transforms.py 52 KB
Newer Older
1
2
3
import torch
import math
import random
4
from PIL import Image
5
6
7
8
9
10
11
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
12
from collections.abc import Sequence, Iterable
13
14
15
16
import warnings

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
17

18
19
20
21
__all__ = ["Compose", "ToTensor", "PILToTensor", "ConvertImageDtype", "ToPILImage", "Normalize", "Resize", "Scale",
           "CenterCrop", "Pad", "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop",
           "RandomHorizontalFlip", "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop",
           "LinearTransformation", "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
22
           "RandomPerspective", "RandomErasing"]
23

24
25
26
27
28
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
29
30
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
31
32
}

33

Zhicheng Yan's avatar
Zhicheng Yan committed
34
35
36
37
38
39
40
41
42
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif isinstance(img, torch.Tensor) and img.dim() > 2:
        return img.shape[-2:][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

64
65
66
67
68
69
70
71
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

72
73
74
75
76

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
77
78
79
80
81
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
82
83
84
85
86
87
88
89
90
91
92
93
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

94
95
96
    def __repr__(self):
        return self.__class__.__name__ + '()'

97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class PILToTensor(object):
    """Convert a ``PIL Image`` to a tensor of the same type.

    Converts a PIL Image (H x W x C) to a torch.Tensor of shape (C x H x W).
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
class ConvertImageDtype(object):
    """Convert a tensor image to the given ``dtype`` and scale the values accordingly

    Args:
        dtype (torch.dtype): Desired data type of the output

    .. note::

        When converting from a smaller to a larger integer ``dtype`` the maximum values are **not** mapped exactly.
        If converted back and forth, this mismatch has no effect.

    Raises:
        RuntimeError: When trying to cast :class:`torch.float32` to :class:`torch.int32` or :class:`torch.int64` as
            well as for trying to cast :class:`torch.float64` to :class:`torch.int64`. These conversions might lead to
            overflow errors since the floating point ``dtype`` cannot store consecutive integers over the whole range
            of the integer ``dtype``.
    """

    def __init__(self, dtype: torch.dtype) -> None:
        self.dtype = dtype

    def __call__(self, image: torch.Tensor) -> torch.Tensor:
        return F.convert_image_dtype(image, self.dtype)


143
144
145
146
147
148
149
150
151
class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
152
153
154
155
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
156
               ``short``).
157

csukuangfj's avatar
csukuangfj committed
158
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

174
    def __repr__(self):
175
176
177
178
179
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
180

181
182

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
183
    """Normalize a tensor image with mean and standard deviation.
184
185
186
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
187
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
188

189
    .. note::
190
        This transform acts out of place, i.e., it does not mutate the input tensor.
191

192
193
194
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
195
196
        inplace(bool,optional): Bool to make this operation in-place.

197
198
    """

surgan12's avatar
surgan12 committed
199
    def __init__(self, mean, std, inplace=False):
200
201
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
202
        self.inplace = inplace
203
204
205
206
207
208
209
210
211

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
212
        return F.normalize(tensor, self.mean, self.std, self.inplace)
213

214
215
216
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
Tongzhou Wang's avatar
Tongzhou Wang committed
232
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
233
234
235
236
237
238
239
240
241
242
243
244
245
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

246
    def __repr__(self):
247
248
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
249

250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

286
287
288
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

289

290
291
292
293
class Pad(torch.nn.Module):
    """Pad the given image on all sides with the given "pad" value.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading dimensions
294
295

    Args:
296
        padding (int or tuple or list): Padding on each border. If a single int is provided this
297
298
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
299
300
301
            this is the padding for the left, top, right and bottom borders respectively.
            In torchscript mode padding as single int is not supported, use a tuple or
            list of length 1: ``[padding, ]``.
302
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
303
            length 3, it is used to fill R, G, B channels respectively.
304
            This value is only used when the padding_mode is constant
305
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
306
            Default is constant. Only "constant" is supported for Tensors as of now.
307
308
309
310
311
312
313
314

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
315
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
316
317
318
319

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
320
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
321
322
    """

323
324
325
326
327
328
329
330
331
332
333
334
335
    def __init__(self, padding, fill=0, padding_mode="constant"):
        super().__init__()
        if not isinstance(padding, (numbers.Number, tuple, list)):
            raise TypeError("Got inappropriate padding arg")

        if not isinstance(fill, (numbers.Number, str, tuple)):
            raise TypeError("Got inappropriate fill arg")

        if padding_mode not in ["constant", "edge", "reflect", "symmetric"]:
            raise ValueError("Padding mode should be either constant, edge, reflect or symmetric")

        if isinstance(padding, Sequence) and len(padding) not in [1, 2, 4]:
            raise ValueError("Padding must be an int or a 1, 2, or 4 element tuple, not a " +
336
337
338
339
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
340
        self.padding_mode = padding_mode
341

342
    def forward(self, img):
343
344
        """
        Args:
345
            img (PIL Image or Tensor): Image to be padded.
346
347

        Returns:
348
            PIL Image or Tensor: Padded image.
349
        """
350
        return F.pad(img, self.padding, self.fill, self.padding_mode)
351

352
    def __repr__(self):
353
354
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
355

356
357
358
359
360
361
362
363
364

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
365
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
366
367
368
369
370
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

371
372
373
    def __repr__(self):
        return self.__class__.__name__ + '()'

374

375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


446
447
448
449
450
451
452
453
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
454
            of the image. Default is None, i.e no padding. If a sequence of length
455
            4 is provided, it is used to pad left, top, right, bottom borders
456
457
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
458
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
459
            desired size to avoid raising an exception. Since cropping is done
460
            after padding, the padding seems to be done at a random offset.
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

480
481
    """

482
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
483
484
485
486
487
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
488
        self.pad_if_needed = pad_if_needed
489
490
        self.fill = fill
        self.padding_mode = padding_mode
491
492
493
494
495
496
497
498
499
500
501
502

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
Zhicheng Yan's avatar
Zhicheng Yan committed
503
        w, h = _get_image_size(img)
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
520
521
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
522

523
524
        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
525
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
526
527
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
528
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
529

530
531
532
533
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

534
    def __repr__(self):
535
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
536

537

538
539
540
541
542
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
543
544
545
546
547
548

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
549
        super().__init__()
550
        self.p = p
551

552
    def forward(self, img):
553
554
        """
        Args:
555
            img (PIL Image or Tensor): Image to be flipped.
556
557

        Returns:
558
            PIL Image or Tensor: Randomly flipped image.
559
        """
560
        if torch.rand(1) < self.p:
561
562
563
            return F.hflip(img)
        return img

564
    def __repr__(self):
565
        return self.__class__.__name__ + '(p={})'.format(self.p)
566

567

568
class RandomVerticalFlip(torch.nn.Module):
569
    """Vertically flip the given PIL Image randomly with a given probability.
570
571
572
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
573
574
575
576
577
578

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
579
        super().__init__()
580
        self.p = p
581

582
    def forward(self, img):
583
584
        """
        Args:
585
            img (PIL Image or Tensor): Image to be flipped.
586
587

        Returns:
588
            PIL Image or Tensor: Randomly flipped image.
589
        """
590
        if torch.rand(1) < self.p:
591
592
593
            return F.vflip(img)
        return img

594
    def __repr__(self):
595
        return self.__class__.__name__ + '(p={})'.format(self.p)
596

597

598
599
600
601
602
603
604
605
606
607
class RandomPerspective(object):
    """Performs Perspective transformation of the given PIL Image randomly with a given probability.

    Args:
        interpolation : Default- Image.BICUBIC

        p (float): probability of the image being perspectively transformed. Default value is 0.5

        distortion_scale(float): it controls the degree of distortion and ranges from 0 to 1. Default value is 0.5.

608
609
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively. Default value is 0.
610
611
    """

612
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC, fill=0):
613
614
615
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
616
        self.fill = fill
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be Perspectively transformed.

        Returns:
            PIL Image: Random perspectivley transformed image.
        """
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
632
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
633
634
635
636
637
638
639
640
641
642
643
        return img

    @staticmethod
    def get_params(width, height, distortion_scale):
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
            width : width of the image.
            height : height of the image.

        Returns:
644
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


665
666
667
class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

668
669
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
670
671
672
673
674
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
675
676
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
677
678
679
        interpolation: Default: PIL.Image.BILINEAR
    """

680
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
681
        if isinstance(size, (tuple, list)):
682
683
684
685
686
687
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

688
        self.interpolation = interpolation
689
690
        self.scale = scale
        self.ratio = ratio
691
692

    @staticmethod
693
    def get_params(img, scale, ratio):
694
695
696
697
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
698
699
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
700
701
702
703
704

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
Zhicheng Yan's avatar
Zhicheng Yan committed
705
706
        width, height = _get_image_size(img)
        area = height * width
707

708
        for _ in range(10):
709
            target_area = random.uniform(*scale) * area
710
711
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))
712
713
714
715

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
716
717
718
            if 0 < w <= width and 0 < h <= height:
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
719
720
                return i, j, h, w

721
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
722
        in_ratio = float(width) / float(height)
723
        if (in_ratio < min(ratio)):
Zhicheng Yan's avatar
Zhicheng Yan committed
724
            w = width
725
            h = int(round(w / min(ratio)))
726
        elif (in_ratio > max(ratio)):
Zhicheng Yan's avatar
Zhicheng Yan committed
727
            h = height
728
            w = int(round(h * max(ratio)))
729
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
730
731
732
733
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
734
        return i, j, h, w
735
736
737
738

    def __call__(self, img):
        """
        Args:
739
            img (PIL Image): Image to be cropped and resized.
740
741

        Returns:
742
            PIL Image: Randomly cropped and resized image.
743
        """
744
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
745
746
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

747
    def __repr__(self):
748
749
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
750
751
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
752
753
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
754

755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

801
802
803
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

804
805
806
807
808
809
810
811
812
813
814
815
816
817

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
818
        vertical_flip (bool): Use vertical flipping instead of horizontal
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

844
    def __repr__(self):
845
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
846

847

848
class LinearTransformation(object):
ekka's avatar
ekka committed
849
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
850
    offline.
ekka's avatar
ekka committed
851
852
853
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
854
    original shape.
855

856
    Applications:
857
        whitening transformation: Suppose X is a column vector zero-centered data.
858
859
860
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

861
862
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
863
        mean_vector (Tensor): tensor [D], D = C x H x W
864
865
    """

ekka's avatar
ekka committed
866
    def __init__(self, transformation_matrix, mean_vector):
867
868
869
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
870
871
872

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
873
874
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
875

876
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
877
        self.mean_vector = mean_vector
878
879
880
881
882
883
884
885
886
887
888
889
890

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
891
        flat_tensor = tensor.view(1, -1) - self.mean_vector
892
893
894
895
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

896
    def __repr__(self):
ekka's avatar
ekka committed
897
898
899
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
900
901
        return format_string

902

903
class ColorJitter(torch.nn.Module):
904
905
906
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
907
908
909
910
911
912
913
914
915
916
917
918
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
919
    """
920

921
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
922
        super().__init__()
yaox12's avatar
yaox12 committed
923
924
925
926
927
928
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

929
    @torch.jit.unused
yaox12's avatar
yaox12 committed
930
931
932
933
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
934
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
935
            if clip_first_on_zero:
936
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
937
938
939
940
941
942
943
944
945
946
947
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
948
949

    @staticmethod
950
    @torch.jit.unused
951
952
953
954
955
956
957
958
959
960
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
961
962
963

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
964
965
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
966
967
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
968
969
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
970
971
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
972
973
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
974
975
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
976
977
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
978
        random.shuffle(transforms)
979
980
981
982
        transform = Compose(transforms)

        return transform

983
    def forward(self, img):
984
985
        """
        Args:
986
            img (PIL Image or Tensor): Input image.
987
988

        Returns:
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
1014

1015
    def __repr__(self):
1016
1017
1018
1019
1020
1021
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
1022

1023
1024
1025
1026
1027
1028
1029
1030
1031

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1032
            An optional resampling filter. See `filters`_ for more information.
1033
1034
1035
1036
1037
1038
1039
1040
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1041
1042
1043
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
1044
1045
1046

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1047
1048
    """

Philip Meier's avatar
Philip Meier committed
1049
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
1062
        self.fill = fill
1063
1064
1065
1066
1067
1068
1069
1070

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
1071
        angle = random.uniform(degrees[0], degrees[1])
1072
1073
1074
1075
1076

        return angle

    def __call__(self, img):
        """
1077
        Args:
1078
1079
1080
1081
1082
1083
1084
1085
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

1086
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1087

1088
    def __repr__(self):
1089
1090
1091
1092
1093
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
1094
1095
        if self.fill is not None:
            format_string += ', fill={0}'.format(self.fill)
1096
1097
        format_string += ')'
        return format_string
1098

1099

1100
1101
1102
1103
1104
1105
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1106
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1107
1108
1109
1110
1111
1112
1113
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1114
1115
1116
1117
1118
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
1119
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1120
            An optional resampling filter. See `filters`_ for more information.
1121
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
Surgan Jandial's avatar
Surgan Jandial committed
1122
1123
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)
1124
1125
1126

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
ptrblck's avatar
ptrblck committed
1161
1162
1163
1164
1165
1166
1167
1168
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
ptrblck's avatar
ptrblck committed
1197
1198
1199
1200
1201
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1235
1236
class Grayscale(object):
    """Convert image to grayscale.
1237

1238
1239
1240
1241
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1242
        PIL Image: Grayscale version of the input.
1243
1244
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1261
    def __repr__(self):
1262
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1263

1264
1265
1266

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1267

1268
1269
1270
1271
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1272
1273
1274
1275
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1294
1295

    def __repr__(self):
1296
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1297
1298
1299
1300


class RandomErasing(object):
    """ Randomly selects a rectangle region in an image and erases its pixels.
1301
1302
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1303
1304
1305
1306
1307
1308
1309
1310
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1311
         inplace: boolean to make this transform inplace. Default set to False.
1312

1313
1314
    Returns:
        Erased Image.
1315

1316
1317
    # Examples:
        >>> transform = transforms.Compose([
1318
1319
1320
1321
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1322
1323
1324
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1325
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1326
1327
1328
1329
1330
        assert isinstance(value, (numbers.Number, str, tuple, list))
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")
        if scale[0] < 0 or scale[1] > 1:
            raise ValueError("range of scale should be between 0 and 1")
1331
1332
        if p < 0 or p > 1:
            raise ValueError("range of random erasing probability should be between 0 and 1")
1333
1334
1335
1336
1337

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1338
        self.inplace = inplace
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351

    @staticmethod
    def get_params(img, scale, ratio, value=0):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
            scale: range of proportion of erased area against input image.
            ratio: range of aspect ratio of erased area.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1352
        img_c, img_h, img_w = img.shape
1353
        area = img_h * img_w
1354

1355
        for _ in range(10):
1356
1357
1358
1359
1360
1361
            erase_area = random.uniform(scale[0], scale[1]) * area
            aspect_ratio = random.uniform(ratio[0], ratio[1])

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))

1362
1363
1364
            if h < img_h and w < img_w:
                i = random.randint(0, img_h - h)
                j = random.randint(0, img_w - w)
1365
1366
1367
                if isinstance(value, numbers.Number):
                    v = value
                elif isinstance(value, torch._six.string_classes):
Zhun Zhong's avatar
Zhun Zhong committed
1368
                    v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
1369
1370
1371
1372
                elif isinstance(value, (list, tuple)):
                    v = torch.tensor(value, dtype=torch.float32).view(-1, 1, 1).expand(-1, h, w)
                return i, j, h, w, v

Zhun Zhong's avatar
Zhun Zhong committed
1373
1374
1375
        # Return original image
        return 0, 0, img_h, img_w, img

1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
        if random.uniform(0, 1) < self.p:
            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=self.value)
1386
            return F.erase(img, x, y, h, w, v, self.inplace)
1387
        return img