optional): number of output classes of the model (including the background)
613
614
615
616
617
618
619
620
621
622
623
624
        weights_backbone (:class:`~torchvision.models.ResNet50_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 5, with 5 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_ResNet50_FPN_V2_Weights
        :members:
625
626
627
628
629
630
    """
    weights = FasterRCNN_ResNet50_FPN_V2_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
631
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)

    backbone = resnet50(weights=weights_backbone, progress=progress)
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers, norm_layer=nn.BatchNorm2d)
    rpn_anchor_generator = _default_anchorgen()
    rpn_head = RPNHead(backbone.out_channels, rpn_anchor_generator.num_anchors_per_location()[0], conv_depth=2)
    box_head = FastRCNNConvFCHead(
        (backbone.out_channels, 7, 7), [256, 256, 256, 256], [1024], norm_layer=nn.BatchNorm2d
    )
    model = FasterRCNN(
        backbone,
        num_classes=num_classes,
        rpn_anchor_generator=rpn_anchor_generator,
        rpn_head=rpn_head,
        box_head=box_head,
        **kwargs,
    )

    if weights is not None:
655
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
656
657
658
659

    return model


660
def _fasterrcnn_mobilenet_v3_large_fpn(
661
662
663
664
665
666
667
668
669
670
    *,
    weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]],
    progress: bool,
    num_classes: Optional[int],
    weights_backbone: Optional[MobileNet_V3_Large_Weights],
    trainable_backbone_layers: Optional[int],
    **kwargs: Any,
) -> FasterRCNN:
    if weights is not None:
        weights_backbone = None
671
        num_classes = _ovewrite_value_param("num_classes", num_classes, len(weights.meta["categories"]))
672
673
674
675
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
676
677
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
678

679
    backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
680
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
681
682
683
684
685
686
687
688
689
    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
690
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
691
692
693
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
694
695

    if weights is not None:
696
        model.load_state_dict(weights.get_state_dict(progress=progress, check_hash=True))
697

698
699
700
    return model


701
@register_model()
702
703
704
705
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
706
def fasterrcnn_mobilenet_v3_large_320_fpn(
707
708
709
710
711
712
713
714
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
715
    """
716
    Low resolution Faster R-CNN model with a MobileNetV3-Large backbone tuned for mobile use cases.
717

718
719
    .. betastatus:: detection module

720
721
722
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
723
724
725

    Example::

726
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
727
728
729
730
731
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
732
733
734
735
736
737
738
        weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
739
        num_classes (int, optional): number of output classes of the model (including the background)
740
741
742
743
744
745
746
747
748
749
750
751
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_320_FPN_Weights
        :members:
752
    """
753
754
755
    weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

756
757
758
759
760
761
762
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
763

764
    kwargs = {**defaults, **kwargs}
765
    return _fasterrcnn_mobilenet_v3_large_fpn(
766
        weights=weights,
767
768
        progress=progress,
        num_classes=num_classes,
769
        weights_backbone=weights_backbone,
770
771
772
773
774
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


775
@register_model()
776
777
778
779
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
780
def fasterrcnn_mobilenet_v3_large_fpn(
781
782
783
784
785
786
787
788
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
789
790
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
791
792
793

    .. betastatus:: detection module

794
795
796
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
797
798
799

    Example::

800
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
801
802
803
804
805
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
806
807
808
809
810
811
812
        weights (:class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights`, optional): The
            pretrained weights to use. See
            :class:`~torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights` below for
            more details, and possible values. By default, no pre-trained
            weights are used.
        progress (bool, optional): If True, displays a progress bar of the
            download to stderr. Default is True.
813
        num_classes (int, optional): number of output classes of the model (including the background)
814
815
816
817
818
819
820
821
822
823
824
825
        weights_backbone (:class:`~torchvision.models.MobileNet_V3_Large_Weights`, optional): The
            pretrained weights for the backbone.
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from
            final block. Valid values are between 0 and 6, with 6 meaning all backbone layers are
            trainable. If ``None`` is passed (the default) this value is set to 3.
        **kwargs: parameters passed to the ``torchvision.models.detection.faster_rcnn.FasterRCNN``
            base class. Please refer to the `source code
            <https://github.com/pytorch/vision/blob/main/torchvision/models/detection/faster_rcnn.py>`_
            for more details about this class.

    .. autoclass:: torchvision.models.detection.FasterRCNN_MobileNet_V3_Large_FPN_Weights
        :members:
826
    """
827
828
829
    weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

830
831
832
833
834
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
835
    return _fasterrcnn_mobilenet_v3_large_fpn(
836
        weights=weights,
837
838
        progress=progress,
        num_classes=num_classes,
839
        weights_backbone=weights_backbone,
840
841
842
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )