faster_rcnn.py 26.8 KB
Newer Older
1
2
from typing import Any, Optional, Union

3
import torch
4
import torch.nn.functional as F
5
from torch import nn
6
7
from torchvision.ops import MultiScaleRoIAlign

8
from ...ops import misc as misc_nn_ops
9
10
11
12
13
14
from ...transforms._presets import ObjectDetection, InterpolationMode
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
from ..mobilenetv3 import MobileNet_V3_Large_Weights, mobilenet_v3_large
from ..resnet import ResNet50_Weights, resnet50
15
from ._utils import overwrite_eps
16
from .anchor_utils import AnchorGenerator
17
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, _mobilenet_extractor
18
19
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
20
from .rpn import RPNHead, RegionProposalNetwork
21
22
23
24
from .transform import GeneralizedRCNNTransform


__all__ = [
25
    "FasterRCNN",
26
27
28
    "FasterRCNN_ResNet50_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights",
29
30
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn",
31
    "fasterrcnn_mobilenet_v3_large_320_fpn",
32
33
34
35
]


class FasterRCNN(GeneralizedRCNN):
36
37
38
39
40
41
42
43
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

44
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
45
    containing:
46
47
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
48
        - labels (Int64Tensor[N]): the class label for each ground-truth box
49

50
51
52
53
54
55
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
56
57
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
58
        - labels (Int64Tensor[N]): the predicted labels for each image
59
        - scores (Tensor[N]): the scores or each prediction
60

61
    Args:
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
91
92
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
115
        >>> import torch
116
117
118
119
120
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
121
        >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
139
        >>> # be ['0']. More generally, the backbone should return an
140
141
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
142
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
143
144
145
146
147
148
149
150
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
151
152
153
154
155
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
    ):
191
192
193
194
195

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
196
197
                "same for all the levels)"
            )
198

199
200
201
202
203
204
205
206
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
207
208
209
210
211
212

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
213
                raise ValueError("num_classes should not be None when box_predictor is not specified")
214
215
216
217
218
219

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
220
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
221
        if rpn_head is None:
222
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
223
224
225
226
227

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
228
229
230
231
232
233
234
235
236
237
238
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
239
240

        if box_roi_pool is None:
241
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
242
243
244
245

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
246
            box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
247
248
249

        if box_predictor is None:
            representation_size = 1024
250
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
251
252
253

        roi_heads = RoIHeads(
            # Box
254
255
256
257
258
259
260
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
261
            bbox_reg_weights,
262
263
264
265
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
266
267
268
269
270
271
272

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std)

273
        super().__init__(backbone, rpn, roi_heads, transform)
274
275
276
277


class TwoMLPHead(nn.Module):
    """
278
279
    Standard heads for FPN-based models

280
    Args:
281
282
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
283
284
285
    """

    def __init__(self, in_channels, representation_size):
286
        super().__init__()
287
288
289
290
291
292
293
294
295
296
297
298
299
300

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
301
302
303
304
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

305
    Args:
306
307
308
309
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

310
    def __init__(self, in_channels, num_classes):
311
        super().__init__()
312
313
314
315
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
316
        if x.dim() == 4:
317
318
319
320
            torch._assert(
                list(x.shape[2:]) == [1, 1],
                f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
            )
321
322
323
324
325
326
327
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


328
329
330
331
332
333
_COMMON_META = {
    "task": "image_object_detection",
    "architecture": "FasterRCNN",
    "publication_year": 2015,
    "categories": _COCO_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
334
335
336
}


337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 41755286,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
            "map": 37.0,
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
            "map": 32.8,
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
            "map": 22.8,
        },
    )
    DEFAULT = COCO_V1


@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
383
def fasterrcnn_resnet50_fpn(
384
385
386
387
388
389
390
391
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
392
393
394
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

395
396
397
    Reference: `"Faster R-CNN: Towards Real-Time Object Detection with
    Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.

398
399
400
401
402
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

403
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
404
    containing:
405

406
407
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
408
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
409
410
411
412
413
414

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
415
    follows, where ``N`` is the number of detections:
416

417
418
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
419
420
421
422
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
423

424
425
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

426
427
    Example::

428
        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
429
430
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
431
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
432
        >>> labels = torch.randint(1, 91, (4, 11))
433
        >>> images = list(image for image in images)
434
        >>> targets = []
435
436
437
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
438
        >>>     d['labels'] = labels[i]
439
        >>>     targets.append(d)
440
441
442
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
443
444
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
445
446
447
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
448

449
    Args:
450
        weights (FasterRCNN_ResNet50_FPN_Weights, optional): The pretrained weights for the model
451
        progress (bool): If True, displays a progress bar of the download to stderr
452
453
454
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (ResNet50_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
455
456
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
457
    """
458
459
460
461
462
463
464
465
466
467
    weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
468
469
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
470

471
    backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
472
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
473
474
475
476
477
478
479
    model = FasterRCNN(backbone, num_classes=num_classes, **kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
        if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
            overwrite_eps(model, 0.0)

480
    return model
481
482


483
def _fasterrcnn_mobilenet_v3_large_fpn(
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    *,
    weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]],
    progress: bool,
    num_classes: Optional[int],
    weights_backbone: Optional[MobileNet_V3_Large_Weights],
    trainable_backbone_layers: Optional[int],
    **kwargs: Any,
) -> FasterRCNN:
    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
499
500
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
501

502
    backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
503
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
504
505
506
507
508
509
510
511
512
    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
513
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
514
515
516
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
517
518
519
520

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

521
522
523
    return model


524
525
526
527
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
528
def fasterrcnn_mobilenet_v3_large_320_fpn(
529
530
531
532
533
534
535
536
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
537
    """
538
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
539
540
541
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
542
543
544

    Example::

545
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
546
547
548
549
550
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
551
        weights (FasterRCNN_MobileNet_V3_Large_320_FPN_Weights, optional): The pretrained weights for the model
552
        progress (bool): If True, displays a progress bar of the download to stderr
553
554
555
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
556
557
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
558
    """
559
560
561
    weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

562
563
564
565
566
567
568
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
569

570
    kwargs = {**defaults, **kwargs}
571
    return _fasterrcnn_mobilenet_v3_large_fpn(
572
        weights=weights,
573
574
        progress=progress,
        num_classes=num_classes,
575
        weights_backbone=weights_backbone,
576
577
578
579
580
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


581
582
583
584
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
585
def fasterrcnn_mobilenet_v3_large_fpn(
586
587
588
589
590
591
592
593
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
594
595
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
596
597
598
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
599
600
601

    Example::

602
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
603
604
605
606
607
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
608
        weights (FasterRCNN_MobileNet_V3_Large_FPN_Weights, optional): The pretrained weights for the model
609
        progress (bool): If True, displays a progress bar of the download to stderr
610
611
612
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
613
614
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
615
    """
616
617
618
    weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

619
620
621
622
623
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
624
    return _fasterrcnn_mobilenet_v3_large_fpn(
625
        weights=weights,
626
627
        progress=progress,
        num_classes=num_classes,
628
        weights_backbone=weights_backbone,
629
630
631
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )