"examples/llm_engine_example.py" did not exist on "eedb46bf03818796536358f3767ee2b6a619b4f5"
test_functional_tensor.py 21.5 KB
Newer Older
1
import unittest
ekka's avatar
ekka committed
2
import random
3
import colorsys
4
import math
5
6

from PIL import Image
vfdev's avatar
vfdev committed
7
8
9
10
11
12
13
14
15
from PIL.Image import NEAREST, BILINEAR, BICUBIC

import numpy as np

import torch
import torchvision.transforms as transforms
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
16
17
18
19


class Tester(unittest.TestCase):

20
21
22
23
24
25
26
27
28
    def _create_data(self, height=3, width=3, channels=3):
        tensor = torch.randint(0, 255, (channels, height, width), dtype=torch.uint8)
        pil_img = Image.fromarray(tensor.permute(1, 2, 0).contiguous().numpy())
        return tensor, pil_img

    def compareTensorToPIL(self, tensor, pil_image, msg=None):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1)))
        self.assertTrue(tensor.equal(pil_tensor), msg)

vfdev's avatar
vfdev committed
29
30
31
32
33
34
35
36
    def approxEqualTensorToPIL(self, tensor, pil_image, tol=1e-5, msg=None):
        pil_tensor = torch.as_tensor(np.array(pil_image).transpose((2, 0, 1))).to(tensor)
        mae = torch.abs(tensor - pil_tensor).mean().item()
        self.assertTrue(
            mae < tol,
            msg="{}: mae={}, tol={}: \n{}\nvs\n{}".format(msg, mae, tol, tensor[0, :10, :10], pil_tensor[0, :10, :10])
        )

37
    def test_vflip(self):
38
        script_vflip = torch.jit.script(F_t.vflip)
39
        img_tensor = torch.randn(3, 16, 16)
40
        img_tensor_clone = img_tensor.clone()
41
42
43
44
        vflipped_img = F_t.vflip(img_tensor)
        vflipped_img_again = F_t.vflip(vflipped_img)
        self.assertEqual(vflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, vflipped_img_again))
45
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
46
47
48
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
        self.assertTrue(torch.equal(vflipped_img, vflipped_img_script))
49
50

    def test_hflip(self):
51
        script_hflip = torch.jit.script(F_t.hflip)
52
        img_tensor = torch.randn(3, 16, 16)
53
        img_tensor_clone = img_tensor.clone()
54
55
56
57
        hflipped_img = F_t.hflip(img_tensor)
        hflipped_img_again = F_t.hflip(hflipped_img)
        self.assertEqual(hflipped_img.shape, img_tensor.shape)
        self.assertTrue(torch.equal(img_tensor, hflipped_img_again))
58
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
59
60
61
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
        self.assertTrue(torch.equal(hflipped_img, hflipped_img_script))
62

ekka's avatar
ekka committed
63
    def test_crop(self):
64
        script_crop = torch.jit.script(F_t.crop)
ekka's avatar
ekka committed
65
        img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
66
        img_tensor_clone = img_tensor.clone()
ekka's avatar
ekka committed
67
68
69
70
71
72
73
74
        top = random.randint(0, 15)
        left = random.randint(0, 15)
        height = random.randint(1, 16 - top)
        width = random.randint(1, 16 - left)
        img_cropped = F_t.crop(img_tensor, top, left, height, width)
        img_PIL = transforms.ToPILImage()(img_tensor)
        img_PIL_cropped = F.crop(img_PIL, top, left, height, width)
        img_cropped_GT = transforms.ToTensor()(img_PIL_cropped)
75
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
ekka's avatar
ekka committed
76
77
        self.assertTrue(torch.equal(img_cropped, (img_cropped_GT * 255).to(torch.uint8)),
                        "functional_tensor crop not working")
78
79
80
        # scriptable function test
        cropped_img_script = script_crop(img_tensor, top, left, height, width)
        self.assertTrue(torch.equal(img_cropped, cropped_img_script))
ekka's avatar
ekka committed
81

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    def test_hsv2rgb(self):
        shape = (3, 100, 150)
        for _ in range(20):
            img = torch.rand(*shape, dtype=torch.float)
            ft_img = F_t._hsv2rgb(img).permute(1, 2, 0).flatten(0, 1)

            h, s, v, = img.unbind(0)
            h = h.flatten().numpy()
            s = s.flatten().numpy()
            v = v.flatten().numpy()

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))

            colorsys_img = torch.tensor(rgb, dtype=torch.float32)
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

    def test_rgb2hsv(self):
        shape = (3, 150, 100)
        for _ in range(20):
            img = torch.rand(*shape, dtype=torch.float)
            ft_hsv_img = F_t._rgb2hsv(img).permute(1, 2, 0).flatten(0, 1)

            r, g, b, = img.unbind(0)
            r = r.flatten().numpy()
            g = g.flatten().numpy()
            b = b.flatten().numpy()

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

            colorsys_img = torch.tensor(hsv, dtype=torch.float32)

118
119
120
121
122
123
124
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)

125
126
            self.assertLess(max_diff, 1e-5)

127
    def test_adjustments(self):
128
129
130
131
132
133
134
        script_adjust_brightness = torch.jit.script(F_t.adjust_brightness)
        script_adjust_contrast = torch.jit.script(F_t.adjust_contrast)
        script_adjust_saturation = torch.jit.script(F_t.adjust_saturation)

        fns = ((F.adjust_brightness, F_t.adjust_brightness, script_adjust_brightness),
               (F.adjust_contrast, F_t.adjust_contrast, script_adjust_contrast),
               (F.adjust_saturation, F_t.adjust_saturation, script_adjust_saturation))
135
136
137
138
139
140
141
142
143
144
145
146

        for _ in range(20):
            channels = 3
            dims = torch.randint(1, 50, (2,))
            shape = (channels, dims[0], dims[1])

            if torch.randint(0, 2, (1,)) == 0:
                img = torch.rand(*shape, dtype=torch.float)
            else:
                img = torch.randint(0, 256, shape, dtype=torch.uint8)

            factor = 3 * torch.rand(1)
147
            img_clone = img.clone()
148
            for f, ft, sft in fns:
149
150

                ft_img = ft(img, factor)
151
                sft_img = sft(img, factor)
152
153
                if not img.dtype.is_floating_point:
                    ft_img = ft_img.to(torch.float) / 255
154
                    sft_img = sft_img.to(torch.float) / 255
155
156
157
158
159
160
161
162

                img_pil = transforms.ToPILImage()(img)
                f_img_pil = f(img_pil, factor)
                f_img = transforms.ToTensor()(f_img_pil)

                # F uses uint8 and F_t uses float, so there is a small
                # difference in values caused by (at most 5) truncations.
                max_diff = (ft_img - f_img).abs().max()
163
                max_diff_scripted = (sft_img - f_img).abs().max()
164
                self.assertLess(max_diff, 5 / 255 + 1e-5)
165
                self.assertLess(max_diff_scripted, 5 / 255 + 1e-5)
166
                self.assertTrue(torch.equal(img, img_clone))
167

168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
            # test for class interface
            f = transforms.ColorJitter(brightness=factor.item())
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

            f = transforms.ColorJitter(contrast=factor.item())
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

            f = transforms.ColorJitter(saturation=factor.item())
            scripted_fn = torch.jit.script(f)
            scripted_fn(img)

        f = transforms.ColorJitter(brightness=1)
        scripted_fn = torch.jit.script(f)
        scripted_fn(img)

185
    def test_rgb_to_grayscale(self):
186
        script_rgb_to_grayscale = torch.jit.script(F_t.rgb_to_grayscale)
187
        img_tensor = torch.randint(0, 255, (3, 16, 16), dtype=torch.uint8)
188
        img_tensor_clone = img_tensor.clone()
189
190
191
192
        grayscale_tensor = F_t.rgb_to_grayscale(img_tensor).to(int)
        grayscale_pil_img = torch.tensor(np.array(F.to_grayscale(F.to_pil_image(img_tensor)))).to(int)
        max_diff = (grayscale_tensor - grayscale_pil_img).abs().max()
        self.assertLess(max_diff, 1.0001)
193
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
194
195
196
        # scriptable function test
        grayscale_script = script_rgb_to_grayscale(img_tensor).to(int)
        self.assertTrue(torch.equal(grayscale_script, grayscale_tensor))
197

198
    def test_center_crop(self):
199
        script_center_crop = torch.jit.script(F_t.center_crop)
200
        img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
201
        img_tensor_clone = img_tensor.clone()
202
203
204
205
        cropped_tensor = F_t.center_crop(img_tensor, [10, 10])
        cropped_pil_image = F.center_crop(transforms.ToPILImage()(img_tensor), [10, 10])
        cropped_pil_tensor = (transforms.ToTensor()(cropped_pil_image) * 255).to(torch.uint8)
        self.assertTrue(torch.equal(cropped_tensor, cropped_pil_tensor))
206
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
207
208
209
        # scriptable function test
        cropped_script = script_center_crop(img_tensor, [10, 10])
        self.assertTrue(torch.equal(cropped_script, cropped_tensor))
210
211

    def test_five_crop(self):
212
        script_five_crop = torch.jit.script(F_t.five_crop)
213
        img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
214
        img_tensor_clone = img_tensor.clone()
215
216
217
218
219
220
221
222
223
224
225
226
        cropped_tensor = F_t.five_crop(img_tensor, [10, 10])
        cropped_pil_image = F.five_crop(transforms.ToPILImage()(img_tensor), [10, 10])
        self.assertTrue(torch.equal(cropped_tensor[0],
                                    (transforms.ToTensor()(cropped_pil_image[0]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[1],
                                    (transforms.ToTensor()(cropped_pil_image[2]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[2],
                                    (transforms.ToTensor()(cropped_pil_image[1]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[3],
                                    (transforms.ToTensor()(cropped_pil_image[3]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[4],
                                    (transforms.ToTensor()(cropped_pil_image[4]) * 255).to(torch.uint8)))
227
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
228
229
230
231
        # scriptable function test
        cropped_script = script_five_crop(img_tensor, [10, 10])
        for cropped_script_img, cropped_tensor_img in zip(cropped_script, cropped_tensor):
            self.assertTrue(torch.equal(cropped_script_img, cropped_tensor_img))
232
233

    def test_ten_crop(self):
234
        script_ten_crop = torch.jit.script(F_t.ten_crop)
235
        img_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8)
236
        img_tensor_clone = img_tensor.clone()
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
        cropped_tensor = F_t.ten_crop(img_tensor, [10, 10])
        cropped_pil_image = F.ten_crop(transforms.ToPILImage()(img_tensor), [10, 10])
        self.assertTrue(torch.equal(cropped_tensor[0],
                                    (transforms.ToTensor()(cropped_pil_image[0]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[1],
                                    (transforms.ToTensor()(cropped_pil_image[2]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[2],
                                    (transforms.ToTensor()(cropped_pil_image[1]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[3],
                                    (transforms.ToTensor()(cropped_pil_image[3]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[4],
                                    (transforms.ToTensor()(cropped_pil_image[4]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[5],
                                    (transforms.ToTensor()(cropped_pil_image[5]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[6],
                                    (transforms.ToTensor()(cropped_pil_image[7]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[7],
                                    (transforms.ToTensor()(cropped_pil_image[6]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[8],
                                    (transforms.ToTensor()(cropped_pil_image[8]) * 255).to(torch.uint8)))
        self.assertTrue(torch.equal(cropped_tensor[9],
                                    (transforms.ToTensor()(cropped_pil_image[9]) * 255).to(torch.uint8)))
259
        self.assertTrue(torch.equal(img_tensor, img_tensor_clone))
260
261
262
263
        # scriptable function test
        cropped_script = script_ten_crop(img_tensor, [10, 10])
        for cropped_script_img, cropped_tensor_img in zip(cropped_script, cropped_tensor):
            self.assertTrue(torch.equal(cropped_script_img, cropped_tensor_img))
264

265
266
267
    def test_pad(self):
        script_fn = torch.jit.script(F_t.pad)
        tensor, pil_img = self._create_data(7, 8)
268
269
270
271
272
273
274
275
276
277
278
279

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
280
                    {"padding_mode": "symmetric"},
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
299

300
301
302
        with self.assertRaises(ValueError, msg="Padding can not be negative for symmetric padding_mode"):
            F_t.pad(tensor, (-2, -3), padding_mode="symmetric")

vfdev's avatar
vfdev committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
    def test_resize(self):
        script_fn = torch.jit.script(F_t.resize)
        tensor, pil_img = self._create_data(26, 36)

        for dt in [None, torch.float32, torch.float64]:
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
            for size in [32, [32, ], [32, 32], (32, 32), ]:
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
                    resized_tensor = F_t.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F_pil.resize(pil_img, size=size, interpolation=interpolation)

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

                    if interpolation != NEAREST:
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
338
339
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
340

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    def test_resized_crop(self):
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
        tensor, _ = self._create_data(26, 36)
        for i in [0, 2, 3]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=i)
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
        tensor, _ = self._create_data(26, 36)
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=0)
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

vfdev's avatar
vfdev committed
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    def test_affine(self):
        # Tests on square image
        tensor, pil_img = self._create_data(26, 26)

        scripted_affine = torch.jit.script(F.affine)
        # 1) identity map
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
        out_tensor = scripted_affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )

        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
                else:
                    true_tensor = out_tensor

                out_pil_img = F.affine(pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=0)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                num_diff_pixels = (true_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / true_tensor.shape[-1] / true_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, true_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                    )
                )
        # 3) Test translation
        test_configs = [
            [10, 12], (12, 13)
        ]
        for t in test_configs:
            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
                out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], resample=0)
                self.compareTensorToPIL(out_tensor, out_pil_img)

        # 3) Test rotation + translation + scale + share
        test_configs = [
            (45, [5, 6], 1.0, [0.0, 0.0]),
            (33, (5, -4), 1.0, [0.0, 0.0]),
            (45, [5, 4], 1.2, [0.0, 0.0]),
            (33, (4, 8), 2.0, [0.0, 0.0]),
            (85, (10, -10), 0.7, [0.0, 0.0]),
            (0, [0, 0], 1.0, [35.0, ]),
            (25, [0, 0], 1.2, [0.0, 15.0]),
            (45, [10, 0], 0.7, [2.0, 5.0]),
            (45, [10, -10], 1.2, [4.0, 5.0]),
        ]
        for r in [0, ]:
            for a, t, s, sh in test_configs:
                for fn in [F.affine, scripted_affine]:
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, resample=r)
                    out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, resample=r)
                    out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% of different pixels
                    self.assertLess(
                        ratio_diff_pixels,
                        0.05,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
                        )
                    )

447
448
449

if __name__ == '__main__':
    unittest.main()