faster_rcnn.py 26.8 KB
Newer Older
1
2
from typing import Any, Optional, Union

3
import torch.nn.functional as F
4
from torch import nn
5
6
from torchvision.ops import MultiScaleRoIAlign

7
from ...ops import misc as misc_nn_ops
8
9
10
11
12
13
from ...transforms._presets import ObjectDetection, InterpolationMode
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
from ..mobilenetv3 import MobileNet_V3_Large_Weights, mobilenet_v3_large
from ..resnet import ResNet50_Weights, resnet50
14
from ._utils import overwrite_eps
15
from .anchor_utils import AnchorGenerator
16
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, _mobilenet_extractor
17
18
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
19
from .rpn import RPNHead, RegionProposalNetwork
20
21
22
23
from .transform import GeneralizedRCNNTransform


__all__ = [
24
    "FasterRCNN",
25
26
27
    "FasterRCNN_ResNet50_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights",
28
29
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn",
30
    "fasterrcnn_mobilenet_v3_large_320_fpn",
31
32
33
34
]


class FasterRCNN(GeneralizedRCNN):
35
36
37
38
39
40
41
42
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

43
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
44
    containing:
45
46
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
47
        - labels (Int64Tensor[N]): the class label for each ground-truth box
48

49
50
51
52
53
54
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
55
56
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
57
        - labels (Int64Tensor[N]): the predicted labels for each image
58
        - scores (Tensor[N]): the scores or each prediction
59

60
    Args:
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
90
91
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
114
        >>> import torch
115
116
117
118
119
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
120
        >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
138
        >>> # be ['0']. More generally, the backbone should return an
139
140
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
141
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
142
143
144
145
146
147
148
149
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
150
151
152
153
154
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
    ):
190
191
192
193
194

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
195
196
                "same for all the levels)"
            )
197

198
199
200
201
202
203
204
205
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
206
207
208
209
210
211

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
212
                raise ValueError("num_classes should not be None when box_predictor is not specified")
213
214
215
216
217
218

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
219
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
220
        if rpn_head is None:
221
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
222
223
224
225
226

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
227
228
229
230
231
232
233
234
235
236
237
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
238
239

        if box_roi_pool is None:
240
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
241
242
243
244

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
245
            box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
246
247
248

        if box_predictor is None:
            representation_size = 1024
249
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
250
251
252

        roi_heads = RoIHeads(
            # Box
253
254
255
256
257
258
259
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
260
            bbox_reg_weights,
261
262
263
264
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
265
266
267
268
269
270
271

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

272
        super().__init__(backbone, rpn, roi_heads, transform)
273
274
275
276


class TwoMLPHead(nn.Module):
    """
277
278
    Standard heads for FPN-based models

279
    Args:
280
281
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
282
283
284
    """

    def __init__(self, in_channels, representation_size):
285
        super().__init__()
286
287
288
289
290
291
292
293
294
295
296
297
298
299

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
300
301
302
303
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

304
    Args:
305
306
307
308
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

309
    def __init__(self, in_channels, num_classes):
310
        super().__init__()
311
312
313
314
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
315
        if x.dim() == 4:
316
317
318
319
            if list(x.shape[2:]) != [1, 1]:
                raise ValueError(
                    f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}"
                )
320
321
322
323
324
325
326
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


327
328
329
330
331
332
_COMMON_META = {
    "task": "image_object_detection",
    "architecture": "FasterRCNN",
    "publication_year": 2015,
    "categories": _COCO_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
333
334
335
}


336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 41755286,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
            "map": 37.0,
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
            "map": 32.8,
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
            "map": 22.8,
        },
    )
    DEFAULT = COCO_V1


@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
382
def fasterrcnn_resnet50_fpn(
383
384
385
386
387
388
389
390
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
391
392
393
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

394
395
396
    Reference: `"Faster R-CNN: Towards Real-Time Object Detection with
    Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.

397
398
399
400
401
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

402
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
403
    containing:
404

405
406
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
407
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
408
409
410
411
412
413

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
414
    follows, where ``N`` is the number of detections:
415

416
417
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
418
419
420
421
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
422

423
424
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

425
426
    Example::

427
        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
428
429
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
430
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
431
        >>> labels = torch.randint(1, 91, (4, 11))
432
        >>> images = list(image for image in images)
433
        >>> targets = []
434
435
436
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
437
        >>>     d['labels'] = labels[i]
438
        >>>     targets.append(d)
439
440
441
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
442
443
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
444
445
446
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
447

448
    Args:
449
        weights (FasterRCNN_ResNet50_FPN_Weights, optional): The pretrained weights for the model
450
        progress (bool): If True, displays a progress bar of the download to stderr
451
452
453
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (ResNet50_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
454
455
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
456
    """
457
458
459
460
461
462
463
464
465
466
    weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
467
468
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
469

470
    backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
471
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
472
473
474
475
476
477
478
    model = FasterRCNN(backbone, num_classes=num_classes, **kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
        if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
            overwrite_eps(model, 0.0)

479
    return model
480
481


482
def _fasterrcnn_mobilenet_v3_large_fpn(
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
    *,
    weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]],
    progress: bool,
    num_classes: Optional[int],
    weights_backbone: Optional[MobileNet_V3_Large_Weights],
    trainable_backbone_layers: Optional[int],
    **kwargs: Any,
) -> FasterRCNN:
    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
498
499
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
500

501
    backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
502
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
503
504
505
506
507
508
509
510
511
    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
512
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
513
514
515
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
516
517
518
519

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

520
521
522
    return model


523
524
525
526
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
527
def fasterrcnn_mobilenet_v3_large_320_fpn(
528
529
530
531
532
533
534
535
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
536
    """
537
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
538
539
540
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
541
542
543

    Example::

544
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
545
546
547
548
549
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
550
        weights (FasterRCNN_MobileNet_V3_Large_320_FPN_Weights, optional): The pretrained weights for the model
551
        progress (bool): If True, displays a progress bar of the download to stderr
552
553
554
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
555
556
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
557
    """
558
559
560
    weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

561
562
563
564
565
566
567
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
568

569
    kwargs = {**defaults, **kwargs}
570
    return _fasterrcnn_mobilenet_v3_large_fpn(
571
        weights=weights,
572
573
        progress=progress,
        num_classes=num_classes,
574
        weights_backbone=weights_backbone,
575
576
577
578
579
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


580
581
582
583
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
584
def fasterrcnn_mobilenet_v3_large_fpn(
585
586
587
588
589
590
591
592
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
593
594
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
595
596
597
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
598
599
600

    Example::

601
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
602
603
604
605
606
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
607
        weights (FasterRCNN_MobileNet_V3_Large_FPN_Weights, optional): The pretrained weights for the model
608
        progress (bool): If True, displays a progress bar of the download to stderr
609
610
611
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
612
613
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
614
    """
615
616
617
    weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

618
619
620
621
622
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
623
    return _fasterrcnn_mobilenet_v3_large_fpn(
624
        weights=weights,
625
626
        progress=progress,
        num_classes=num_classes,
627
        weights_backbone=weights_backbone,
628
629
630
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )