".github/workflows/pr_test_linux.yaml" did not exist on "75967191b79b25ff27ba50c7241f75227bd4721c"
faster_rcnn.py 26.9 KB
Newer Older
1
2
from typing import Any, Optional, Union

3
import torch
4
import torch.nn.functional as F
5
from torch import nn
6
7
from torchvision.ops import MultiScaleRoIAlign

8
from ...ops import misc as misc_nn_ops
9
10
11
12
13
14
from ...transforms._presets import ObjectDetection, InterpolationMode
from .._api import WeightsEnum, Weights
from .._meta import _COCO_CATEGORIES
from .._utils import handle_legacy_interface, _ovewrite_value_param
from ..mobilenetv3 import MobileNet_V3_Large_Weights, mobilenet_v3_large
from ..resnet import ResNet50_Weights, resnet50
15
from ._utils import overwrite_eps
16
from .anchor_utils import AnchorGenerator
17
from .backbone_utils import _resnet_fpn_extractor, _validate_trainable_layers, _mobilenet_extractor
18
19
from .generalized_rcnn import GeneralizedRCNN
from .roi_heads import RoIHeads
20
from .rpn import RPNHead, RegionProposalNetwork
21
22
23
24
from .transform import GeneralizedRCNNTransform


__all__ = [
25
    "FasterRCNN",
26
27
28
    "FasterRCNN_ResNet50_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_FPN_Weights",
    "FasterRCNN_MobileNet_V3_Large_320_FPN_Weights",
29
30
    "fasterrcnn_resnet50_fpn",
    "fasterrcnn_mobilenet_v3_large_fpn",
31
    "fasterrcnn_mobilenet_v3_large_320_fpn",
32
33
34
35
]


class FasterRCNN(GeneralizedRCNN):
36
37
38
39
40
41
42
43
    """
    Implements Faster R-CNN.

    The input to the model is expected to be a list of tensors, each of shape [C, H, W], one for each
    image, and should be in 0-1 range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

44
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
45
    containing:
46
47
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
48
        - labels (Int64Tensor[N]): the class label for each ground-truth box
49

50
51
52
53
54
55
    The model returns a Dict[Tensor] during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a List[Dict[Tensor]], one for each input image. The fields of the Dict are as
    follows:
56
57
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
58
        - labels (Int64Tensor[N]): the predicted labels for each image
59
        - scores (Tensor[N]): the scores or each prediction
60

61
    Args:
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
        backbone (nn.Module): the network used to compute the features for the model.
            It should contain a out_channels attribute, which indicates the number of output
            channels that each feature map has (and it should be the same for all feature maps).
            The backbone should return a single Tensor or and OrderedDict[Tensor].
        num_classes (int): number of output classes of the model (including the background).
            If box_predictor is specified, num_classes should be None.
        min_size (int): minimum size of the image to be rescaled before feeding it to the backbone
        max_size (int): maximum size of the image to be rescaled before feeding it to the backbone
        image_mean (Tuple[float, float, float]): mean values used for input normalization.
            They are generally the mean values of the dataset on which the backbone has been trained
            on
        image_std (Tuple[float, float, float]): std values used for input normalization.
            They are generally the std values of the dataset on which the backbone has been trained on
        rpn_anchor_generator (AnchorGenerator): module that generates the anchors for a set of feature
            maps.
        rpn_head (nn.Module): module that computes the objectness and regression deltas from the RPN
        rpn_pre_nms_top_n_train (int): number of proposals to keep before applying NMS during training
        rpn_pre_nms_top_n_test (int): number of proposals to keep before applying NMS during testing
        rpn_post_nms_top_n_train (int): number of proposals to keep after applying NMS during training
        rpn_post_nms_top_n_test (int): number of proposals to keep after applying NMS during testing
        rpn_nms_thresh (float): NMS threshold used for postprocessing the RPN proposals
        rpn_fg_iou_thresh (float): minimum IoU between the anchor and the GT box so that they can be
            considered as positive during training of the RPN.
        rpn_bg_iou_thresh (float): maximum IoU between the anchor and the GT box so that they can be
            considered as negative during training of the RPN.
        rpn_batch_size_per_image (int): number of anchors that are sampled during training of the RPN
            for computing the loss
        rpn_positive_fraction (float): proportion of positive anchors in a mini-batch during training
            of the RPN
91
92
        rpn_score_thresh (float): during inference, only return proposals with a classification score
            greater than rpn_score_thresh
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
        box_roi_pool (MultiScaleRoIAlign): the module which crops and resizes the feature maps in
            the locations indicated by the bounding boxes
        box_head (nn.Module): module that takes the cropped feature maps as input
        box_predictor (nn.Module): module that takes the output of box_head and returns the
            classification logits and box regression deltas.
        box_score_thresh (float): during inference, only return proposals with a classification score
            greater than box_score_thresh
        box_nms_thresh (float): NMS threshold for the prediction head. Used during inference
        box_detections_per_img (int): maximum number of detections per image, for all classes.
        box_fg_iou_thresh (float): minimum IoU between the proposals and the GT box so that they can be
            considered as positive during training of the classification head
        box_bg_iou_thresh (float): maximum IoU between the proposals and the GT box so that they can be
            considered as negative during training of the classification head
        box_batch_size_per_image (int): number of proposals that are sampled during training of the
            classification head
        box_positive_fraction (float): proportion of positive proposals in a mini-batch during training
            of the classification head
        bbox_reg_weights (Tuple[float, float, float, float]): weights for the encoding/decoding of the
            bounding boxes

    Example::

Gu-ni-kim's avatar
Gu-ni-kim committed
115
        >>> import torch
116
117
118
119
120
        >>> import torchvision
        >>> from torchvision.models.detection import FasterRCNN
        >>> from torchvision.models.detection.rpn import AnchorGenerator
        >>> # load a pre-trained model for classification and return
        >>> # only the features
121
        >>> backbone = torchvision.models.mobilenet_v2(weights=MobileNet_V2_Weights.DEFAULT).features
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
        >>> # FasterRCNN needs to know the number of
        >>> # output channels in a backbone. For mobilenet_v2, it's 1280
        >>> # so we need to add it here
        >>> backbone.out_channels = 1280
        >>>
        >>> # let's make the RPN generate 5 x 3 anchors per spatial
        >>> # location, with 5 different sizes and 3 different aspect
        >>> # ratios. We have a Tuple[Tuple[int]] because each feature
        >>> # map could potentially have different sizes and
        >>> # aspect ratios
        >>> anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
        >>>                                    aspect_ratios=((0.5, 1.0, 2.0),))
        >>>
        >>> # let's define what are the feature maps that we will
        >>> # use to perform the region of interest cropping, as well as
        >>> # the size of the crop after rescaling.
        >>> # if your backbone returns a Tensor, featmap_names is expected to
139
        >>> # be ['0']. More generally, the backbone should return an
140
141
        >>> # OrderedDict[Tensor], and in featmap_names you can choose which
        >>> # feature maps to use.
142
        >>> roi_pooler = torchvision.ops.MultiScaleRoIAlign(featmap_names=['0'],
143
144
145
146
147
148
149
150
        >>>                                                 output_size=7,
        >>>                                                 sampling_ratio=2)
        >>>
        >>> # put the pieces together inside a FasterRCNN model
        >>> model = FasterRCNN(backbone,
        >>>                    num_classes=2,
        >>>                    rpn_anchor_generator=anchor_generator,
        >>>                    box_roi_pool=roi_pooler)
151
152
153
154
155
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
    """

156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
    def __init__(
        self,
        backbone,
        num_classes=None,
        # transform parameters
        min_size=800,
        max_size=1333,
        image_mean=None,
        image_std=None,
        # RPN parameters
        rpn_anchor_generator=None,
        rpn_head=None,
        rpn_pre_nms_top_n_train=2000,
        rpn_pre_nms_top_n_test=1000,
        rpn_post_nms_top_n_train=2000,
        rpn_post_nms_top_n_test=1000,
        rpn_nms_thresh=0.7,
        rpn_fg_iou_thresh=0.7,
        rpn_bg_iou_thresh=0.3,
        rpn_batch_size_per_image=256,
        rpn_positive_fraction=0.5,
        rpn_score_thresh=0.0,
        # Box parameters
        box_roi_pool=None,
        box_head=None,
        box_predictor=None,
        box_score_thresh=0.05,
        box_nms_thresh=0.5,
        box_detections_per_img=100,
        box_fg_iou_thresh=0.5,
        box_bg_iou_thresh=0.5,
        box_batch_size_per_image=512,
        box_positive_fraction=0.25,
        bbox_reg_weights=None,
190
        **kwargs,
191
    ):
192
193
194
195
196

        if not hasattr(backbone, "out_channels"):
            raise ValueError(
                "backbone should contain an attribute out_channels "
                "specifying the number of output channels (assumed to be the "
197
198
                "same for all the levels)"
            )
199

200
201
202
203
204
205
206
207
        if not isinstance(rpn_anchor_generator, (AnchorGenerator, type(None))):
            raise TypeError(
                f"rpn_anchor_generator should be of type AnchorGenerator or None instead of {type(rpn_anchor_generator)}"
            )
        if not isinstance(box_roi_pool, (MultiScaleRoIAlign, type(None))):
            raise TypeError(
                f"box_roi_pool should be of type MultiScaleRoIAlign or None instead of {type(box_roi_pool)}"
            )
208
209
210
211
212
213

        if num_classes is not None:
            if box_predictor is not None:
                raise ValueError("num_classes should be None when box_predictor is specified")
        else:
            if box_predictor is None:
214
                raise ValueError("num_classes should not be None when box_predictor is not specified")
215
216
217
218
219
220

        out_channels = backbone.out_channels

        if rpn_anchor_generator is None:
            anchor_sizes = ((32,), (64,), (128,), (256,), (512,))
            aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
221
            rpn_anchor_generator = AnchorGenerator(anchor_sizes, aspect_ratios)
222
        if rpn_head is None:
223
            rpn_head = RPNHead(out_channels, rpn_anchor_generator.num_anchors_per_location()[0])
224
225
226
227
228

        rpn_pre_nms_top_n = dict(training=rpn_pre_nms_top_n_train, testing=rpn_pre_nms_top_n_test)
        rpn_post_nms_top_n = dict(training=rpn_post_nms_top_n_train, testing=rpn_post_nms_top_n_test)

        rpn = RegionProposalNetwork(
229
230
231
232
233
234
235
236
237
238
239
            rpn_anchor_generator,
            rpn_head,
            rpn_fg_iou_thresh,
            rpn_bg_iou_thresh,
            rpn_batch_size_per_image,
            rpn_positive_fraction,
            rpn_pre_nms_top_n,
            rpn_post_nms_top_n,
            rpn_nms_thresh,
            score_thresh=rpn_score_thresh,
        )
240
241

        if box_roi_pool is None:
242
            box_roi_pool = MultiScaleRoIAlign(featmap_names=["0", "1", "2", "3"], output_size=7, sampling_ratio=2)
243
244
245
246

        if box_head is None:
            resolution = box_roi_pool.output_size[0]
            representation_size = 1024
247
            box_head = TwoMLPHead(out_channels * resolution ** 2, representation_size)
248
249
250

        if box_predictor is None:
            representation_size = 1024
251
            box_predictor = FastRCNNPredictor(representation_size, num_classes)
252
253
254

        roi_heads = RoIHeads(
            # Box
255
256
257
258
259
260
261
            box_roi_pool,
            box_head,
            box_predictor,
            box_fg_iou_thresh,
            box_bg_iou_thresh,
            box_batch_size_per_image,
            box_positive_fraction,
262
            bbox_reg_weights,
263
264
265
266
            box_score_thresh,
            box_nms_thresh,
            box_detections_per_img,
        )
267
268
269
270
271

        if image_mean is None:
            image_mean = [0.485, 0.456, 0.406]
        if image_std is None:
            image_std = [0.229, 0.224, 0.225]
272
        transform = GeneralizedRCNNTransform(min_size, max_size, image_mean, image_std, **kwargs)
273

274
        super().__init__(backbone, rpn, roi_heads, transform)
275
276
277
278


class TwoMLPHead(nn.Module):
    """
279
280
    Standard heads for FPN-based models

281
    Args:
282
283
        in_channels (int): number of input channels
        representation_size (int): size of the intermediate representation
284
285
286
    """

    def __init__(self, in_channels, representation_size):
287
        super().__init__()
288
289
290
291
292
293
294
295
296
297
298
299
300
301

        self.fc6 = nn.Linear(in_channels, representation_size)
        self.fc7 = nn.Linear(representation_size, representation_size)

    def forward(self, x):
        x = x.flatten(start_dim=1)

        x = F.relu(self.fc6(x))
        x = F.relu(self.fc7(x))

        return x


class FastRCNNPredictor(nn.Module):
302
303
304
305
    """
    Standard classification + bounding box regression layers
    for Fast R-CNN.

306
    Args:
307
308
309
310
        in_channels (int): number of input channels
        num_classes (int): number of output classes (including background)
    """

311
    def __init__(self, in_channels, num_classes):
312
        super().__init__()
313
314
315
316
        self.cls_score = nn.Linear(in_channels, num_classes)
        self.bbox_pred = nn.Linear(in_channels, num_classes * 4)

    def forward(self, x):
eellison's avatar
eellison committed
317
        if x.dim() == 4:
318
319
320
321
            torch._assert(
                list(x.shape[2:]) == [1, 1],
                f"x has the wrong shape, expecting the last two dimensions to be [1,1] instead of {list(x.shape[2:])}",
            )
322
323
324
325
326
327
328
        x = x.flatten(start_dim=1)
        scores = self.cls_score(x)
        bbox_deltas = self.bbox_pred(x)

        return scores, bbox_deltas


329
330
331
332
333
334
_COMMON_META = {
    "task": "image_object_detection",
    "architecture": "FasterRCNN",
    "publication_year": 2015,
    "categories": _COCO_CATEGORIES,
    "interpolation": InterpolationMode.BILINEAR,
335
336
337
}


338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
class FasterRCNN_ResNet50_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_resnet50_fpn_coco-258fb6c6.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 41755286,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-resnet-50-fpn",
            "map": 37.0,
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_fpn-fb6a3cc7.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-fpn",
            "map": 32.8,
        },
    )
    DEFAULT = COCO_V1


class FasterRCNN_MobileNet_V3_Large_320_FPN_Weights(WeightsEnum):
    COCO_V1 = Weights(
        url="https://download.pytorch.org/models/fasterrcnn_mobilenet_v3_large_320_fpn-907ea3f9.pth",
        transforms=ObjectDetection,
        meta={
            **_COMMON_META,
            "num_params": 19386354,
            "recipe": "https://github.com/pytorch/vision/tree/main/references/detection#faster-r-cnn-mobilenetv3-large-320-fpn",
            "map": 22.8,
        },
    )
    DEFAULT = COCO_V1


@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_ResNet50_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", ResNet50_Weights.IMAGENET1K_V1),
)
384
def fasterrcnn_resnet50_fpn(
385
386
387
388
389
390
391
392
    *,
    weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
393
394
395
    """
    Constructs a Faster R-CNN model with a ResNet-50-FPN backbone.

396
397
398
    Reference: `"Faster R-CNN: Towards Real-Time Object Detection with
    Region Proposal Networks" <https://arxiv.org/abs/1506.01497>`_.

399
400
401
402
403
    The input to the model is expected to be a list of tensors, each of shape ``[C, H, W]``, one for each
    image, and should be in ``0-1`` range. Different images can have different sizes.

    The behavior of the model changes depending if it is in training or evaluation mode.

404
    During training, the model expects both the input tensors, as well as a targets (list of dictionary),
405
    containing:
406

407
408
        - boxes (``FloatTensor[N, 4]``): the ground-truth boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
409
        - labels (``Int64Tensor[N]``): the class label for each ground-truth box
410
411
412
413
414
415

    The model returns a ``Dict[Tensor]`` during training, containing the classification and regression
    losses for both the RPN and the R-CNN.

    During inference, the model requires only the input tensors, and returns the post-processed
    predictions as a ``List[Dict[Tensor]]``, one for each input image. The fields of the ``Dict`` are as
416
    follows, where ``N`` is the number of detections:
417

418
419
        - boxes (``FloatTensor[N, 4]``): the predicted boxes in ``[x1, y1, x2, y2]`` format, with
          ``0 <= x1 < x2 <= W`` and ``0 <= y1 < y2 <= H``.
420
421
422
423
        - labels (``Int64Tensor[N]``): the predicted labels for each detection
        - scores (``Tensor[N]``): the scores of each detection

    For more details on the output, you may refer to :ref:`instance_seg_output`.
424

425
426
    Faster R-CNN is exportable to ONNX for a fixed batch size with inputs images of fixed size.

427
428
    Example::

429
        >>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT)
430
431
        >>> # For training
        >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4)
432
        >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4]
433
        >>> labels = torch.randint(1, 91, (4, 11))
434
        >>> images = list(image for image in images)
435
        >>> targets = []
436
437
438
        >>> for i in range(len(images)):
        >>>     d = {}
        >>>     d['boxes'] = boxes[i]
439
        >>>     d['labels'] = labels[i]
440
        >>>     targets.append(d)
441
442
443
        >>> output = model(images, targets)
        >>> # For inference
        >>> model.eval()
444
445
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)
446
447
448
        >>>
        >>> # optionally, if you want to export the model to ONNX:
        >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
449

450
    Args:
451
        weights (FasterRCNN_ResNet50_FPN_Weights, optional): The pretrained weights for the model
452
        progress (bool): If True, displays a progress bar of the download to stderr
453
454
455
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (ResNet50_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
456
457
            Valid values are between 0 and 5, with 5 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
458
    """
459
460
461
462
463
464
465
466
467
468
    weights = FasterRCNN_ResNet50_FPN_Weights.verify(weights)
    weights_backbone = ResNet50_Weights.verify(weights_backbone)

    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
469
470
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 5, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
471

472
    backbone = resnet50(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
473
    backbone = _resnet_fpn_extractor(backbone, trainable_backbone_layers)
474
475
476
477
478
479
480
    model = FasterRCNN(backbone, num_classes=num_classes, **kwargs)

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))
        if weights == FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
            overwrite_eps(model, 0.0)

481
    return model
482
483


484
def _fasterrcnn_mobilenet_v3_large_fpn(
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
    *,
    weights: Optional[Union[FasterRCNN_MobileNet_V3_Large_FPN_Weights, FasterRCNN_MobileNet_V3_Large_320_FPN_Weights]],
    progress: bool,
    num_classes: Optional[int],
    weights_backbone: Optional[MobileNet_V3_Large_Weights],
    trainable_backbone_layers: Optional[int],
    **kwargs: Any,
) -> FasterRCNN:
    if weights is not None:
        weights_backbone = None
        num_classes = _ovewrite_value_param(num_classes, len(weights.meta["categories"]))
    elif num_classes is None:
        num_classes = 91

    is_trained = weights is not None or weights_backbone is not None
500
501
    trainable_backbone_layers = _validate_trainable_layers(is_trained, trainable_backbone_layers, 6, 3)
    norm_layer = misc_nn_ops.FrozenBatchNorm2d if is_trained else nn.BatchNorm2d
502

503
    backbone = mobilenet_v3_large(weights=weights_backbone, progress=progress, norm_layer=norm_layer)
504
    backbone = _mobilenet_extractor(backbone, True, trainable_backbone_layers)
505
506
507
508
509
510
511
512
513
    anchor_sizes = (
        (
            32,
            64,
            128,
            256,
            512,
        ),
    ) * 3
514
    aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
515
516
517
    model = FasterRCNN(
        backbone, num_classes, rpn_anchor_generator=AnchorGenerator(anchor_sizes, aspect_ratios), **kwargs
    )
518
519
520
521

    if weights is not None:
        model.load_state_dict(weights.get_state_dict(progress=progress))

522
523
524
    return model


525
526
527
528
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
529
def fasterrcnn_mobilenet_v3_large_320_fpn(
530
531
532
533
534
535
536
537
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_320_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
538
    """
539
    Constructs a low resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone tunned for mobile use-cases.
540
541
542
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
543
544
545

    Example::

546
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_320_fpn(weights=FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.DEFAULT)
547
548
549
550
551
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
552
        weights (FasterRCNN_MobileNet_V3_Large_320_FPN_Weights, optional): The pretrained weights for the model
553
        progress (bool): If True, displays a progress bar of the download to stderr
554
555
556
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
557
558
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
559
    """
560
561
562
    weights = FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

563
564
565
566
567
568
569
    defaults = {
        "min_size": 320,
        "max_size": 640,
        "rpn_pre_nms_top_n_test": 150,
        "rpn_post_nms_top_n_test": 150,
        "rpn_score_thresh": 0.05,
    }
570

571
    kwargs = {**defaults, **kwargs}
572
    return _fasterrcnn_mobilenet_v3_large_fpn(
573
        weights=weights,
574
575
        progress=progress,
        num_classes=num_classes,
576
        weights_backbone=weights_backbone,
577
578
579
580
581
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )


582
583
584
585
@handle_legacy_interface(
    weights=("pretrained", FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1),
    weights_backbone=("pretrained_backbone", MobileNet_V3_Large_Weights.IMAGENET1K_V1),
)
586
def fasterrcnn_mobilenet_v3_large_fpn(
587
588
589
590
591
592
593
594
    *,
    weights: Optional[FasterRCNN_MobileNet_V3_Large_FPN_Weights] = None,
    progress: bool = True,
    num_classes: Optional[int] = None,
    weights_backbone: Optional[MobileNet_V3_Large_Weights] = MobileNet_V3_Large_Weights.IMAGENET1K_V1,
    trainable_backbone_layers: Optional[int] = None,
    **kwargs: Any,
) -> FasterRCNN:
595
596
    """
    Constructs a high resolution Faster R-CNN model with a MobileNetV3-Large FPN backbone.
597
598
599
    It works similarly to Faster R-CNN with ResNet-50 FPN backbone. See
    :func:`~torchvision.models.detection.fasterrcnn_resnet50_fpn` for more
    details.
600
601
602

    Example::

603
        >>> model = torchvision.models.detection.fasterrcnn_mobilenet_v3_large_fpn(weights=FasterRCNN_MobileNet_V3_Large_FPN_Weights.DEFAULT)
604
605
606
607
608
        >>> model.eval()
        >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)]
        >>> predictions = model(x)

    Args:
609
        weights (FasterRCNN_MobileNet_V3_Large_FPN_Weights, optional): The pretrained weights for the model
610
        progress (bool): If True, displays a progress bar of the download to stderr
611
612
613
        num_classes (int, optional): number of output classes of the model (including the background)
        weights_backbone (MobileNet_V3_Large_Weights, optional): The pretrained weights for the backbone
        trainable_backbone_layers (int, optional): number of trainable (not frozen) layers starting from final block.
614
615
            Valid values are between 0 and 6, with 6 meaning all backbone layers are trainable. If ``None`` is
            passed (the default) this value is set to 3.
616
    """
617
618
619
    weights = FasterRCNN_MobileNet_V3_Large_FPN_Weights.verify(weights)
    weights_backbone = MobileNet_V3_Large_Weights.verify(weights_backbone)

620
621
622
623
624
    defaults = {
        "rpn_score_thresh": 0.05,
    }

    kwargs = {**defaults, **kwargs}
625
    return _fasterrcnn_mobilenet_v3_large_fpn(
626
        weights=weights,
627
628
        progress=progress,
        num_classes=num_classes,
629
        weights_backbone=weights_backbone,
630
631
632
        trainable_backbone_layers=trainable_backbone_layers,
        **kwargs,
    )