test_functional_tensor.py 41.2 KB
Newer Older
1
import os
2
import unittest
3
import colorsys
4
import math
5

vfdev's avatar
vfdev committed
6
7
8
9
10
11
import numpy as np

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
12
from torchvision.transforms import InterpolationMode
13

14
from common_utils import TransformsTester
15

16

17
NEAREST, BILINEAR, BICUBIC = InterpolationMode.NEAREST, InterpolationMode.BILINEAR, InterpolationMode.BICUBIC
18
19


20
class Tester(TransformsTester):
vfdev's avatar
vfdev committed
21

22
23
24
    def setUp(self):
        self.device = "cpu"

25
26
27
28
29
30
31
32
33
34
35
36
    def _test_fn_on_batch(self, batch_tensors, fn, **fn_kwargs):
        transformed_batch = fn(batch_tensors, **fn_kwargs)
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            transformed_img = fn(img_tensor, **fn_kwargs)
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]))

        scripted_fn = torch.jit.script(fn)
        # scriptable function test
        s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
        self.assertTrue(transformed_batch.allclose(s_transformed_batch))

37
    def test_vflip(self):
38
39
40
41
42
43
44
        script_vflip = torch.jit.script(F.vflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        vflipped_img = F.vflip(img_tensor)
        vflipped_pil_img = F.vflip(pil_img)
        self.compareTensorToPIL(vflipped_img, vflipped_pil_img)

45
46
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
47
48
49
50
        self.assertTrue(vflipped_img.equal(vflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.vflip)
51

52
    def test_hflip(self):
53
54
55
56
57
58
59
        script_hflip = torch.jit.script(F.hflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        hflipped_img = F.hflip(img_tensor)
        hflipped_pil_img = F.hflip(pil_img)
        self.compareTensorToPIL(hflipped_img, hflipped_pil_img)

60
61
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
62
63
64
65
        self.assertTrue(hflipped_img.equal(hflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.hflip)
66

67
    def test_crop(self):
68
        script_crop = torch.jit.script(F.crop)
69

70
        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
87

88
89
90
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)

91
    def test_hsv2rgb(self):
92
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
93
        shape = (3, 100, 150)
94
95
96
97
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
98

99
100
101
102
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
103
104
105
106

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
107
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
108
109
110
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

111
112
113
            s_rgb_img = scripted_fn(hsv_img)
            self.assertTrue(rgb_img.allclose(s_rgb_img))

114
115
116
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._hsv2rgb)

117
    def test_rgb2hsv(self):
118
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
119
        shape = (3, 150, 100)
120
121
122
123
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
124

125
            r, g, b, = rgb_img.unbind(dim=-3)
126
127
128
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
129
130
131
132
133

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

134
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
135

136
137
138
139
140
141
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
142
143
            self.assertLess(max_diff, 1e-5)

144
145
146
            s_hsv_img = scripted_fn(rgb_img)
            self.assertTrue(hsv_img.allclose(s_hsv_img))

147
148
149
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._rgb2hsv)

150
    def test_rgb_to_grayscale(self):
151
152
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

153
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
154
155
156
157
158
159
160
161
162
163

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

            self.approxEqualTensorToPIL(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
            self.assertTrue(s_gray_tensor.equal(gray_tensor))

164
165
166
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)

167
    def test_center_crop(self):
168
169
        script_center_crop = torch.jit.script(F.center_crop)

170
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
171
172
173
174
175
176
177
178

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
179

180
181
182
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])

183
    def test_five_crop(self):
184
185
        script_five_crop = torch.jit.script(F.five_crop)

186
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
187
188
189
190
191
192
193
194
195
196

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

215
    def test_ten_crop(self):
216
217
        script_ten_crop = torch.jit.script(F.ten_crop)

218
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
219
220
221
222
223
224
225
226
227
228

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

247
    def test_pad(self):
248
        script_fn = torch.jit.script(F.pad)
249
        tensor, pil_img = self._create_data(7, 8, device=self.device)
250
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
251

252
253
254
255
256
257
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

258
259
260
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
261
262
                batch_tensors = batch_tensors.to(dt)

263
264
265
266
267
268
269
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
270
                    {"padding_mode": "symmetric"},
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
289

290
291
                    self._test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)

292
293
    def _test_adjust_fn(self, fn, fn_pil, fn_t, configs, tol=2.0 + 1e-10, agg_method="max",
                        dts=(None, torch.float32, torch.float64)):
vfdev's avatar
vfdev committed
294
295
296
        script_fn = torch.jit.script(fn)
        torch.manual_seed(15)
        tensor, pil_img = self._create_data(26, 34, device=self.device)
297
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
298

299
        for dt in dts:
300
301
302

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)
303
                batch_tensors = F.convert_image_dtype(batch_tensors, dt)
304

vfdev's avatar
vfdev committed
305
306
307
308
309
310
311
            for config in configs:
                adjusted_tensor = fn_t(tensor, **config)
                adjusted_pil = fn_pil(pil_img, **config)
                scripted_result = script_fn(tensor, **config)
                msg = "{}, {}".format(dt, config)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype, msg=msg)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1], msg=msg)
312
313

                rbg_tensor = adjusted_tensor
vfdev's avatar
vfdev committed
314

315
316
317
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

vfdev's avatar
vfdev committed
318
319
                # Check that max difference does not exceed 2 in [0, 255] range
                # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
320
321
322
323
324
325
                self.approxEqualTensorToPIL(rbg_tensor.float(), adjusted_pil, tol=tol, msg=msg, agg_method=agg_method)

                atol = 1e-6
                if adjusted_tensor.dtype == torch.uint8 and "cuda" in torch.device(self.device).type:
                    atol = 1.0
                self.assertTrue(adjusted_tensor.allclose(scripted_result, atol=atol), msg=msg)
vfdev's avatar
vfdev committed
326

327
328
                self._test_fn_on_batch(batch_tensors, fn, **config)

vfdev's avatar
vfdev committed
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
    def test_adjust_brightness(self):
        self._test_adjust_fn(
            F.adjust_brightness,
            F_pil.adjust_brightness,
            F_t.adjust_brightness,
            [{"brightness_factor": f} for f in [0.1, 0.5, 1.0, 1.34, 2.5]]
        )

    def test_adjust_contrast(self):
        self._test_adjust_fn(
            F.adjust_contrast,
            F_pil.adjust_contrast,
            F_t.adjust_contrast,
            [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]]
        )

    def test_adjust_saturation(self):
        self._test_adjust_fn(
            F.adjust_saturation,
            F_pil.adjust_saturation,
            F_t.adjust_saturation,
            [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]]
        )
352

353
354
355
356
357
358
    def test_adjust_hue(self):
        self._test_adjust_fn(
            F.adjust_hue,
            F_pil.adjust_hue,
            F_t.adjust_hue,
            [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]],
vfdev's avatar
vfdev committed
359
360
            tol=16.1,
            agg_method="max"
361
362
        )

vfdev's avatar
vfdev committed
363
364
365
366
367
368
369
    def test_adjust_gamma(self):
        self._test_adjust_fn(
            F.adjust_gamma,
            F_pil.adjust_gamma,
            F_t.adjust_gamma,
            [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])]
        )
370

371
    def test_resize(self):
372
        script_fn = torch.jit.script(F.resize)
373
        tensor, pil_img = self._create_data(26, 36, device=self.device)
374
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
375

376
377
378
379
380
381
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

vfdev's avatar
vfdev committed
382
383
384
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
385
386
                batch_tensors = batch_tensors.to(dt)

387
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
vfdev's avatar
vfdev committed
388
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
389
390
                    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)
vfdev's avatar
vfdev committed
391
392
393
394
395

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

396
                    if interpolation not in [NEAREST, ]:
vfdev's avatar
vfdev committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
414

415
416
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
417

418
419
420
421
                    self._test_fn_on_batch(
                        batch_tensors, F.resize, size=script_size, interpolation=interpolation
                    )

422
        # assert changed type warning
423
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
424
425
426
427
            res1 = F.resize(tensor, size=32, interpolation=2)
            res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

428
    def test_resized_crop(self):
429
430
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
431
        tensor, _ = self._create_data(26, 36, device=self.device)
432
433
434

        for mode in [NEAREST, BILINEAR, BICUBIC]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
435
436
437
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
438
        tensor, _ = self._create_data(26, 36, device=self.device)
439
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
440
441
442
443
444
445
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

446
447
        batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
        self._test_fn_on_batch(
448
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
449
450
        )

451
452
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
453
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
vfdev's avatar
vfdev committed
454

455
456
457
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
458
459
460
        out_tensor = scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
461
462
463
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
464

465
466
467
468
469
470
471
472
473
474
475
476
477
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
478
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
479
            )
480
481
482
483
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
484
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
485
486
487
488
489
490
                )
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
491

492
493
494
495
496
497
498
499
500
501
502
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
503
                    )
504
                )
505

506
507
508
509
510
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
511

512
            out_pil_img = F.affine(
513
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
514
515
516
517
518
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
519
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
520
521
522
523
524
525
526
527
528
529
530
531
532
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
533
                    )
534
                )
535

536
537
538
539
540
541
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
542

543
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
544

545
            for fn in [F.affine, scripted_affine]:
546
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
547

548
549
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
550

551
552
553
554
555
                self.compareTensorToPIL(out_tensor, out_pil_img)

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
556
557
558
559
560
561
562
563
564
565
            (45.5, [5, 6], 1.0, [0.0, 0.0], None),
            (33, (5, -4), 1.0, [0.0, 0.0], [0, 0, 0]),
            (45, [-5, 4], 1.2, [0.0, 0.0], (1, 2, 3)),
            (33, (-4, -8), 2.0, [0.0, 0.0], [255, 255, 255]),
            (85, (10, -10), 0.7, [0.0, 0.0], [1, ]),
            (0, [0, 0], 1.0, [35.0, ], (2.0, )),
            (-25, [0, 0], 1.2, [0.0, 15.0], None),
            (-45, [-10, 0], 0.7, [2.0, 5.0], None),
            (-45, [-10, -10], 1.2, [4.0, 5.0], None),
            (-90, [0, 0], 1.0, [0.0, 0.0], None),
566
        ]
567
        for r in [NEAREST, ]:
568
569
570
            for a, t, s, sh, f in test_configs:
                f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f_pil)
571
572
573
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
574
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=r, fill=f).cpu()
575
576
577
578
579
580
581
582
583
584
585
586

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
587
                            (r, a, t, s, sh, f), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
588
                        )
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
613
614
615
616
617
618
619
620
621
622
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                self._test_fn_on_batch(
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

623
624
625
626
627
628
629
630
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        # assert changed type warning
631
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
632
633
634
635
636
637
638
639
640
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            self.assertEqual(res1, res2)

641
642
643
    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
644
        for r in [NEAREST, ]:
645
646
647
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
                        for f in [None, [0, 0, 0], (1, 2, 3), [255, 255, 255], [1, ], (2.0, )]:
                            f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                            out_pil_img = F.rotate(pil_img, angle=a, interpolation=r, expand=e, center=c, fill=f_pil)
                            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                            for fn in [F.rotate, scripted_rotate]:
                                out_tensor = fn(tensor, angle=a, interpolation=r, expand=e, center=c, fill=f).cpu()

                                if out_tensor.dtype != torch.uint8:
                                    out_tensor = out_tensor.to(torch.uint8)

                                self.assertEqual(
                                    out_tensor.shape,
                                    out_pil_tensor.shape,
                                    msg="{}: {} vs {}".format(
                                        (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                    ))

                                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                                # Tolerance : less than 3% of different pixels
                                self.assertLess(
669
                                    ratio_diff_pixels,
670
671
672
673
674
675
676
                                    0.03,
                                    msg="{}: {}\n{} vs \n{}".format(
                                        (img_size, r, dt, a, e, c, f),
                                        ratio_diff_pixels,
                                        out_tensor[0, :7, :7],
                                        out_pil_tensor[0, :7, :7]
                                    )
677
                                )
vfdev's avatar
vfdev committed
678

679
    def test_rotate(self):
vfdev's avatar
vfdev committed
680
681
682
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

683
684
        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:
685
686
687
688
689
690
691
692

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

693
694
695
696
697
698
699
700
701
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

702
703
704
705
706
707
708
709
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
                self._test_fn_on_batch(
710
                    batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
711
                )
712
713
714
715
716
717
718
719
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        # assert changed type warning
720
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
721
722
723
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))
724

725
    def _test_perspective(self, tensor, pil_img, scripted_transform, test_configs):
726
        dt = tensor.dtype
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
        for f in [None, [0, 0, 0], [1, 2, 3], [255, 255, 255], [1, ], (2.0, )]:
            for r in [NEAREST, ]:
                for spoints, epoints in test_configs:
                    f_pil = int(f[0]) if f is not None and len(f) == 1 else f
                    out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=r,
                                                fill=f_pil)
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                    for fn in [F.perspective, scripted_transform]:
                        out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=r, fill=f).cpu()

                        if out_tensor.dtype != torch.uint8:
                            out_tensor = out_tensor.to(torch.uint8)

                        num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                        ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                        # Tolerance : less than 5% of different pixels
                        self.assertLess(
745
                            ratio_diff_pixels,
746
747
748
749
750
751
752
                            0.05,
                            msg="{}: {}\n{} vs \n{}".format(
                                (f, r, dt, spoints, epoints),
                                ratio_diff_pixels,
                                out_tensor[0, :7, :7],
                                out_pil_tensor[0, :7, :7]
                            )
753
                        )
vfdev's avatar
vfdev committed
754

755
    def test_perspective(self):
756
757
758

        from torchvision.transforms import RandomPerspective

759
        data = [self._create_data(26, 34, device=self.device), self._create_data(26, 26, device=self.device)]
760
        scripted_transform = torch.jit.script(F.perspective)
761

762
        for tensor, pil_img in data:
763
764
765
766
767
768
769
770
771
772
773

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

774
775
776
777
778
779
780
781
782
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

783
                self._test_perspective(tensor, pil_img, scripted_transform, test_configs)
784

785
786
787
                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)
788

789
790
                for spoints, epoints in test_configs:
                    self._test_fn_on_batch(
791
                        batch_tensors, F.perspective, startpoints=spoints, endpoints=epoints, interpolation=NEAREST
792
                    )
793

794
795
796
        # assert changed type warning
        spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
        epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
797
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationMode"):
798
799
800
801
            res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
            res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
    def test_gaussian_blur(self):
        small_image_tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(self.device)

        large_image_tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(self.device)

        scripted_transform = torch.jit.script(F.gaussian_blur)

        # true_cv2_results = {
        #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
        #     "3_3_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
        #     "3_3_0.5": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
        #     "3_5_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
        #     "3_5_0.5": ...
        #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
        #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
        #     "23_23_1.7": ...
        # }
        p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
        true_cv2_results = torch.load(p)

        for tensor in [small_image_tensor, large_image_tensor]:

            for dt in [None, torch.float32, torch.float64, torch.float16]:
                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for ksize in [(3, 3), [3, 5], (23, 23)]:
                    for sigma in [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)]:

                        _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
                        _sigma = sigma[0] if sigma is not None else None
                        shape = tensor.shape
                        gt_key = "{}_{}_{}__{}_{}_{}".format(
                            shape[-2], shape[-1], shape[-3],
                            _ksize[0], _ksize[1], _sigma
                        )
                        if gt_key not in true_cv2_results:
                            continue

                        true_out = torch.tensor(
                            true_cv2_results[gt_key]
                        ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

                        for fn in [F.gaussian_blur, scripted_transform]:
                            out = fn(tensor, kernel_size=ksize, sigma=sigma)
                            self.assertEqual(true_out.shape, out.shape, msg="{}, {}".format(ksize, sigma))
                            self.assertLessEqual(
                                torch.max(true_out.float() - out.float()),
                                1.0,
                                msg="{}, {}".format(ksize, sigma)
                            )

866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
    def test_invert(self):
        self._test_adjust_fn(
            F.invert,
            F_pil.invert,
            F_t.invert,
            [{}],
            tol=1.0,
            agg_method="max"
        )

    def test_posterize(self):
        self._test_adjust_fn(
            F.posterize,
            F_pil.posterize,
            F_t.posterize,
            [{"bits": bits} for bits in range(0, 8)],
            tol=1.0,
            agg_method="max",
            dts=(None,)
        )

    def test_solarize(self):
        self._test_adjust_fn(
            F.solarize,
            F_pil.solarize,
            F_t.solarize,
            [{"threshold": threshold} for threshold in [0, 64, 128, 192, 255]],
            tol=1.0,
            agg_method="max",
            dts=(None,)
        )
        self._test_adjust_fn(
            F.solarize,
            lambda img, threshold: F_pil.solarize(img, 255 * threshold),
            F_t.solarize,
            [{"threshold": threshold} for threshold in [0.0, 0.25, 0.5, 0.75, 1.0]],
            tol=1.0,
            agg_method="max",
            dts=(torch.float32, torch.float64)
        )

    def test_adjust_sharpness(self):
        self._test_adjust_fn(
            F.adjust_sharpness,
            F_pil.adjust_sharpness,
            F_t.adjust_sharpness,
            [{"sharpness_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]]
        )

    def test_autocontrast(self):
        self._test_adjust_fn(
            F.autocontrast,
            F_pil.autocontrast,
            F_t.autocontrast,
            [{}],
            tol=1.0,
            agg_method="max"
        )

    def test_equalize(self):
        torch.set_deterministic(False)
        self._test_adjust_fn(
            F.equalize,
            F_pil.equalize,
            F_t.equalize,
            [{}],
            tol=1.0,
            agg_method="max",
            dts=(None,)
        )

937

938
939
940
941
942
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
943

944
945
946

if __name__ == '__main__':
    unittest.main()