test_functional_tensor.py 27.5 KB
Newer Older
1
import unittest
2
import colorsys
3
import math
4

vfdev's avatar
vfdev committed
5
import numpy as np
6
from PIL.Image import NEAREST, BILINEAR, BICUBIC
vfdev's avatar
vfdev committed
7
8
9
10
11
12

import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
13

14
from common_utils import TransformsTester
15

16

17
class Tester(TransformsTester):
vfdev's avatar
vfdev committed
18

19
20
21
22
    def setUp(self):
        self.device = "cpu"

    def test_vflip(self):
23
        script_vflip = torch.jit.script(F_t.vflip)
24
        img_tensor = torch.randn(3, 16, 16, device=self.device)
25
        img_tensor_clone = img_tensor.clone()
26
27
28
29
        vflipped_img = F_t.vflip(img_tensor)
        vflipped_img_again = F_t.vflip(vflipped_img)
        self.assertEqual(vflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, vflipped_img_again))
30
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
31
32
33
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
        self.assertTrue(torch.equal(vflipped_img, vflipped_img_script))
34

35
    def test_hflip(self):
36
        script_hflip = torch.jit.script(F_t.hflip)
37
        img_tensor = torch.randn(3, 16, 16, device=self.device)
38
        img_tensor_clone = img_tensor.clone()
39
40
41
42
        hflipped_img = F_t.hflip(img_tensor)
        hflipped_img_again = F_t.hflip(hflipped_img)
        self.assertEqual(hflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, hflipped_img_again))
43
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
44
45
46
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
        self.assertTrue(torch.equal(hflipped_img, hflipped_img_script))
47

48
    def test_crop(self):
49
        script_crop = torch.jit.script(F.crop)
50

51
        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
68

69
    def test_hsv2rgb(self):
70
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
71
        shape = (3, 100, 150)
72
73
74
75
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
76

77
78
79
80
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
81
82
83
84

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
85
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
86
87
88
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

89
90
91
            s_rgb_img = scripted_fn(hsv_img)
            self.assertTrue(rgb_img.allclose(s_rgb_img))

92
    def test_rgb2hsv(self):
93
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
94
        shape = (3, 150, 100)
95
96
97
98
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
99

100
101
102
103
            r, g, b, = rgb_img.unbind(0)
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
104
105
106
107
108

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

109
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
110

111
112
113
114
115
116
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
117
118
            self.assertLess(max_diff, 1e-5)

119
120
121
            s_hsv_img = scripted_fn(rgb_img)
            self.assertTrue(hsv_img.allclose(s_hsv_img))

122
    def test_rgb_to_grayscale(self):
123
124
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

125
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
126
127
128
129
130
131
132
133
134
135
136
137
138

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

            if num_output_channels == 1:
                print(gray_tensor.shape)

            self.approxEqualTensorToPIL(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
            self.assertTrue(s_gray_tensor.equal(gray_tensor))

139
    def test_center_crop(self):
140
141
        script_center_crop = torch.jit.script(F.center_crop)

142
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
143
144
145
146
147
148
149
150

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
151

152
    def test_five_crop(self):
153
154
        script_five_crop = torch.jit.script(F.five_crop)

155
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
156
157
158
159
160
161
162
163
164
165

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
166

167
    def test_ten_crop(self):
168
169
        script_ten_crop = torch.jit.script(F.ten_crop)

170
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
171
172
173
174
175
176
177
178
179
180

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
181

182
    def test_pad(self):
183
        script_fn = torch.jit.script(F_t.pad)
184
        tensor, pil_img = self._create_data(7, 8, device=self.device)
185

186
187
188
189
190
191
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

192
193
194
195
196
197
198
199
200
201
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
202
                    {"padding_mode": "symmetric"},
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
221

222
223
224
        with self.assertRaises(ValueError, msg="Padding can not be negative for symmetric padding_mode"):
            F_t.pad(tensor, (-2, -3), padding_mode="symmetric")

225
    def _test_adjust_fn(self, fn, fn_pil, fn_t, configs, tol=2.0 + 1e-10, agg_method="max"):
vfdev's avatar
vfdev committed
226
227
228
229
230
        script_fn = torch.jit.script(fn)
        torch.manual_seed(15)
        tensor, pil_img = self._create_data(26, 34, device=self.device)

        for dt in [None, torch.float32, torch.float64]:
231
232
233
234

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)

vfdev's avatar
vfdev committed
235
236
237
238
239
240
241
            for config in configs:
                adjusted_tensor = fn_t(tensor, **config)
                adjusted_pil = fn_pil(pil_img, **config)
                scripted_result = script_fn(tensor, **config)
                msg = "{}, {}".format(dt, config)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype, msg=msg)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1], msg=msg)
242
243

                rbg_tensor = adjusted_tensor
vfdev's avatar
vfdev committed
244

245
246
247
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

vfdev's avatar
vfdev committed
248
249
                # Check that max difference does not exceed 2 in [0, 255] range
                # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
250
251
252
253
254
255
                self.approxEqualTensorToPIL(rbg_tensor.float(), adjusted_pil, tol=tol, msg=msg, agg_method=agg_method)

                atol = 1e-6
                if adjusted_tensor.dtype == torch.uint8 and "cuda" in torch.device(self.device).type:
                    atol = 1.0
                self.assertTrue(adjusted_tensor.allclose(scripted_result, atol=atol), msg=msg)
vfdev's avatar
vfdev committed
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

    def test_adjust_brightness(self):
        self._test_adjust_fn(
            F.adjust_brightness,
            F_pil.adjust_brightness,
            F_t.adjust_brightness,
            [{"brightness_factor": f} for f in [0.1, 0.5, 1.0, 1.34, 2.5]]
        )

    def test_adjust_contrast(self):
        self._test_adjust_fn(
            F.adjust_contrast,
            F_pil.adjust_contrast,
            F_t.adjust_contrast,
            [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]]
        )

    def test_adjust_saturation(self):
        self._test_adjust_fn(
            F.adjust_saturation,
            F_pil.adjust_saturation,
            F_t.adjust_saturation,
            [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]]
        )
280

281
282
283
284
285
286
287
288
289
290
    def test_adjust_hue(self):
        self._test_adjust_fn(
            F.adjust_hue,
            F_pil.adjust_hue,
            F_t.adjust_hue,
            [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]],
            tol=0.1,
            agg_method="mean"
        )

vfdev's avatar
vfdev committed
291
292
293
294
295
296
297
    def test_adjust_gamma(self):
        self._test_adjust_fn(
            F.adjust_gamma,
            F_pil.adjust_gamma,
            F_t.adjust_gamma,
            [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])]
        )
298

299
    def test_resize(self):
vfdev's avatar
vfdev committed
300
        script_fn = torch.jit.script(F_t.resize)
301
        tensor, pil_img = self._create_data(26, 36, device=self.device)
vfdev's avatar
vfdev committed
302

303
304
305
306
307
308
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

vfdev's avatar
vfdev committed
309
310
311
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
312
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
vfdev's avatar
vfdev committed
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                    resized_tensor = F_t.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F_pil.resize(pil_img, size=size, interpolation=interpolation)

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

                    if interpolation != NEAREST:
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
339
340
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
341

342
    def test_resized_crop(self):
343
344
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
345
        tensor, _ = self._create_data(26, 36, device=self.device)
346
347
348
349
350
        for i in [0, 2, 3]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=i)
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
351
        tensor, _ = self._create_data(26, 36, device=self.device)
352
353
354
355
356
357
358
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=0)
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

359
360
361
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
vfdev's avatar
vfdev committed
362

363
364
365
366
367
368
369
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
        out_tensor = scripted_affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
370

371
372
373
374
375
376
377
378
379
380
381
382
383
384
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
385
            )
386
387
388
389
390
391
392
393
394
395
396
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                )
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
397

398
399
400
401
402
403
404
405
406
407
408
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
409
                    )
410
                )
411

412
413
414
415
416
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
            out_pil_img = F.affine(
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
439
                    )
440
                )
441

442
443
444
445
446
447
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
448

449
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
450

451
452
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
453

454
455
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
456

457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
                self.compareTensorToPIL(out_tensor, out_pil_img)

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
            (45, [5, 6], 1.0, [0.0, 0.0]),
            (33, (5, -4), 1.0, [0.0, 0.0]),
            (45, [-5, 4], 1.2, [0.0, 0.0]),
            (33, (-4, -8), 2.0, [0.0, 0.0]),
            (85, (10, -10), 0.7, [0.0, 0.0]),
            (0, [0, 0], 1.0, [35.0, ]),
            (-25, [0, 0], 1.2, [0.0, 15.0]),
            (-45, [-10, 0], 0.7, [2.0, 5.0]),
            (-45, [-10, -10], 1.2, [4.0, 5.0]),
            (-90, [0, 0], 1.0, [0.0, 0.0]),
        ]
        for r in [0, ]:
            for a, t, s, sh in test_configs:
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, resample=r)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, resample=r).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
493
                        )
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
                # self._test_affine_all_ops(tensor, pil_img, scripted_affine)
vfdev's avatar
vfdev committed
519

520
    def test_rotate(self):
vfdev's avatar
vfdev committed
521
522
523
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

524
525
        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:
526
527
528
529
530
531
532
533

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for r in [0, ]:
                    for a in range(-180, 180, 17):
                        for e in [True, False]:
                            for c in centers:

                                out_pil_img = F.rotate(pil_img, angle=a, resample=r, expand=e, center=c)
                                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                                for fn in [F.rotate, scripted_rotate]:
                                    out_tensor = fn(tensor, angle=a, resample=r, expand=e, center=c).cpu()

                                    if out_tensor.dtype != torch.uint8:
                                        out_tensor = out_tensor.to(torch.uint8)

                                    self.assertEqual(
                                        out_tensor.shape,
                                        out_pil_tensor.shape,
                                        msg="{}: {} vs {}".format(
                                            (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                        )
562
                                    )
563
564
565
566
                                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                                    # Tolerance : less than 3% of different pixels
                                    self.assertLess(
567
                                        ratio_diff_pixels,
568
569
570
571
572
573
574
                                        0.03,
                                        msg="{}: {}\n{} vs \n{}".format(
                                            (img_size, r, dt, a, e, c),
                                            ratio_diff_pixels,
                                            out_tensor[0, :7, :7],
                                            out_pil_tensor[0, :7, :7]
                                        )
575
                                    )
vfdev's avatar
vfdev committed
576

577
    def test_perspective(self):
578
579
580

        from torchvision.transforms import RandomPerspective

581
        data = [self._create_data(26, 34, device=self.device), self._create_data(26, 26, device=self.device)]
582
        scripted_tranform = torch.jit.script(F.perspective)
583

584
        for tensor, pil_img in data:
585
586
587
588
589
590
591
592
593
594
595

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for r in [0, ]:
                    for spoints, epoints in test_configs:
                        out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=r)
                        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                        for fn in [F.perspective, scripted_tranform]:
                            out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=r).cpu()

                            if out_tensor.dtype != torch.uint8:
                                out_tensor = out_tensor.to(torch.uint8)

                            num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                            ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                            # Tolerance : less than 5% of different pixels
                            self.assertLess(
620
                                ratio_diff_pixels,
621
622
623
624
625
626
627
                                0.05,
                                msg="{}: {}\n{} vs \n{}".format(
                                    (r, dt, spoints, epoints),
                                    ratio_diff_pixels,
                                    out_tensor[0, :7, :7],
                                    out_pil_tensor[0, :7, :7]
                                )
628
629
                            )

630

631
632
633
634
635
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
636

637
638
639

if __name__ == '__main__':
    unittest.main()