transforms.py 50.3 KB
Newer Older
1
2
3
import torch
import math
import random
4
from PIL import Image
5
6
7
8
9
10
11
try:
    import accimage
except ImportError:
    accimage = None
import numpy as np
import numbers
import types
12
from collections.abc import Sequence, Iterable
13
14
15
16
import warnings

from . import functional as F

Tongzhou Wang's avatar
Tongzhou Wang committed
17

18
__all__ = ["Compose", "ToTensor", "PILToTensor", "ToPILImage", "Normalize", "Resize", "Scale", "CenterCrop", "Pad",
19
20
           "Lambda", "RandomApply", "RandomChoice", "RandomOrder", "RandomCrop", "RandomHorizontalFlip",
           "RandomVerticalFlip", "RandomResizedCrop", "RandomSizedCrop", "FiveCrop", "TenCrop", "LinearTransformation",
21
           "ColorJitter", "RandomRotation", "RandomAffine", "Grayscale", "RandomGrayscale",
22
           "RandomPerspective", "RandomErasing"]
23

24
25
26
27
28
_pil_interpolation_to_str = {
    Image.NEAREST: 'PIL.Image.NEAREST',
    Image.BILINEAR: 'PIL.Image.BILINEAR',
    Image.BICUBIC: 'PIL.Image.BICUBIC',
    Image.LANCZOS: 'PIL.Image.LANCZOS',
surgan12's avatar
surgan12 committed
29
30
    Image.HAMMING: 'PIL.Image.HAMMING',
    Image.BOX: 'PIL.Image.BOX',
31
32
}

33

Zhicheng Yan's avatar
Zhicheng Yan committed
34
35
36
37
38
39
40
41
42
def _get_image_size(img):
    if F._is_pil_image(img):
        return img.size
    elif isinstance(img, torch.Tensor) and img.dim() > 2:
        return img.shape[-2:][::-1]
    else:
        raise TypeError("Unexpected type {}".format(type(img)))


43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
class Compose(object):
    """Composes several transforms together.

    Args:
        transforms (list of ``Transform`` objects): list of transforms to compose.

    Example:
        >>> transforms.Compose([
        >>>     transforms.CenterCrop(10),
        >>>     transforms.ToTensor(),
        >>> ])
    """

    def __init__(self, transforms):
        self.transforms = transforms

    def __call__(self, img):
        for t in self.transforms:
            img = t(img)
        return img

64
65
66
67
68
69
70
71
    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string

72
73
74
75
76

class ToTensor(object):
    """Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor.

    Converts a PIL Image or numpy.ndarray (H x W x C) in the range
surgan12's avatar
surgan12 committed
77
78
79
80
81
    [0, 255] to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0]
    if the PIL Image belongs to one of the modes (L, LA, P, I, F, RGB, YCbCr, RGBA, CMYK, 1)
    or if the numpy.ndarray has dtype = np.uint8

    In the other cases, tensors are returned without scaling.
82
83
84
85
86
87
88
89
90
91
92
93
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image or numpy.ndarray): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.to_tensor(pic)

94
95
96
    def __repr__(self):
        return self.__class__.__name__ + '()'

97

98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
class PILToTensor(object):
    """Convert a ``PIL Image`` to a tensor of the same type.

    Converts a PIL Image (H x W x C) to a torch.Tensor of shape (C x H x W).
    """

    def __call__(self, pic):
        """
        Args:
            pic (PIL Image): Image to be converted to tensor.

        Returns:
            Tensor: Converted image.
        """
        return F.pil_to_tensor(pic)

    def __repr__(self):
        return self.__class__.__name__ + '()'


118
119
120
121
122
123
124
125
126
class ToPILImage(object):
    """Convert a tensor or an ndarray to PIL Image.

    Converts a torch.*Tensor of shape C x H x W or a numpy ndarray of shape
    H x W x C to a PIL Image while preserving the value range.

    Args:
        mode (`PIL.Image mode`_): color space and pixel depth of input data (optional).
            If ``mode`` is ``None`` (default) there are some assumptions made about the input data:
surgan12's avatar
surgan12 committed
127
128
129
130
             - If the input has 4 channels, the ``mode`` is assumed to be ``RGBA``.
             - If the input has 3 channels, the ``mode`` is assumed to be ``RGB``.
             - If the input has 2 channels, the ``mode`` is assumed to be ``LA``.
             - If the input has 1 channel, the ``mode`` is determined by the data type (i.e ``int``, ``float``,
131
               ``short``).
132

csukuangfj's avatar
csukuangfj committed
133
    .. _PIL.Image mode: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#concept-modes
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
    """
    def __init__(self, mode=None):
        self.mode = mode

    def __call__(self, pic):
        """
        Args:
            pic (Tensor or numpy.ndarray): Image to be converted to PIL Image.

        Returns:
            PIL Image: Image converted to PIL Image.

        """
        return F.to_pil_image(pic, self.mode)

149
    def __repr__(self):
150
151
152
153
154
        format_string = self.__class__.__name__ + '('
        if self.mode is not None:
            format_string += 'mode={0}'.format(self.mode)
        format_string += ')'
        return format_string
155

156
157

class Normalize(object):
Fang Gao's avatar
Fang Gao committed
158
    """Normalize a tensor image with mean and standard deviation.
159
160
161
    Given mean: ``(mean[1],...,mean[n])`` and std: ``(std[1],..,std[n])`` for ``n``
    channels, this transform will normalize each channel of the input
    ``torch.*Tensor`` i.e.,
abdjava's avatar
abdjava committed
162
    ``output[channel] = (input[channel] - mean[channel]) / std[channel]``
163

164
    .. note::
165
        This transform acts out of place, i.e., it does not mutate the input tensor.
166

167
168
169
    Args:
        mean (sequence): Sequence of means for each channel.
        std (sequence): Sequence of standard deviations for each channel.
170
171
        inplace(bool,optional): Bool to make this operation in-place.

172
173
    """

surgan12's avatar
surgan12 committed
174
    def __init__(self, mean, std, inplace=False):
175
176
        self.mean = mean
        self.std = std
surgan12's avatar
surgan12 committed
177
        self.inplace = inplace
178
179
180
181
182
183
184
185
186

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be normalized.

        Returns:
            Tensor: Normalized Tensor image.
        """
surgan12's avatar
surgan12 committed
187
        return F.normalize(tensor, self.mean, self.std, self.inplace)
188

189
190
191
    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206

class Resize(object):
    """Resize the input PIL Image to the given size.

    Args:
        size (sequence or int): Desired output size. If size is a sequence like
            (h, w), output size will be matched to this. If size is an int,
            smaller edge of the image will be matched to this number.
            i.e, if height > width, then image will be rescaled to
            (size * height / width, size)
        interpolation (int, optional): Desired interpolation. Default is
            ``PIL.Image.BILINEAR``
    """

    def __init__(self, size, interpolation=Image.BILINEAR):
Tongzhou Wang's avatar
Tongzhou Wang committed
207
        assert isinstance(size, int) or (isinstance(size, Iterable) and len(size) == 2)
208
209
210
211
212
213
214
215
216
217
218
219
220
        self.size = size
        self.interpolation = interpolation

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be scaled.

        Returns:
            PIL Image: Rescaled image.
        """
        return F.resize(img, self.size, self.interpolation)

221
    def __repr__(self):
222
223
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        return self.__class__.__name__ + '(size={0}, interpolation={1})'.format(self.size, interpolate_str)
224

225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

class Scale(Resize):
    """
    Note: This transform is deprecated in favor of Resize.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.Scale transform is deprecated, " +
                      "please use transforms.Resize instead.")
        super(Scale, self).__init__(*args, **kwargs)


class CenterCrop(object):
    """Crops the given PIL Image at the center.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
    """

    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
        return F.center_crop(img, self.size)

261
262
263
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

264
265
266
267
268
269
270
271
272
273

class Pad(object):
    """Pad the given PIL Image on all sides with the given "pad" value.

    Args:
        padding (int or tuple): Padding on each border. If a single int is provided this
            is used to pad all borders. If tuple of length 2 is provided this is the padding
            on left/right and top/bottom respectively. If a tuple of length 4 is provided
            this is the padding for the left, top, right and bottom borders
            respectively.
274
        fill (int or tuple): Pixel fill value for constant fill. Default is 0. If a tuple of
275
            length 3, it is used to fill R, G, B channels respectively.
276
            This value is only used when the padding_mode is constant
277
278
279
280
281
282
283
284
285
286
        padding_mode (str): Type of padding. Should be: constant, edge, reflect or symmetric.
            Default is constant.

            - constant: pads with a constant value, this value is specified with fill

            - edge: pads with the last value at the edge of the image

            - reflect: pads with reflection of image without repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
287
                will result in [3, 2, 1, 2, 3, 4, 3, 2]
288
289
290
291

            - symmetric: pads with reflection of image repeating the last value on the edge

                For example, padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
292
                will result in [2, 1, 1, 2, 3, 4, 4, 3]
293
294
    """

295
    def __init__(self, padding, fill=0, padding_mode='constant'):
296
297
        assert isinstance(padding, (numbers.Number, tuple))
        assert isinstance(fill, (numbers.Number, str, tuple))
298
        assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric']
Tongzhou Wang's avatar
Tongzhou Wang committed
299
        if isinstance(padding, Sequence) and len(padding) not in [2, 4]:
300
301
302
303
304
            raise ValueError("Padding must be an int or a 2, or 4 element tuple, not a " +
                             "{} element tuple".format(len(padding)))

        self.padding = padding
        self.fill = fill
305
        self.padding_mode = padding_mode
306
307
308
309
310
311
312
313
314

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be padded.

        Returns:
            PIL Image: Padded image.
        """
315
        return F.pad(img, self.padding, self.fill, self.padding_mode)
316

317
    def __repr__(self):
318
319
        return self.__class__.__name__ + '(padding={0}, fill={1}, padding_mode={2})'.\
            format(self.padding, self.fill, self.padding_mode)
320

321
322
323
324
325
326
327
328
329

class Lambda(object):
    """Apply a user-defined lambda as a transform.

    Args:
        lambd (function): Lambda/function to be used for transform.
    """

    def __init__(self, lambd):
330
        assert callable(lambd), repr(type(lambd).__name__) + " object is not callable"
331
332
333
334
335
        self.lambd = lambd

    def __call__(self, img):
        return self.lambd(img)

336
337
338
    def __repr__(self):
        return self.__class__.__name__ + '()'

339

340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
class RandomTransforms(object):
    """Base class for a list of transformations with randomness

    Args:
        transforms (list or tuple): list of transformations
    """

    def __init__(self, transforms):
        assert isinstance(transforms, (list, tuple))
        self.transforms = transforms

    def __call__(self, *args, **kwargs):
        raise NotImplementedError()

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomApply(RandomTransforms):
    """Apply randomly a list of transformations with a given probability

    Args:
        transforms (list or tuple): list of transformations
        p (float): probability
    """

    def __init__(self, transforms, p=0.5):
        super(RandomApply, self).__init__(transforms)
        self.p = p

    def __call__(self, img):
        if self.p < random.random():
            return img
        for t in self.transforms:
            img = t(img)
        return img

    def __repr__(self):
        format_string = self.__class__.__name__ + '('
        format_string += '\n    p={}'.format(self.p)
        for t in self.transforms:
            format_string += '\n'
            format_string += '    {0}'.format(t)
        format_string += '\n)'
        return format_string


class RandomOrder(RandomTransforms):
    """Apply a list of transformations in a random order
    """
    def __call__(self, img):
        order = list(range(len(self.transforms)))
        random.shuffle(order)
        for i in order:
            img = self.transforms[i](img)
        return img


class RandomChoice(RandomTransforms):
    """Apply single transformation randomly picked from a list
    """
    def __call__(self, img):
        t = random.choice(self.transforms)
        return t(img)


411
412
413
414
415
416
417
418
class RandomCrop(object):
    """Crop the given PIL Image at a random location.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
        padding (int or sequence, optional): Optional padding on each border
419
            of the image. Default is None, i.e no padding. If a sequence of length
420
            4 is provided, it is used to pad left, top, right, bottom borders
421
422
            respectively. If a sequence of length 2 is provided, it is used to
            pad left/right, top/bottom borders, respectively.
423
        pad_if_needed (boolean): It will pad the image if smaller than the
ekka's avatar
ekka committed
424
            desired size to avoid raising an exception. Since cropping is done
425
            after padding, the padding seems to be done at a random offset.
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        fill: Pixel fill value for constant fill. Default is 0. If a tuple of
            length 3, it is used to fill R, G, B channels respectively.
            This value is only used when the padding_mode is constant
        padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant.

             - constant: pads with a constant value, this value is specified with fill

             - edge: pads with the last value on the edge of the image

             - reflect: pads with reflection of image (without repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in reflect mode
                will result in [3, 2, 1, 2, 3, 4, 3, 2]

             - symmetric: pads with reflection of image (repeating the last value on the edge)

                padding [1, 2, 3, 4] with 2 elements on both sides in symmetric mode
                will result in [2, 1, 1, 2, 3, 4, 4, 3]

445
446
    """

447
    def __init__(self, size, padding=None, pad_if_needed=False, fill=0, padding_mode='constant'):
448
449
450
451
452
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
        self.padding = padding
453
        self.pad_if_needed = pad_if_needed
454
455
        self.fill = fill
        self.padding_mode = padding_mode
456
457
458
459
460
461
462
463
464
465
466
467

    @staticmethod
    def get_params(img, output_size):
        """Get parameters for ``crop`` for a random crop.

        Args:
            img (PIL Image): Image to be cropped.
            output_size (tuple): Expected output size of the crop.

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for random crop.
        """
Zhicheng Yan's avatar
Zhicheng Yan committed
468
        w, h = _get_image_size(img)
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
        th, tw = output_size
        if w == tw and h == th:
            return 0, 0, h, w

        i = random.randint(0, h - th)
        j = random.randint(0, w - tw)
        return i, j, th, tw

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be cropped.

        Returns:
            PIL Image: Cropped image.
        """
485
486
        if self.padding is not None:
            img = F.pad(img, self.padding, self.fill, self.padding_mode)
487

488
489
        # pad the width if needed
        if self.pad_if_needed and img.size[0] < self.size[1]:
490
            img = F.pad(img, (self.size[1] - img.size[0], 0), self.fill, self.padding_mode)
491
492
        # pad the height if needed
        if self.pad_if_needed and img.size[1] < self.size[0]:
493
            img = F.pad(img, (0, self.size[0] - img.size[1]), self.fill, self.padding_mode)
494

495
496
497
498
        i, j, h, w = self.get_params(img, self.size)

        return F.crop(img, i, j, h, w)

499
    def __repr__(self):
500
        return self.__class__.__name__ + '(size={0}, padding={1})'.format(self.size, self.padding)
501

502

503
504
505
506
507
class RandomHorizontalFlip(torch.nn.Module):
    """Horizontally flip the given image randomly with a given probability.
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
508
509
510
511
512
513

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
514
        super().__init__()
515
        self.p = p
516

517
    def forward(self, img):
518
519
        """
        Args:
520
            img (PIL Image or Tensor): Image to be flipped.
521
522

        Returns:
523
            PIL Image or Tensor: Randomly flipped image.
524
        """
525
        if torch.rand(1) < self.p:
526
527
528
            return F.hflip(img)
        return img

529
    def __repr__(self):
530
        return self.__class__.__name__ + '(p={})'.format(self.p)
531

532

533
class RandomVerticalFlip(torch.nn.Module):
534
    """Vertically flip the given PIL Image randomly with a given probability.
535
536
537
    The image can be a PIL Image or a torch Tensor, in which case it is expected
    to have [..., H, W] shape, where ... means an arbitrary number of leading
    dimensions
538
539
540
541
542
543

    Args:
        p (float): probability of the image being flipped. Default value is 0.5
    """

    def __init__(self, p=0.5):
544
        super().__init__()
545
        self.p = p
546

547
    def forward(self, img):
548
549
        """
        Args:
550
            img (PIL Image or Tensor): Image to be flipped.
551
552

        Returns:
553
            PIL Image or Tensor: Randomly flipped image.
554
        """
555
        if torch.rand(1) < self.p:
556
557
558
            return F.vflip(img)
        return img

559
    def __repr__(self):
560
        return self.__class__.__name__ + '(p={})'.format(self.p)
561

562

563
564
565
566
567
568
569
570
571
572
class RandomPerspective(object):
    """Performs Perspective transformation of the given PIL Image randomly with a given probability.

    Args:
        interpolation : Default- Image.BICUBIC

        p (float): probability of the image being perspectively transformed. Default value is 0.5

        distortion_scale(float): it controls the degree of distortion and ranges from 0 to 1. Default value is 0.5.

573
574
        fill (3-tuple or int): RGB pixel fill value for area outside the rotated image.
            If int, it is used for all channels respectively. Default value is 0.
575
576
    """

577
    def __init__(self, distortion_scale=0.5, p=0.5, interpolation=Image.BICUBIC, fill=0):
578
579
580
        self.p = p
        self.interpolation = interpolation
        self.distortion_scale = distortion_scale
581
        self.fill = fill
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be Perspectively transformed.

        Returns:
            PIL Image: Random perspectivley transformed image.
        """
        if not F._is_pil_image(img):
            raise TypeError('img should be PIL Image. Got {}'.format(type(img)))

        if random.random() < self.p:
            width, height = img.size
            startpoints, endpoints = self.get_params(width, height, self.distortion_scale)
597
            return F.perspective(img, startpoints, endpoints, self.interpolation, self.fill)
598
599
600
601
602
603
604
605
606
607
608
        return img

    @staticmethod
    def get_params(width, height, distortion_scale):
        """Get parameters for ``perspective`` for a random perspective transform.

        Args:
            width : width of the image.
            height : height of the image.

        Returns:
609
            List containing [top-left, top-right, bottom-right, bottom-left] of the original image,
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
            List containing [top-left, top-right, bottom-right, bottom-left] of the transformed image.
        """
        half_height = int(height / 2)
        half_width = int(width / 2)
        topleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(0, int(distortion_scale * half_height)))
        topright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(0, int(distortion_scale * half_height)))
        botright = (random.randint(width - int(distortion_scale * half_width) - 1, width - 1),
                    random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        botleft = (random.randint(0, int(distortion_scale * half_width)),
                   random.randint(height - int(distortion_scale * half_height) - 1, height - 1))
        startpoints = [(0, 0), (width - 1, 0), (width - 1, height - 1), (0, height - 1)]
        endpoints = [topleft, topright, botright, botleft]
        return startpoints, endpoints

    def __repr__(self):
        return self.__class__.__name__ + '(p={})'.format(self.p)


630
631
632
class RandomResizedCrop(object):
    """Crop the given PIL Image to random size and aspect ratio.

633
634
    A crop of random size (default: of 0.08 to 1.0) of the original size and a random
    aspect ratio (default: of 3/4 to 4/3) of the original aspect ratio is made. This crop
635
636
637
638
639
    is finally resized to given size.
    This is popularly used to train the Inception networks.

    Args:
        size: expected output size of each edge
640
641
        scale: range of size of the origin size cropped
        ratio: range of aspect ratio of the origin aspect ratio cropped
642
643
644
        interpolation: Default: PIL.Image.BILINEAR
    """

645
    def __init__(self, size, scale=(0.08, 1.0), ratio=(3. / 4., 4. / 3.), interpolation=Image.BILINEAR):
646
        if isinstance(size, (tuple, list)):
647
648
649
650
651
652
            self.size = size
        else:
            self.size = (size, size)
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")

653
        self.interpolation = interpolation
654
655
        self.scale = scale
        self.ratio = ratio
656
657

    @staticmethod
658
    def get_params(img, scale, ratio):
659
660
661
662
        """Get parameters for ``crop`` for a random sized crop.

        Args:
            img (PIL Image): Image to be cropped.
663
664
            scale (tuple): range of size of the origin size cropped
            ratio (tuple): range of aspect ratio of the origin aspect ratio cropped
665
666
667
668
669

        Returns:
            tuple: params (i, j, h, w) to be passed to ``crop`` for a random
                sized crop.
        """
Zhicheng Yan's avatar
Zhicheng Yan committed
670
671
        width, height = _get_image_size(img)
        area = height * width
672

673
        for _ in range(10):
674
            target_area = random.uniform(*scale) * area
675
676
            log_ratio = (math.log(ratio[0]), math.log(ratio[1]))
            aspect_ratio = math.exp(random.uniform(*log_ratio))
677
678
679
680

            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))

Zhicheng Yan's avatar
Zhicheng Yan committed
681
682
683
            if 0 < w <= width and 0 < h <= height:
                i = random.randint(0, height - h)
                j = random.randint(0, width - w)
684
685
                return i, j, h, w

686
        # Fallback to central crop
Zhicheng Yan's avatar
Zhicheng Yan committed
687
        in_ratio = float(width) / float(height)
688
        if (in_ratio < min(ratio)):
Zhicheng Yan's avatar
Zhicheng Yan committed
689
            w = width
690
            h = int(round(w / min(ratio)))
691
        elif (in_ratio > max(ratio)):
Zhicheng Yan's avatar
Zhicheng Yan committed
692
            h = height
693
            w = int(round(h * max(ratio)))
694
        else:  # whole image
Zhicheng Yan's avatar
Zhicheng Yan committed
695
696
697
698
            w = width
            h = height
        i = (height - h) // 2
        j = (width - w) // 2
699
        return i, j, h, w
700
701
702
703

    def __call__(self, img):
        """
        Args:
704
            img (PIL Image): Image to be cropped and resized.
705
706

        Returns:
707
            PIL Image: Randomly cropped and resized image.
708
        """
709
        i, j, h, w = self.get_params(img, self.scale, self.ratio)
710
711
        return F.resized_crop(img, i, j, h, w, self.size, self.interpolation)

712
    def __repr__(self):
713
714
        interpolate_str = _pil_interpolation_to_str[self.interpolation]
        format_string = self.__class__.__name__ + '(size={0}'.format(self.size)
715
716
        format_string += ', scale={0}'.format(tuple(round(s, 4) for s in self.scale))
        format_string += ', ratio={0}'.format(tuple(round(r, 4) for r in self.ratio))
717
718
        format_string += ', interpolation={0})'.format(interpolate_str)
        return format_string
719

720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765

class RandomSizedCrop(RandomResizedCrop):
    """
    Note: This transform is deprecated in favor of RandomResizedCrop.
    """
    def __init__(self, *args, **kwargs):
        warnings.warn("The use of the transforms.RandomSizedCrop transform is deprecated, " +
                      "please use transforms.RandomResizedCrop instead.")
        super(RandomSizedCrop, self).__init__(*args, **kwargs)


class FiveCrop(object):
    """Crop the given PIL Image into four corners and the central crop

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
         size (sequence or int): Desired output size of the crop. If size is an ``int``
            instead of sequence like (h, w), a square crop of size (size, size) is made.

    Example:
         >>> transform = Compose([
         >>>    FiveCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size

    def __call__(self, img):
        return F.five_crop(img, self.size)

766
767
768
    def __repr__(self):
        return self.__class__.__name__ + '(size={0})'.format(self.size)

769
770
771
772
773
774
775
776
777
778
779
780
781
782

class TenCrop(object):
    """Crop the given PIL Image into four corners and the central crop plus the flipped version of
    these (horizontal flipping is used by default)

    .. Note::
         This transform returns a tuple of images and there may be a mismatch in the number of
         inputs and targets your Dataset returns. See below for an example of how to deal with
         this.

    Args:
        size (sequence or int): Desired output size of the crop. If size is an
            int instead of sequence like (h, w), a square crop (size, size) is
            made.
783
        vertical_flip (bool): Use vertical flipping instead of horizontal
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808

    Example:
         >>> transform = Compose([
         >>>    TenCrop(size), # this is a list of PIL Images
         >>>    Lambda(lambda crops: torch.stack([ToTensor()(crop) for crop in crops])) # returns a 4D tensor
         >>> ])
         >>> #In your test loop you can do the following:
         >>> input, target = batch # input is a 5d tensor, target is 2d
         >>> bs, ncrops, c, h, w = input.size()
         >>> result = model(input.view(-1, c, h, w)) # fuse batch size and ncrops
         >>> result_avg = result.view(bs, ncrops, -1).mean(1) # avg over crops
    """

    def __init__(self, size, vertical_flip=False):
        self.size = size
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            assert len(size) == 2, "Please provide only two dimensions (h, w) for size."
            self.size = size
        self.vertical_flip = vertical_flip

    def __call__(self, img):
        return F.ten_crop(img, self.size, self.vertical_flip)

809
    def __repr__(self):
810
        return self.__class__.__name__ + '(size={0}, vertical_flip={1})'.format(self.size, self.vertical_flip)
811

812

813
class LinearTransformation(object):
ekka's avatar
ekka committed
814
    """Transform a tensor image with a square transformation matrix and a mean_vector computed
815
    offline.
ekka's avatar
ekka committed
816
817
818
    Given transformation_matrix and mean_vector, will flatten the torch.*Tensor and
    subtract mean_vector from it which is then followed by computing the dot
    product with the transformation matrix and then reshaping the tensor to its
819
    original shape.
820

821
    Applications:
822
        whitening transformation: Suppose X is a column vector zero-centered data.
823
824
825
        Then compute the data covariance matrix [D x D] with torch.mm(X.t(), X),
        perform SVD on this matrix and pass it as transformation_matrix.

826
827
    Args:
        transformation_matrix (Tensor): tensor [D x D], D = C x H x W
ekka's avatar
ekka committed
828
        mean_vector (Tensor): tensor [D], D = C x H x W
829
830
    """

ekka's avatar
ekka committed
831
    def __init__(self, transformation_matrix, mean_vector):
832
833
834
        if transformation_matrix.size(0) != transformation_matrix.size(1):
            raise ValueError("transformation_matrix should be square. Got " +
                             "[{} x {}] rectangular matrix.".format(*transformation_matrix.size()))
ekka's avatar
ekka committed
835
836
837

        if mean_vector.size(0) != transformation_matrix.size(0):
            raise ValueError("mean_vector should have the same length {}".format(mean_vector.size(0)) +
Francisco Massa's avatar
Francisco Massa committed
838
839
                             " as any one of the dimensions of the transformation_matrix [{}]"
                             .format(tuple(transformation_matrix.size())))
ekka's avatar
ekka committed
840

841
        self.transformation_matrix = transformation_matrix
ekka's avatar
ekka committed
842
        self.mean_vector = mean_vector
843
844
845
846
847
848
849
850
851
852
853
854
855

    def __call__(self, tensor):
        """
        Args:
            tensor (Tensor): Tensor image of size (C, H, W) to be whitened.

        Returns:
            Tensor: Transformed image.
        """
        if tensor.size(0) * tensor.size(1) * tensor.size(2) != self.transformation_matrix.size(0):
            raise ValueError("tensor and transformation matrix have incompatible shape." +
                             "[{} x {} x {}] != ".format(*tensor.size()) +
                             "{}".format(self.transformation_matrix.size(0)))
ekka's avatar
ekka committed
856
        flat_tensor = tensor.view(1, -1) - self.mean_vector
857
858
859
860
        transformed_tensor = torch.mm(flat_tensor, self.transformation_matrix)
        tensor = transformed_tensor.view(tensor.size())
        return tensor

861
    def __repr__(self):
ekka's avatar
ekka committed
862
863
864
        format_string = self.__class__.__name__ + '(transformation_matrix='
        format_string += (str(self.transformation_matrix.tolist()) + ')')
        format_string += (", (mean_vector=" + str(self.mean_vector.tolist()) + ')')
865
866
        return format_string

867

868
class ColorJitter(torch.nn.Module):
869
870
871
    """Randomly change the brightness, contrast and saturation of an image.

    Args:
yaox12's avatar
yaox12 committed
872
873
874
875
876
877
878
879
880
881
882
883
        brightness (float or tuple of float (min, max)): How much to jitter brightness.
            brightness_factor is chosen uniformly from [max(0, 1 - brightness), 1 + brightness]
            or the given [min, max]. Should be non negative numbers.
        contrast (float or tuple of float (min, max)): How much to jitter contrast.
            contrast_factor is chosen uniformly from [max(0, 1 - contrast), 1 + contrast]
            or the given [min, max]. Should be non negative numbers.
        saturation (float or tuple of float (min, max)): How much to jitter saturation.
            saturation_factor is chosen uniformly from [max(0, 1 - saturation), 1 + saturation]
            or the given [min, max]. Should be non negative numbers.
        hue (float or tuple of float (min, max)): How much to jitter hue.
            hue_factor is chosen uniformly from [-hue, hue] or the given [min, max].
            Should have 0<= hue <= 0.5 or -0.5 <= min <= max <= 0.5.
884
    """
885

886
    def __init__(self, brightness=0, contrast=0, saturation=0, hue=0):
887
        super().__init__()
yaox12's avatar
yaox12 committed
888
889
890
891
892
893
        self.brightness = self._check_input(brightness, 'brightness')
        self.contrast = self._check_input(contrast, 'contrast')
        self.saturation = self._check_input(saturation, 'saturation')
        self.hue = self._check_input(hue, 'hue', center=0, bound=(-0.5, 0.5),
                                     clip_first_on_zero=False)

894
    @torch.jit.unused
yaox12's avatar
yaox12 committed
895
896
897
898
    def _check_input(self, value, name, center=1, bound=(0, float('inf')), clip_first_on_zero=True):
        if isinstance(value, numbers.Number):
            if value < 0:
                raise ValueError("If {} is a single number, it must be non negative.".format(name))
899
            value = [center - float(value), center + float(value)]
yaox12's avatar
yaox12 committed
900
            if clip_first_on_zero:
901
                value[0] = max(value[0], 0.0)
yaox12's avatar
yaox12 committed
902
903
904
905
906
907
908
909
910
911
912
        elif isinstance(value, (tuple, list)) and len(value) == 2:
            if not bound[0] <= value[0] <= value[1] <= bound[1]:
                raise ValueError("{} values should be between {}".format(name, bound))
        else:
            raise TypeError("{} should be a single number or a list/tuple with lenght 2.".format(name))

        # if value is 0 or (1., 1.) for brightness/contrast/saturation
        # or (0., 0.) for hue, do nothing
        if value[0] == value[1] == center:
            value = None
        return value
913
914

    @staticmethod
915
    @torch.jit.unused
916
917
918
919
920
921
922
923
924
925
    def get_params(brightness, contrast, saturation, hue):
        """Get a randomized transform to be applied on image.

        Arguments are same as that of __init__.

        Returns:
            Transform which randomly adjusts brightness, contrast and
            saturation in a random order.
        """
        transforms = []
yaox12's avatar
yaox12 committed
926
927
928

        if brightness is not None:
            brightness_factor = random.uniform(brightness[0], brightness[1])
929
930
            transforms.append(Lambda(lambda img: F.adjust_brightness(img, brightness_factor)))

yaox12's avatar
yaox12 committed
931
932
        if contrast is not None:
            contrast_factor = random.uniform(contrast[0], contrast[1])
933
934
            transforms.append(Lambda(lambda img: F.adjust_contrast(img, contrast_factor)))

yaox12's avatar
yaox12 committed
935
936
        if saturation is not None:
            saturation_factor = random.uniform(saturation[0], saturation[1])
937
938
            transforms.append(Lambda(lambda img: F.adjust_saturation(img, saturation_factor)))

yaox12's avatar
yaox12 committed
939
940
        if hue is not None:
            hue_factor = random.uniform(hue[0], hue[1])
941
942
            transforms.append(Lambda(lambda img: F.adjust_hue(img, hue_factor)))

vfdev's avatar
vfdev committed
943
        random.shuffle(transforms)
944
945
946
947
        transform = Compose(transforms)

        return transform

948
    def forward(self, img):
949
950
        """
        Args:
951
            img (PIL Image or Tensor): Input image.
952
953

        Returns:
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
            PIL Image or Tensor: Color jittered image.
        """
        fn_idx = torch.randperm(4)
        for fn_id in fn_idx:
            if fn_id == 0 and self.brightness is not None:
                brightness = self.brightness
                brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item()
                img = F.adjust_brightness(img, brightness_factor)

            if fn_id == 1 and self.contrast is not None:
                contrast = self.contrast
                contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item()
                img = F.adjust_contrast(img, contrast_factor)

            if fn_id == 2 and self.saturation is not None:
                saturation = self.saturation
                saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item()
                img = F.adjust_saturation(img, saturation_factor)

            if fn_id == 3 and self.hue is not None:
                hue = self.hue
                hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item()
                img = F.adjust_hue(img, hue_factor)

        return img
979

980
    def __repr__(self):
981
982
983
984
985
986
        format_string = self.__class__.__name__ + '('
        format_string += 'brightness={0}'.format(self.brightness)
        format_string += ', contrast={0}'.format(self.contrast)
        format_string += ', saturation={0}'.format(self.saturation)
        format_string += ', hue={0})'.format(self.hue)
        return format_string
987

988
989
990
991
992
993
994
995
996

class RandomRotation(object):
    """Rotate the image by angle.

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
            will be (-degrees, +degrees).
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
997
            An optional resampling filter. See `filters`_ for more information.
998
999
1000
1001
1002
1003
1004
1005
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
        expand (bool, optional): Optional expansion flag.
            If true, expands the output to make it large enough to hold the entire rotated image.
            If false or omitted, make the output image the same size as the input image.
            Note that the expand flag assumes rotation around the center and no translation.
        center (2-tuple, optional): Optional center of rotation.
            Origin is the upper left corner.
            Default is the center of the image.
Philip Meier's avatar
Philip Meier committed
1006
1007
1008
        fill (n-tuple or int or float): Pixel fill value for area outside the rotated
            image. If int or float, the value is used for all bands respectively.
            Defaults to 0 for all bands. This option is only available for ``pillow>=5.2.0``.
1009
1010
1011

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1012
1013
    """

Philip Meier's avatar
Philip Meier committed
1014
    def __init__(self, degrees, resample=False, expand=False, center=None, fill=None):
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            if len(degrees) != 2:
                raise ValueError("If degrees is a sequence, it must be of len 2.")
            self.degrees = degrees

        self.resample = resample
        self.expand = expand
        self.center = center
1027
        self.fill = fill
1028
1029
1030
1031
1032
1033
1034
1035

    @staticmethod
    def get_params(degrees):
        """Get parameters for ``rotate`` for a random rotation.

        Returns:
            sequence: params to be passed to ``rotate`` for random rotation.
        """
vfdev's avatar
vfdev committed
1036
        angle = random.uniform(degrees[0], degrees[1])
1037
1038
1039
1040
1041

        return angle

    def __call__(self, img):
        """
1042
        Args:
1043
1044
1045
1046
1047
1048
1049
1050
            img (PIL Image): Image to be rotated.

        Returns:
            PIL Image: Rotated image.
        """

        angle = self.get_params(self.degrees)

1051
        return F.rotate(img, angle, self.resample, self.expand, self.center, self.fill)
1052

1053
    def __repr__(self):
1054
1055
1056
1057
1058
1059
1060
        format_string = self.__class__.__name__ + '(degrees={0}'.format(self.degrees)
        format_string += ', resample={0}'.format(self.resample)
        format_string += ', expand={0}'.format(self.expand)
        if self.center is not None:
            format_string += ', center={0}'.format(self.center)
        format_string += ')'
        return format_string
1061

1062

1063
1064
1065
1066
1067
1068
class RandomAffine(object):
    """Random affine transformation of the image keeping center invariant

    Args:
        degrees (sequence or float or int): Range of degrees to select from.
            If degrees is a number instead of sequence like (min, max), the range of degrees
1069
            will be (-degrees, +degrees). Set to 0 to deactivate rotations.
1070
1071
1072
1073
1074
1075
1076
        translate (tuple, optional): tuple of maximum absolute fraction for horizontal
            and vertical translations. For example translate=(a, b), then horizontal shift
            is randomly sampled in the range -img_width * a < dx < img_width * a and vertical shift is
            randomly sampled in the range -img_height * b < dy < img_height * b. Will not translate by default.
        scale (tuple, optional): scaling factor interval, e.g (a, b), then scale is
            randomly sampled from the range a <= scale <= b. Will keep original scale by default.
        shear (sequence or float or int, optional): Range of degrees to select from.
ptrblck's avatar
ptrblck committed
1077
1078
1079
1080
1081
            If shear is a number, a shear parallel to the x axis in the range (-shear, +shear)
            will be apllied. Else if shear is a tuple or list of 2 values a shear parallel to the x axis in the
            range (shear[0], shear[1]) will be applied. Else if shear is a tuple or list of 4 values,
            a x-axis shear in (shear[0], shear[1]) and y-axis shear in (shear[2], shear[3]) will be applied.
            Will not apply shear by default
1082
        resample ({PIL.Image.NEAREST, PIL.Image.BILINEAR, PIL.Image.BICUBIC}, optional):
1083
            An optional resampling filter. See `filters`_ for more information.
1084
            If omitted, or if the image has mode "1" or "P", it is set to PIL.Image.NEAREST.
Surgan Jandial's avatar
Surgan Jandial committed
1085
1086
        fillcolor (tuple or int): Optional fill color (Tuple for RGB Image And int for grayscale) for the area
            outside the transform in the output image.(Pillow>=5.0.0)
1087
1088
1089

    .. _filters: https://pillow.readthedocs.io/en/latest/handbook/concepts.html#filters

1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
    """

    def __init__(self, degrees, translate=None, scale=None, shear=None, resample=False, fillcolor=0):
        if isinstance(degrees, numbers.Number):
            if degrees < 0:
                raise ValueError("If degrees is a single number, it must be positive.")
            self.degrees = (-degrees, degrees)
        else:
            assert isinstance(degrees, (tuple, list)) and len(degrees) == 2, \
                "degrees should be a list or tuple and it must be of length 2."
            self.degrees = degrees

        if translate is not None:
            assert isinstance(translate, (tuple, list)) and len(translate) == 2, \
                "translate should be a list or tuple and it must be of length 2."
            for t in translate:
                if not (0.0 <= t <= 1.0):
                    raise ValueError("translation values should be between 0 and 1")
        self.translate = translate

        if scale is not None:
            assert isinstance(scale, (tuple, list)) and len(scale) == 2, \
                "scale should be a list or tuple and it must be of length 2."
            for s in scale:
                if s <= 0:
                    raise ValueError("scale values should be positive")
        self.scale = scale

        if shear is not None:
            if isinstance(shear, numbers.Number):
                if shear < 0:
                    raise ValueError("If shear is a single number, it must be positive.")
                self.shear = (-shear, shear)
            else:
ptrblck's avatar
ptrblck committed
1124
1125
1126
1127
1128
1129
1130
1131
                assert isinstance(shear, (tuple, list)) and \
                    (len(shear) == 2 or len(shear) == 4), \
                    "shear should be a list or tuple and it must be of length 2 or 4."
                # X-Axis shear with [min, max]
                if len(shear) == 2:
                    self.shear = [shear[0], shear[1], 0., 0.]
                elif len(shear) == 4:
                    self.shear = [s for s in shear]
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
        else:
            self.shear = shear

        self.resample = resample
        self.fillcolor = fillcolor

    @staticmethod
    def get_params(degrees, translate, scale_ranges, shears, img_size):
        """Get parameters for affine transformation

        Returns:
            sequence: params to be passed to the affine transformation
        """
        angle = random.uniform(degrees[0], degrees[1])
        if translate is not None:
            max_dx = translate[0] * img_size[0]
            max_dy = translate[1] * img_size[1]
            translations = (np.round(random.uniform(-max_dx, max_dx)),
                            np.round(random.uniform(-max_dy, max_dy)))
        else:
            translations = (0, 0)

        if scale_ranges is not None:
            scale = random.uniform(scale_ranges[0], scale_ranges[1])
        else:
            scale = 1.0

        if shears is not None:
ptrblck's avatar
ptrblck committed
1160
1161
1162
1163
1164
            if len(shears) == 2:
                shear = [random.uniform(shears[0], shears[1]), 0.]
            elif len(shears) == 4:
                shear = [random.uniform(shears[0], shears[1]),
                         random.uniform(shears[2], shears[3])]
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
        else:
            shear = 0.0

        return angle, translations, scale, shear

    def __call__(self, img):
        """
            img (PIL Image): Image to be transformed.

        Returns:
            PIL Image: Affine transformed image.
        """
        ret = self.get_params(self.degrees, self.translate, self.scale, self.shear, img.size)
        return F.affine(img, *ret, resample=self.resample, fillcolor=self.fillcolor)

    def __repr__(self):
        s = '{name}(degrees={degrees}'
        if self.translate is not None:
            s += ', translate={translate}'
        if self.scale is not None:
            s += ', scale={scale}'
        if self.shear is not None:
            s += ', shear={shear}'
        if self.resample > 0:
            s += ', resample={resample}'
        if self.fillcolor != 0:
            s += ', fillcolor={fillcolor}'
        s += ')'
        d = dict(self.__dict__)
        d['resample'] = _pil_interpolation_to_str[d['resample']]
        return s.format(name=self.__class__.__name__, **d)


1198
1199
class Grayscale(object):
    """Convert image to grayscale.
1200

1201
1202
1203
1204
    Args:
        num_output_channels (int): (1 or 3) number of channels desired for output image

    Returns:
1205
        PIL Image: Grayscale version of the input.
1206
1207
         - If ``num_output_channels == 1`` : returned image is single channel
         - If ``num_output_channels == 3`` : returned image is 3 channel with r == g == b
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223

    """

    def __init__(self, num_output_channels=1):
        self.num_output_channels = num_output_channels

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        return F.to_grayscale(img, num_output_channels=self.num_output_channels)

1224
    def __repr__(self):
1225
        return self.__class__.__name__ + '(num_output_channels={0})'.format(self.num_output_channels)
1226

1227
1228
1229

class RandomGrayscale(object):
    """Randomly convert image to grayscale with a probability of p (default 0.1).
1230

1231
1232
1233
1234
    Args:
        p (float): probability that image should be converted to grayscale.

    Returns:
1235
1236
1237
1238
        PIL Image: Grayscale version of the input image with probability p and unchanged
        with probability (1-p).
        - If input image is 1 channel: grayscale version is 1 channel
        - If input image is 3 channel: grayscale version is 3 channel with r == g == b
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256

    """

    def __init__(self, p=0.1):
        self.p = p

    def __call__(self, img):
        """
        Args:
            img (PIL Image): Image to be converted to grayscale.

        Returns:
            PIL Image: Randomly grayscaled image.
        """
        num_output_channels = 1 if img.mode == 'L' else 3
        if random.random() < self.p:
            return F.to_grayscale(img, num_output_channels=num_output_channels)
        return img
1257
1258

    def __repr__(self):
1259
        return self.__class__.__name__ + '(p={0})'.format(self.p)
1260
1261
1262
1263


class RandomErasing(object):
    """ Randomly selects a rectangle region in an image and erases its pixels.
1264
1265
    'Random Erasing Data Augmentation' by Zhong et al. See https://arxiv.org/pdf/1708.04896.pdf

1266
1267
1268
1269
1270
1271
1272
1273
    Args:
         p: probability that the random erasing operation will be performed.
         scale: range of proportion of erased area against input image.
         ratio: range of aspect ratio of erased area.
         value: erasing value. Default is 0. If a single int, it is used to
            erase all pixels. If a tuple of length 3, it is used to erase
            R, G, B channels respectively.
            If a str of 'random', erasing each pixel with random values.
Zhun Zhong's avatar
Zhun Zhong committed
1274
         inplace: boolean to make this transform inplace. Default set to False.
1275

1276
1277
    Returns:
        Erased Image.
1278

1279
1280
    # Examples:
        >>> transform = transforms.Compose([
1281
1282
1283
1284
        >>>   transforms.RandomHorizontalFlip(),
        >>>   transforms.ToTensor(),
        >>>   transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
        >>>   transforms.RandomErasing(),
1285
1286
1287
        >>> ])
    """

Zhun Zhong's avatar
Zhun Zhong committed
1288
    def __init__(self, p=0.5, scale=(0.02, 0.33), ratio=(0.3, 3.3), value=0, inplace=False):
1289
1290
1291
1292
1293
        assert isinstance(value, (numbers.Number, str, tuple, list))
        if (scale[0] > scale[1]) or (ratio[0] > ratio[1]):
            warnings.warn("range should be of kind (min, max)")
        if scale[0] < 0 or scale[1] > 1:
            raise ValueError("range of scale should be between 0 and 1")
1294
1295
        if p < 0 or p > 1:
            raise ValueError("range of random erasing probability should be between 0 and 1")
1296
1297
1298
1299
1300

        self.p = p
        self.scale = scale
        self.ratio = ratio
        self.value = value
1301
        self.inplace = inplace
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

    @staticmethod
    def get_params(img, scale, ratio, value=0):
        """Get parameters for ``erase`` for a random erasing.

        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.
            scale: range of proportion of erased area against input image.
            ratio: range of aspect ratio of erased area.

        Returns:
            tuple: params (i, j, h, w, v) to be passed to ``erase`` for random erasing.
        """
Zhun Zhong's avatar
Zhun Zhong committed
1315
        img_c, img_h, img_w = img.shape
1316
        area = img_h * img_w
1317

1318
        for _ in range(10):
1319
1320
1321
1322
1323
1324
            erase_area = random.uniform(scale[0], scale[1]) * area
            aspect_ratio = random.uniform(ratio[0], ratio[1])

            h = int(round(math.sqrt(erase_area * aspect_ratio)))
            w = int(round(math.sqrt(erase_area / aspect_ratio)))

1325
1326
1327
            if h < img_h and w < img_w:
                i = random.randint(0, img_h - h)
                j = random.randint(0, img_w - w)
1328
1329
1330
                if isinstance(value, numbers.Number):
                    v = value
                elif isinstance(value, torch._six.string_classes):
Zhun Zhong's avatar
Zhun Zhong committed
1331
                    v = torch.empty([img_c, h, w], dtype=torch.float32).normal_()
1332
1333
1334
1335
                elif isinstance(value, (list, tuple)):
                    v = torch.tensor(value, dtype=torch.float32).view(-1, 1, 1).expand(-1, h, w)
                return i, j, h, w, v

Zhun Zhong's avatar
Zhun Zhong committed
1336
1337
1338
        # Return original image
        return 0, 0, img_h, img_w, img

1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
    def __call__(self, img):
        """
        Args:
            img (Tensor): Tensor image of size (C, H, W) to be erased.

        Returns:
            img (Tensor): Erased Tensor image.
        """
        if random.uniform(0, 1) < self.p:
            x, y, h, w, v = self.get_params(img, scale=self.scale, ratio=self.ratio, value=self.value)
1349
            return F.erase(img, x, y, h, w, v, self.inplace)
1350
        return img