test_functional_tensor.py 38.5 KB
Newer Older
1
import os
2
import unittest
3
import colorsys
4
import math
5

vfdev's avatar
vfdev committed
6
7
8
9
10
11
import numpy as np

import torch
import torchvision.transforms.functional_tensor as F_t
import torchvision.transforms.functional_pil as F_pil
import torchvision.transforms.functional as F
12
from torchvision.transforms import InterpolationModes
13

14
from common_utils import TransformsTester
15

16

17
18
19
NEAREST, BILINEAR, BICUBIC = InterpolationModes.NEAREST, InterpolationModes.BILINEAR, InterpolationModes.BICUBIC


20
class Tester(TransformsTester):
vfdev's avatar
vfdev committed
21

22
23
24
    def setUp(self):
        self.device = "cpu"

25
26
27
28
29
30
31
32
33
34
35
36
    def _test_fn_on_batch(self, batch_tensors, fn, **fn_kwargs):
        transformed_batch = fn(batch_tensors, **fn_kwargs)
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            transformed_img = fn(img_tensor, **fn_kwargs)
            self.assertTrue(transformed_img.equal(transformed_batch[i, ...]))

        scripted_fn = torch.jit.script(fn)
        # scriptable function test
        s_transformed_batch = scripted_fn(batch_tensors, **fn_kwargs)
        self.assertTrue(transformed_batch.allclose(s_transformed_batch))

37
    def test_vflip(self):
38
39
40
41
42
43
44
        script_vflip = torch.jit.script(F.vflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        vflipped_img = F.vflip(img_tensor)
        vflipped_pil_img = F.vflip(pil_img)
        self.compareTensorToPIL(vflipped_img, vflipped_pil_img)

45
46
        # scriptable function test
        vflipped_img_script = script_vflip(img_tensor)
47
48
49
50
        self.assertTrue(vflipped_img.equal(vflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.vflip)
51

52
    def test_hflip(self):
53
54
55
56
57
58
59
        script_hflip = torch.jit.script(F.hflip)

        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
        hflipped_img = F.hflip(img_tensor)
        hflipped_pil_img = F.hflip(pil_img)
        self.compareTensorToPIL(hflipped_img, hflipped_pil_img)

60
61
        # scriptable function test
        hflipped_img_script = script_hflip(img_tensor)
62
63
64
65
        self.assertTrue(hflipped_img.equal(hflipped_img_script))

        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.hflip)
66

67
    def test_crop(self):
68
        script_crop = torch.jit.script(F.crop)
69

70
        img_tensor, pil_img = self._create_data(16, 18, device=self.device)
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

        test_configs = [
            (1, 2, 4, 5),   # crop inside top-left corner
            (2, 12, 3, 4),  # crop inside top-right corner
            (8, 3, 5, 6),   # crop inside bottom-left corner
            (8, 11, 4, 3),  # crop inside bottom-right corner
        ]

        for top, left, height, width in test_configs:
            pil_img_cropped = F.crop(pil_img, top, left, height, width)

            img_tensor_cropped = F.crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)

            img_tensor_cropped = script_crop(img_tensor, top, left, height, width)
            self.compareTensorToPIL(img_tensor_cropped, pil_img_cropped)
ekka's avatar
ekka committed
87

88
89
90
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.crop, top=top, left=left, height=height, width=width)

91
    def test_hsv2rgb(self):
92
        scripted_fn = torch.jit.script(F_t._hsv2rgb)
93
        shape = (3, 100, 150)
94
95
96
97
        for _ in range(10):
            hsv_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            rgb_img = F_t._hsv2rgb(hsv_img)
            ft_img = rgb_img.permute(1, 2, 0).flatten(0, 1)
98

99
100
101
102
            h, s, v, = hsv_img.unbind(0)
            h = h.flatten().cpu().numpy()
            s = s.flatten().cpu().numpy()
            v = v.flatten().cpu().numpy()
103
104
105
106

            rgb = []
            for h1, s1, v1 in zip(h, s, v):
                rgb.append(colorsys.hsv_to_rgb(h1, s1, v1))
107
            colorsys_img = torch.tensor(rgb, dtype=torch.float32, device=self.device)
108
109
110
            max_diff = (ft_img - colorsys_img).abs().max()
            self.assertLess(max_diff, 1e-5)

111
112
113
            s_rgb_img = scripted_fn(hsv_img)
            self.assertTrue(rgb_img.allclose(s_rgb_img))

114
115
116
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._hsv2rgb)

117
    def test_rgb2hsv(self):
118
        scripted_fn = torch.jit.script(F_t._rgb2hsv)
119
        shape = (3, 150, 100)
120
121
122
123
        for _ in range(10):
            rgb_img = torch.rand(*shape, dtype=torch.float, device=self.device)
            hsv_img = F_t._rgb2hsv(rgb_img)
            ft_hsv_img = hsv_img.permute(1, 2, 0).flatten(0, 1)
124

125
            r, g, b, = rgb_img.unbind(dim=-3)
126
127
128
            r = r.flatten().cpu().numpy()
            g = g.flatten().cpu().numpy()
            b = b.flatten().cpu().numpy()
129
130
131
132
133

            hsv = []
            for r1, g1, b1 in zip(r, g, b):
                hsv.append(colorsys.rgb_to_hsv(r1, g1, b1))

134
            colorsys_img = torch.tensor(hsv, dtype=torch.float32, device=self.device)
135

136
137
138
139
140
141
            ft_hsv_img_h, ft_hsv_img_sv = torch.split(ft_hsv_img, [1, 2], dim=1)
            colorsys_img_h, colorsys_img_sv = torch.split(colorsys_img, [1, 2], dim=1)

            max_diff_h = ((colorsys_img_h * 2 * math.pi).sin() - (ft_hsv_img_h * 2 * math.pi).sin()).abs().max()
            max_diff_sv = (colorsys_img_sv - ft_hsv_img_sv).abs().max()
            max_diff = max(max_diff_h, max_diff_sv)
142
143
            self.assertLess(max_diff, 1e-5)

144
145
146
            s_hsv_img = scripted_fn(rgb_img)
            self.assertTrue(hsv_img.allclose(s_hsv_img))

147
148
149
        batch_tensors = self._create_data_batch(120, 100, num_samples=4, device=self.device).float()
        self._test_fn_on_batch(batch_tensors, F_t._rgb2hsv)

150
    def test_rgb_to_grayscale(self):
151
152
        script_rgb_to_grayscale = torch.jit.script(F.rgb_to_grayscale)

153
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
154
155
156
157
158
159
160
161
162
163

        for num_output_channels in (3, 1):
            gray_pil_image = F.rgb_to_grayscale(pil_img, num_output_channels=num_output_channels)
            gray_tensor = F.rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)

            self.approxEqualTensorToPIL(gray_tensor.float(), gray_pil_image, tol=1.0 + 1e-10, agg_method="max")

            s_gray_tensor = script_rgb_to_grayscale(img_tensor, num_output_channels=num_output_channels)
            self.assertTrue(s_gray_tensor.equal(gray_tensor))

164
165
166
            batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
            self._test_fn_on_batch(batch_tensors, F.rgb_to_grayscale, num_output_channels=num_output_channels)

167
    def test_center_crop(self):
168
169
        script_center_crop = torch.jit.script(F.center_crop)

170
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
171
172
173
174
175
176
177
178

        cropped_pil_image = F.center_crop(pil_img, [10, 11])

        cropped_tensor = F.center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)

        cropped_tensor = script_center_crop(img_tensor, [10, 11])
        self.compareTensorToPIL(cropped_tensor, cropped_pil_image)
179

180
181
182
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        self._test_fn_on_batch(batch_tensors, F.center_crop, output_size=[10, 11])

183
    def test_five_crop(self):
184
185
        script_five_crop = torch.jit.script(F.five_crop)

186
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
187
188
189
190
191
192
193
194
195
196

        cropped_pil_images = F.five_crop(pil_img, [10, 11])

        cropped_tensors = F.five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_five_crop(img_tensor, [10, 11])
        for i in range(5):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
197

198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.five_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.five_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_five_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

215
    def test_ten_crop(self):
216
217
        script_ten_crop = torch.jit.script(F.ten_crop)

218
        img_tensor, pil_img = self._create_data(32, 34, device=self.device)
219
220
221
222
223
224
225
226
227
228

        cropped_pil_images = F.ten_crop(pil_img, [10, 11])

        cropped_tensors = F.ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])

        cropped_tensors = script_ten_crop(img_tensor, [10, 11])
        for i in range(10):
            self.compareTensorToPIL(cropped_tensors[i], cropped_pil_images[i])
229

230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
        tuple_transformed_batches = F.ten_crop(batch_tensors, [10, 11])
        for i in range(len(batch_tensors)):
            img_tensor = batch_tensors[i, ...]
            tuple_transformed_imgs = F.ten_crop(img_tensor, [10, 11])
            self.assertEqual(len(tuple_transformed_imgs), len(tuple_transformed_batches))

            for j in range(len(tuple_transformed_imgs)):
                true_transformed_img = tuple_transformed_imgs[j]
                transformed_img = tuple_transformed_batches[j][i, ...]
                self.assertTrue(true_transformed_img.equal(transformed_img))

        # scriptable function test
        s_tuple_transformed_batches = script_ten_crop(batch_tensors, [10, 11])
        for transformed_batch, s_transformed_batch in zip(tuple_transformed_batches, s_tuple_transformed_batches):
            self.assertTrue(transformed_batch.equal(s_transformed_batch))

247
    def test_pad(self):
248
        script_fn = torch.jit.script(F.pad)
249
        tensor, pil_img = self._create_data(7, 8, device=self.device)
250
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
251

252
253
254
255
256
257
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

258
259
260
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
261
262
                batch_tensors = batch_tensors.to(dt)

263
264
265
266
267
268
269
            for pad in [2, [3, ], [0, 3], (3, 3), [4, 2, 4, 3]]:
                configs = [
                    {"padding_mode": "constant", "fill": 0},
                    {"padding_mode": "constant", "fill": 10},
                    {"padding_mode": "constant", "fill": 20},
                    {"padding_mode": "edge"},
                    {"padding_mode": "reflect"},
270
                    {"padding_mode": "symmetric"},
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
                ]
                for kwargs in configs:
                    pad_tensor = F_t.pad(tensor, pad, **kwargs)
                    pad_pil_img = F_pil.pad(pil_img, pad, **kwargs)

                    pad_tensor_8b = pad_tensor
                    # we need to cast to uint8 to compare with PIL image
                    if pad_tensor_8b.dtype != torch.uint8:
                        pad_tensor_8b = pad_tensor_8b.to(torch.uint8)

                    self.compareTensorToPIL(pad_tensor_8b, pad_pil_img, msg="{}, {}".format(pad, kwargs))

                    if isinstance(pad, int):
                        script_pad = [pad, ]
                    else:
                        script_pad = pad
                    pad_tensor_script = script_fn(tensor, script_pad, **kwargs)
                    self.assertTrue(pad_tensor.equal(pad_tensor_script), msg="{}, {}".format(pad, kwargs))
289

290
291
                    self._test_fn_on_batch(batch_tensors, F.pad, padding=script_pad, **kwargs)

292
    def _test_adjust_fn(self, fn, fn_pil, fn_t, configs, tol=2.0 + 1e-10, agg_method="max"):
vfdev's avatar
vfdev committed
293
294
295
        script_fn = torch.jit.script(fn)
        torch.manual_seed(15)
        tensor, pil_img = self._create_data(26, 34, device=self.device)
296
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
297
298

        for dt in [None, torch.float32, torch.float64]:
299
300
301

            if dt is not None:
                tensor = F.convert_image_dtype(tensor, dt)
302
                batch_tensors = F.convert_image_dtype(batch_tensors, dt)
303

vfdev's avatar
vfdev committed
304
305
306
307
308
309
310
            for config in configs:
                adjusted_tensor = fn_t(tensor, **config)
                adjusted_pil = fn_pil(pil_img, **config)
                scripted_result = script_fn(tensor, **config)
                msg = "{}, {}".format(dt, config)
                self.assertEqual(adjusted_tensor.dtype, scripted_result.dtype, msg=msg)
                self.assertEqual(adjusted_tensor.size()[1:], adjusted_pil.size[::-1], msg=msg)
311
312

                rbg_tensor = adjusted_tensor
vfdev's avatar
vfdev committed
313

314
315
316
                if adjusted_tensor.dtype != torch.uint8:
                    rbg_tensor = F.convert_image_dtype(adjusted_tensor, torch.uint8)

vfdev's avatar
vfdev committed
317
318
                # Check that max difference does not exceed 2 in [0, 255] range
                # Exact matching is not possible due to incompatibility convert_image_dtype and PIL results
319
320
321
322
323
324
                self.approxEqualTensorToPIL(rbg_tensor.float(), adjusted_pil, tol=tol, msg=msg, agg_method=agg_method)

                atol = 1e-6
                if adjusted_tensor.dtype == torch.uint8 and "cuda" in torch.device(self.device).type:
                    atol = 1.0
                self.assertTrue(adjusted_tensor.allclose(scripted_result, atol=atol), msg=msg)
vfdev's avatar
vfdev committed
325

326
327
                self._test_fn_on_batch(batch_tensors, fn, **config)

vfdev's avatar
vfdev committed
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
    def test_adjust_brightness(self):
        self._test_adjust_fn(
            F.adjust_brightness,
            F_pil.adjust_brightness,
            F_t.adjust_brightness,
            [{"brightness_factor": f} for f in [0.1, 0.5, 1.0, 1.34, 2.5]]
        )

    def test_adjust_contrast(self):
        self._test_adjust_fn(
            F.adjust_contrast,
            F_pil.adjust_contrast,
            F_t.adjust_contrast,
            [{"contrast_factor": f} for f in [0.2, 0.5, 1.0, 1.5, 2.0]]
        )

    def test_adjust_saturation(self):
        self._test_adjust_fn(
            F.adjust_saturation,
            F_pil.adjust_saturation,
            F_t.adjust_saturation,
            [{"saturation_factor": f} for f in [0.5, 0.75, 1.0, 1.5, 2.0]]
        )
351

352
353
354
355
356
357
    def test_adjust_hue(self):
        self._test_adjust_fn(
            F.adjust_hue,
            F_pil.adjust_hue,
            F_t.adjust_hue,
            [{"hue_factor": f} for f in [-0.45, -0.25, 0.0, 0.25, 0.45]],
vfdev's avatar
vfdev committed
358
359
            tol=16.1,
            agg_method="max"
360
361
        )

vfdev's avatar
vfdev committed
362
363
364
365
366
367
368
    def test_adjust_gamma(self):
        self._test_adjust_fn(
            F.adjust_gamma,
            F_pil.adjust_gamma,
            F_t.adjust_gamma,
            [{"gamma": g1, "gain": g2} for g1, g2 in zip([0.8, 1.0, 1.2], [0.7, 1.0, 1.3])]
        )
369

370
    def test_resize(self):
371
        script_fn = torch.jit.script(F.resize)
372
        tensor, pil_img = self._create_data(26, 36, device=self.device)
373
        batch_tensors = self._create_data_batch(16, 18, num_samples=4, device=self.device)
vfdev's avatar
vfdev committed
374

375
376
377
378
379
380
        for dt in [None, torch.float32, torch.float64, torch.float16]:

            if dt == torch.float16 and torch.device(self.device).type == "cpu":
                # skip float16 on CPU case
                continue

vfdev's avatar
vfdev committed
381
382
383
            if dt is not None:
                # This is a trivial cast to float of uint8 data to test all cases
                tensor = tensor.to(dt)
384
385
                batch_tensors = batch_tensors.to(dt)

386
            for size in [32, 26, [32, ], [32, 32], (32, 32), [26, 35]]:
vfdev's avatar
vfdev committed
387
                for interpolation in [BILINEAR, BICUBIC, NEAREST]:
388
389
                    resized_tensor = F.resize(tensor, size=size, interpolation=interpolation)
                    resized_pil_img = F.resize(pil_img, size=size, interpolation=interpolation)
vfdev's avatar
vfdev committed
390
391
392
393
394

                    self.assertEqual(
                        resized_tensor.size()[1:], resized_pil_img.size[::-1], msg="{}, {}".format(size, interpolation)
                    )

395
                    if interpolation not in [NEAREST, ]:
vfdev's avatar
vfdev committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
                        # We can not check values if mode = NEAREST, as results are different
                        # E.g. resized_tensor  = [[a, a, b, c, d, d, e, ...]]
                        # E.g. resized_pil_img = [[a, b, c, c, d, e, f, ...]]
                        resized_tensor_f = resized_tensor
                        # we need to cast to uint8 to compare with PIL image
                        if resized_tensor_f.dtype == torch.uint8:
                            resized_tensor_f = resized_tensor_f.to(torch.float)

                        # Pay attention to high tolerance for MAE
                        self.approxEqualTensorToPIL(
                            resized_tensor_f, resized_pil_img, tol=8.0, msg="{}, {}".format(size, interpolation)
                        )

                    if isinstance(size, int):
                        script_size = [size, ]
                    else:
                        script_size = size
413

414
415
                    resize_result = script_fn(tensor, size=script_size, interpolation=interpolation)
                    self.assertTrue(resized_tensor.equal(resize_result), msg="{}, {}".format(size, interpolation))
vfdev's avatar
vfdev committed
416

417
418
419
420
                    self._test_fn_on_batch(
                        batch_tensors, F.resize, size=script_size, interpolation=interpolation
                    )

421
422
423
424
425
426
        # assert changed type warning
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"):
            res1 = F.resize(tensor, size=32, interpolation=2)
            res2 = F.resize(tensor, size=32, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

427
    def test_resized_crop(self):
428
429
        # test values of F.resized_crop in several cases:
        # 1) resize to the same size, crop to the same size => should be identity
430
        tensor, _ = self._create_data(26, 36, device=self.device)
431
432
433

        for mode in [NEAREST, BILINEAR, BICUBIC]:
            out_tensor = F.resized_crop(tensor, top=0, left=0, height=26, width=36, size=[26, 36], interpolation=mode)
434
435
436
            self.assertTrue(tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5]))

        # 2) resize by half and crop a TL corner
437
        tensor, _ = self._create_data(26, 36, device=self.device)
438
        out_tensor = F.resized_crop(tensor, top=0, left=0, height=20, width=30, size=[10, 15], interpolation=NEAREST)
439
440
441
442
443
444
        expected_out_tensor = tensor[:, :20:2, :30:2]
        self.assertTrue(
            expected_out_tensor.equal(out_tensor),
            msg="{} vs {}".format(expected_out_tensor[0, :10, :10], out_tensor[0, :10, :10])
        )

445
446
        batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
        self._test_fn_on_batch(
447
            batch_tensors, F.resized_crop, top=1, left=2, height=20, width=30, size=[10, 15], interpolation=NEAREST
448
449
        )

450
451
    def _test_affine_identity_map(self, tensor, scripted_affine):
        # 1) identity map
452
        out_tensor = F.affine(tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
vfdev's avatar
vfdev committed
453

454
455
456
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
457
458
459
        out_tensor = scripted_affine(
            tensor, angle=0, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
        )
460
461
462
        self.assertTrue(
            tensor.equal(out_tensor), msg="{} vs {}".format(out_tensor[0, :5, :5], tensor[0, :5, :5])
        )
463

464
465
466
467
468
469
470
471
472
473
474
475
476
    def _test_affine_square_rotations(self, tensor, pil_img, scripted_affine):
        # 2) Test rotation
        test_configs = [
            (90, torch.rot90(tensor, k=1, dims=(-1, -2))),
            (45, None),
            (30, None),
            (-30, None),
            (-45, None),
            (-90, torch.rot90(tensor, k=-1, dims=(-1, -2))),
            (180, torch.rot90(tensor, k=2, dims=(-1, -2))),
        ]
        for a, true_tensor in test_configs:
            out_pil_img = F.affine(
477
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
478
            )
479
480
481
482
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1))).to(self.device)

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
483
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
484
485
486
487
488
489
                )
                if true_tensor is not None:
                    self.assertTrue(
                        true_tensor.equal(out_tensor),
                        msg="{}\n{} vs \n{}".format(a, out_tensor[0, :5, :5], true_tensor[0, :5, :5])
                    )
490

491
492
493
494
495
496
497
498
499
500
501
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 6% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.06,
                    msg="{}\n{} vs \n{}".format(
                        ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
502
                    )
503
                )
504

505
506
507
508
509
    def _test_affine_rect_rotations(self, tensor, pil_img, scripted_affine):
        test_configs = [
            90, 45, 15, -30, -60, -120
        ]
        for a in test_configs:
510

511
            out_pil_img = F.affine(
512
                pil_img, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
513
514
515
516
517
            )
            out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

            for fn in [F.affine, scripted_affine]:
                out_tensor = fn(
518
                    tensor, angle=a, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST
519
520
521
522
523
524
525
526
527
528
529
530
531
                ).cpu()

                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)

                num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                # Tolerance : less than 3% of different pixels
                self.assertLess(
                    ratio_diff_pixels,
                    0.03,
                    msg="{}: {}\n{} vs \n{}".format(
                        a, ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
532
                    )
533
                )
534

535
536
537
538
539
540
    def _test_affine_translations(self, tensor, pil_img, scripted_affine):
        # 3) Test translation
        test_configs = [
            [10, 12], (-12, -13)
        ]
        for t in test_configs:
541

542
            out_pil_img = F.affine(pil_img, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
543

544
            for fn in [F.affine, scripted_affine]:
545
                out_tensor = fn(tensor, angle=0, translate=t, scale=1.0, shear=[0.0, 0.0], interpolation=NEAREST)
546

547
548
                if out_tensor.dtype != torch.uint8:
                    out_tensor = out_tensor.to(torch.uint8)
549

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
                self.compareTensorToPIL(out_tensor, out_pil_img)

    def _test_affine_all_ops(self, tensor, pil_img, scripted_affine):
        # 4) Test rotation + translation + scale + share
        test_configs = [
            (45, [5, 6], 1.0, [0.0, 0.0]),
            (33, (5, -4), 1.0, [0.0, 0.0]),
            (45, [-5, 4], 1.2, [0.0, 0.0]),
            (33, (-4, -8), 2.0, [0.0, 0.0]),
            (85, (10, -10), 0.7, [0.0, 0.0]),
            (0, [0, 0], 1.0, [35.0, ]),
            (-25, [0, 0], 1.2, [0.0, 15.0]),
            (-45, [-10, 0], 0.7, [2.0, 5.0]),
            (-45, [-10, -10], 1.2, [4.0, 5.0]),
            (-90, [0, 0], 1.0, [0.0, 0.0]),
        ]
566
        for r in [NEAREST, ]:
567
            for a, t, s, sh in test_configs:
568
                out_pil_img = F.affine(pil_img, angle=a, translate=t, scale=s, shear=sh, interpolation=r)
569
570
571
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

                for fn in [F.affine, scripted_affine]:
572
                    out_tensor = fn(tensor, angle=a, translate=t, scale=s, shear=sh, interpolation=r).cpu()
573
574
575
576
577
578
579
580
581
582
583
584
585

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% (cpu), 6% (cuda) of different pixels
                    tol = 0.06 if self.device == "cuda" else 0.05
                    self.assertLess(
                        ratio_diff_pixels,
                        tol,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, a, t, s, sh), ratio_diff_pixels, out_tensor[0, :7, :7], out_pil_tensor[0, :7, :7]
vfdev's avatar
vfdev committed
586
                        )
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
                    )

    def test_affine(self):
        # Tests on square and rectangular images
        scripted_affine = torch.jit.script(F.affine)

        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:

            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                self._test_affine_identity_map(tensor, scripted_affine)
                if pil_img.size[0] == pil_img.size[1]:
                    self._test_affine_square_rotations(tensor, pil_img, scripted_affine)
                else:
                    self._test_affine_rect_rotations(tensor, pil_img, scripted_affine)
                self._test_affine_translations(tensor, pil_img, scripted_affine)
611
612
613
614
615
616
617
618
619
620
                self._test_affine_all_ops(tensor, pil_img, scripted_affine)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                self._test_fn_on_batch(
                    batch_tensors, F.affine, angle=-43, translate=[-3, 4], scale=1.2, shear=[4.0, 5.0]
                )

621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], resample=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        # assert changed type warning
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"):
            res1 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=2)
            res2 = F.affine(tensor, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        with self.assertWarnsRegex(UserWarning, r"Argument fillcolor is deprecated and will be removed"):
            res1 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fillcolor=10)
            res2 = F.affine(pil_img, 45, translate=[0, 0], scale=1.0, shear=[0.0, 0.0], fill=10)
            self.assertEqual(res1, res2)

639
640
641
    def _test_rotate_all_options(self, tensor, pil_img, scripted_rotate, centers):
        img_size = pil_img.size
        dt = tensor.dtype
642
        for r in [NEAREST, ]:
643
644
645
646
            for a in range(-180, 180, 17):
                for e in [True, False]:
                    for c in centers:

647
                        out_pil_img = F.rotate(pil_img, angle=a, interpolation=r, expand=e, center=c)
648
649
                        out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))
                        for fn in [F.rotate, scripted_rotate]:
650
                            out_tensor = fn(tensor, angle=a, interpolation=r, expand=e, center=c).cpu()
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674

                            if out_tensor.dtype != torch.uint8:
                                out_tensor = out_tensor.to(torch.uint8)

                            self.assertEqual(
                                out_tensor.shape,
                                out_pil_tensor.shape,
                                msg="{}: {} vs {}".format(
                                    (img_size, r, dt, a, e, c), out_tensor.shape, out_pil_tensor.shape
                                )
                            )
                            num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                            ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                            # Tolerance : less than 3% of different pixels
                            self.assertLess(
                                ratio_diff_pixels,
                                0.03,
                                msg="{}: {}\n{} vs \n{}".format(
                                    (img_size, r, dt, a, e, c),
                                    ratio_diff_pixels,
                                    out_tensor[0, :7, :7],
                                    out_pil_tensor[0, :7, :7]
                                )
                            )
vfdev's avatar
vfdev committed
675

676
    def test_rotate(self):
vfdev's avatar
vfdev committed
677
678
679
        # Tests on square image
        scripted_rotate = torch.jit.script(F.rotate)

680
681
        data = [self._create_data(26, 26, device=self.device), self._create_data(32, 26, device=self.device)]
        for tensor, pil_img in data:
682
683
684
685
686
687
688
689

            img_size = pil_img.size
            centers = [
                None,
                (int(img_size[0] * 0.3), int(img_size[0] * 0.4)),
                [int(img_size[0] * 0.5), int(img_size[0] * 0.6)]
            ]

690
691
692
693
694
695
696
697
698
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

699
700
701
702
703
704
705
706
                self._test_rotate_all_options(tensor, pil_img, scripted_rotate, centers)

                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)

                center = (20, 22)
                self._test_fn_on_batch(
707
                    batch_tensors, F.rotate, angle=32, interpolation=NEAREST, expand=True, center=center
708
                )
709
710
711
712
713
714
715
716
717
718
719
720
        tensor, pil_img = data[0]
        # assert deprecation warning and non-BC
        with self.assertWarnsRegex(UserWarning, r"Argument resample is deprecated and will be removed"):
            res1 = F.rotate(tensor, 45, resample=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

        # assert changed type warning
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"):
            res1 = F.rotate(tensor, 45, interpolation=2)
            res2 = F.rotate(tensor, 45, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))
721

722
    def _test_perspective(self, tensor, pil_img, scripted_transform, test_configs):
723
        dt = tensor.dtype
724
        for r in [NEAREST, ]:
725
726
727
728
            for spoints, epoints in test_configs:
                out_pil_img = F.perspective(pil_img, startpoints=spoints, endpoints=epoints, interpolation=r)
                out_pil_tensor = torch.from_numpy(np.array(out_pil_img).transpose((2, 0, 1)))

729
                for fn in [F.perspective, scripted_transform]:
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
                    out_tensor = fn(tensor, startpoints=spoints, endpoints=epoints, interpolation=r).cpu()

                    if out_tensor.dtype != torch.uint8:
                        out_tensor = out_tensor.to(torch.uint8)

                    num_diff_pixels = (out_tensor != out_pil_tensor).sum().item() / 3.0
                    ratio_diff_pixels = num_diff_pixels / out_tensor.shape[-1] / out_tensor.shape[-2]
                    # Tolerance : less than 5% of different pixels
                    self.assertLess(
                        ratio_diff_pixels,
                        0.05,
                        msg="{}: {}\n{} vs \n{}".format(
                            (r, dt, spoints, epoints),
                            ratio_diff_pixels,
                            out_tensor[0, :7, :7],
                            out_pil_tensor[0, :7, :7]
                        )
                    )
vfdev's avatar
vfdev committed
748

749
    def test_perspective(self):
750
751
752

        from torchvision.transforms import RandomPerspective

753
        data = [self._create_data(26, 34, device=self.device), self._create_data(26, 26, device=self.device)]
754
        scripted_transform = torch.jit.script(F.perspective)
755

756
        for tensor, pil_img in data:
757
758
759
760
761
762
763
764
765
766
767

            test_configs = [
                [[[0, 0], [33, 0], [33, 25], [0, 25]], [[3, 2], [32, 3], [30, 24], [2, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[0, 0], [33, 0], [33, 25], [0, 25]]],
                [[[3, 2], [32, 3], [30, 24], [2, 25]], [[5, 5], [30, 3], [33, 19], [4, 25]]],
            ]
            n = 10
            test_configs += [
                RandomPerspective.get_params(pil_img.size[0], pil_img.size[1], i / n) for i in range(n)
            ]

768
769
770
771
772
773
774
775
776
            for dt in [None, torch.float32, torch.float64, torch.float16]:

                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

777
                self._test_perspective(tensor, pil_img, scripted_transform, test_configs)
778

779
780
781
                batch_tensors = self._create_data_batch(26, 36, num_samples=4, device=self.device)
                if dt is not None:
                    batch_tensors = batch_tensors.to(dtype=dt)
782

783
784
                for spoints, epoints in test_configs:
                    self._test_fn_on_batch(
785
                        batch_tensors, F.perspective, startpoints=spoints, endpoints=epoints, interpolation=NEAREST
786
                    )
787

788
789
790
791
792
793
794
795
        # assert changed type warning
        spoints = [[0, 0], [33, 0], [33, 25], [0, 25]]
        epoints = [[3, 2], [32, 3], [30, 24], [2, 25]]
        with self.assertWarnsRegex(UserWarning, r"Argument interpolation should be of type InterpolationModes"):
            res1 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=2)
            res2 = F.perspective(tensor, startpoints=spoints, endpoints=epoints, interpolation=BILINEAR)
            self.assertTrue(res1.equal(res2))

796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
    def test_gaussian_blur(self):
        small_image_tensor = torch.from_numpy(
            np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        ).permute(2, 0, 1).to(self.device)

        large_image_tensor = torch.from_numpy(
            np.arange(26 * 28, dtype="uint8").reshape((1, 26, 28))
        ).to(self.device)

        scripted_transform = torch.jit.script(F.gaussian_blur)

        # true_cv2_results = {
        #     # np_img = np.arange(3 * 10 * 12, dtype="uint8").reshape((10, 12, 3))
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.8)
        #     "3_3_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 3), sigmaX=0.5)
        #     "3_3_0.5": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.8)
        #     "3_5_0.8": ...
        #     # cv2.GaussianBlur(np_img, ksize=(3, 5), sigmaX=0.5)
        #     "3_5_0.5": ...
        #     # np_img2 = np.arange(26 * 28, dtype="uint8").reshape((26, 28))
        #     # cv2.GaussianBlur(np_img2, ksize=(23, 23), sigmaX=1.7)
        #     "23_23_1.7": ...
        # }
        p = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'assets', 'gaussian_blur_opencv_results.pt')
        true_cv2_results = torch.load(p)

        for tensor in [small_image_tensor, large_image_tensor]:

            for dt in [None, torch.float32, torch.float64, torch.float16]:
                if dt == torch.float16 and torch.device(self.device).type == "cpu":
                    # skip float16 on CPU case
                    continue

                if dt is not None:
                    tensor = tensor.to(dtype=dt)

                for ksize in [(3, 3), [3, 5], (23, 23)]:
                    for sigma in [[0.5, 0.5], (0.5, 0.5), (0.8, 0.8), (1.7, 1.7)]:

                        _ksize = (ksize, ksize) if isinstance(ksize, int) else ksize
                        _sigma = sigma[0] if sigma is not None else None
                        shape = tensor.shape
                        gt_key = "{}_{}_{}__{}_{}_{}".format(
                            shape[-2], shape[-1], shape[-3],
                            _ksize[0], _ksize[1], _sigma
                        )
                        if gt_key not in true_cv2_results:
                            continue

                        true_out = torch.tensor(
                            true_cv2_results[gt_key]
                        ).reshape(shape[-2], shape[-1], shape[-3]).permute(2, 0, 1).to(tensor)

                        for fn in [F.gaussian_blur, scripted_transform]:
                            out = fn(tensor, kernel_size=ksize, sigma=sigma)
                            self.assertEqual(true_out.shape, out.shape, msg="{}, {}".format(ksize, sigma))
                            self.assertLessEqual(
                                torch.max(true_out.float() - out.float()),
                                1.0,
                                msg="{}, {}".format(ksize, sigma)
                            )

860

861
862
863
864
865
@unittest.skipIf(not torch.cuda.is_available(), reason="Skip if no CUDA device")
class CUDATester(Tester):

    def setUp(self):
        self.device = "cuda"
866

867
868
869

if __name__ == '__main__':
    unittest.main()